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Buckling and vibration analysis of stiffened plate 
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Abstract. The buckling and vibration characteristics of stiffened plates subjected to in-plane
concentrated edge loading are studied using finite element method. The problem involves the effects of
non-uniform stress distribution over the plate. Buckling loads and vibration frequencies are determined for
different plate aspect ratios, boundary edge conditions and load positions. The non-uniform stresses may
also be caused due to the supports on the edges. The analysis presented determines the initial stresses all
over the region considering the pre-buckling stress state for different kinds of loading and edge
conditions. In the structural modeling, the plate and the stiffeners are treated as separate elements where
the compatibility between these two types of elements is maintained. The vibration characteristics are
discussed and the results are compared with those available in the literature and some interesting new
results are obtained. 
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1. Introduction

Stiffened plates are structural components consisting of plates reinforced by a system of ribs to
enhance their load carrying capacities. These structures are widely used in aircraft, ship, bridge,
building, and some other engineering activities. In many circumstances these structures are found to
be exposed to in-plane loading. The buckling and vibration characteristics of stiffened plates
subjected to uniform and non-uniform in-plane edge loading are of considerable importance to
aerospace, naval, mechanical and structural engineers. Aircraft wing skin panels, which are made of
thin sheets are usually subjected to non-uniform in-plane stresses caused by concentrated or partial
edge loading at the edges, and due to panel stiffener support conditions.

Large number of references in the published literature deal with the buckling and vibration
behaviour of rectangular stiffened plates subjected to in-plane uniform initial stresses. In this class
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of problems, the internal stress field remains constant throughout the plate, yielding relatively
simpler solution to the problems.

The applied load is seldom uniform and the boundary conditions may be completely arbitrary
in practice. The situation in which the loads are applied over only part of the edges has received
much less attention. The problem becomes complicated when the loading is non-uniformly
distributed over the edges. These studies for most part being concerned with the numerical
analysis of the theoretical buckling load and also mostly related to unstiffened plates.
Sommerfield (1906) presented a solution for a simply supported plate of infinite length subjected
to a pair of concentrated forces acting upon two opposite sides. It was assumed that the in-plane
stresses were concentrated only along the line of action of applied forces and hence the results
were prone to considerable errors. Timoshenko (1961) arrived at the same result by using the
energy method. In Timoshenko’s approach also, it was implied that the stresses were concentrated
only along the line of action of the forces. Leggett (1937) was able to obtain an approximate
non-uniform in-plane stress distribution within the plate subjected to point loading at the two
opposite edges. Baker and Pavolic (1982) analyzed the stability of rectangular plates subjected to
a pair of patch loading at the center of two opposite edges by using Ritz method. Cases of
practical interests arise when concentrated forces acting along the boundaries cause the in-plane
stresses. Leissa and Ayoub (1988) have solved the problem of buckling of simply supported
rectangular and circular plates subjected to a pair of oppositely directed concentrated compressive
and tensile loads anywhere on two opposite edges. Some non-uniform edge loading cases have
also been considered by (Dawe 1969, Grimm and Gerdeen 1975, Bassily and Dickinson 1975) in
buckling analysis.

A new approach to the plate-buckling problem, which did not require the initial stress field, was
set forth by Alfutove and Balabukh (1967). A single term approximate solution of the non-linear
equations gave reasonable results for a point loaded square plate. A similar procedure yielding
buckling results was presented by Spencer and Surjanhata (1985). Brown (1989) applied yet another
approach, called the conjugate load displacement method to the problem of buckling of plates under
concentrated edge loading. This method was used earlier by Brown and Yettram (1986) for the
elastic stability analysis of square perforated plates. Vibration and buckling calculations for
rectangular plates subjected to complicated in-plane stress distribution by using numerical
integration in a Raleigh-Ritz analysis are studied by Dickinson and Kalidas (1981). The vibration of
simply supported plates subjected to concentrated and partially loads were studied by Deolasi and
Datta (1995). Recently Sundersan et al. (1998) have studied the influence of partial edge compression
on buckling behaviour of angle ply plates for few orientations. 

As seen from the literature, the vibration and buckling of isotropic plates subjected to in-plane
concentrated edge load has been sparsely treated in the literature and not many results are available
on stiffened plates. The authors could not find any work in the literature regarding in-plane
concentrated load for stiffened plate. The present paper deals with the problem of vibration and
buckling of rectangular stiffened plates subjected to in-plane concentrated load. Finite element
formulation is applied for obtaining the non-uniform stress distribution in the plate and also to solve
the buckling load and frequency parameters in various modes with different boundary conditions,
aspect ratios and various parameters of stiffened plates. The non-uniform loading may also be
caused due to the supports on the edges. The analysis presented determines the stresses all over the
region. Different cases have been considered and comparison of buckling loads and frequency
parameters with previously published results are found to be good. Buckling results show that the
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stiffened plate is less susceptible to buckling for position of loading near the supported edges and
near the position of stiffeners as well.

In the present analysis, the plate is modeled with the nine noded isoparametric quadratic element
where the contributions of bending and membrane actions are taken into account. One of the
advantages of the element is that it includes the effect of shear deformation and rotary inertia in its
formulation. Thus the analysis can be carried out for both thin and thick plates. Moreover it can be
applied to a structure having irregular boundaries. The formulation of the stiffener is done in such a
manner so that it may lie anywhere within a plate element (Mukhrjee and Mukhopadhyay 1990). In
order to maintain compatibility between plate and stiffener, the interpolation functions used for the
plate are used for the stiffeners also.

2. Description of the problem

The problem considered here consists of a rectangular plate (a × b) with stiffener of cross-
section as shown in Fig. 1. The problem of plate subjected to concentrated load is of practical
interest, being the extreme case of non-uniform loading. The stiffened plate is subjected to a pair
of concentrated in-plane load at variable location (c/b) on the two opposite edges where c is the
distance of the concentrated load position from the lower edge y = 0. The plate area of interest
is divided into M × N finite element mesh, where M is the number of division along x-axis and
N is the number of division along y-axis. The mesh division is generally uniform in both the x
and y directions. However to accommodate the mesh division of desired load band width or at a
desired edge location, the plate is divided into two zones and each zone is meshed separately
with a uniform mesh. The loading shown is compressive in nature. The boundaries of the plate
are of different boundary conditions along the edges. The length (a) of the stiffened plate
considered above is varied keeping its other parameters unchanged. The cross-section of the
stiffened plate is shown in Fig. 2. The alignments of the stiffeners concentric and eccentric is
shown in Fig. 3.

Fig. 1 Concentrated edge edge loading at the two opposite edges of a plate with a central stiffener
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3. Governing equation

The equation of equilibrium for the stiffened plate subjected to in-plane loads can be written as:

(1)

Eq. (1) can be reduced to the governing equations for buckling and vibration problems as follows: 

Buckling problem 

 (2) 

Free vibration problem:
Assuming that the stiffened plates vibrates harmonically with angular frequency ω, Eq. (1)

reduces to:

 (3) 

M[ ] q··{ } Kb[ ][ P KG[ ] ] q{ }–+ 0=

q··{ } 0=

Kb[ ][ P KG[ ] ] q{ }– 0=

Kb[ ] Pcr KG[ ]– ω2 M[ ]–[ ] q{ } 0=

Fig. 2 Stiffened plate cross-section

Fig. 3 Concentrically and eccentrically stiffened plates
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Both Eqs. (2) and (3) represent the eigenvalue problems. The eigenvalues are the critical buckling
loads, Pcr, for Eq. (2) or squares of natural frequencies, ω2, for known load P for Eq. (3). The
eigenvectors correspond to the mode shapes of buckling or vibration.

4. Finite element formulation

The formulation is based on Mindlin’s plate theory, which will allow for the incorporation of
shear deformation. The plate skin and the stiffeners are modeled as separate elements but the
compatibility between them is maintained. This is similar to the concept proposed by Mukherjee
and Mukhopadhyay (1990). The middle plane of the plate is taken as the reference plane for both
the plate and the stiffeners. The effect of in-plane deformations is taken into account in addition to
the deformations due to bending, which will help to model the stiffener eccentricity conveniently. 

The nine noded isoparametric quadratic element with five degrees of freedom (u, v, w, θx, and θy)
per node is employed in the present analysis. The coordinates at a point within the element are
approximated in terms of its nodal co-ordinates as follows

and ,  (4)

In a similar manner, the displacement field variables (u, v, w, θx, and θy) are also expressed in terms
of its nodal variables as

(5)

In the above equation, Nr are the shape functions while (xr and yr) are the nodal coordinates and
(ur, vr, wr, θxr and θyr) are the nodal displacements of an element. The shape functions are
expressed in terms of non-dimensional parameters ξ and η.

4.1 Formulation of plate element for eccentrically stiffened plate 

Displacement field of plate {f } is expressed as,

 (6)

Strain displacement relation can be written by
 

(7)
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x Nr xr
r 1=

9

∑= y Nryr
r 1=

9

∑=

u Nrur
r 1=

9

∑= , v Nrvr
r 1=

9

∑= , w Nrwr
r 1=

9

∑=

θx Nrθxr and θy Nrθyr.
r 1=

9

∑=
r 1=

9

∑=

f{ }
U

V

W 
 
 
 
  u zθx–

v zθy–

w 
 
 
 
 

= =

ε{ } Σ Bp[ ]r δ{ }r Bp[ ] δ{ }= =

BP[ ] BP[ ][ 1  BP[ ]2  …  BP[ ]r   …  BP[ ]= 9 ]



690 A. K. L. Srivastava, P. K. Datta and A. H. Sheikh

Stress Strain relationship: 

(8)
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Element stiffness matrix is expressed as

(9) 

and

Consistent mass matrix:
The element mass matrix can be expressed in isoparametric coordinate as

(10)

where

Geometric stiffness matrix [KG]:
For buckling analysis the bending strains developed due to the action of in-plane loads are

considered. Thus the stiffness matrix is modified by another matrix [KG] and an eigenvalue is
encountered. 

Strain at middle plane of the plate 
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Considering a concentric stiffener case, the displacement field can be written as

(13)

(14) 

Where 

When expressed in isoparametric coordinates the geometric stiffness matrix can be expressed as

(15)

4.2 Stiffener element formulation

Similar to the plate element, the elastic stiffness matrix [KS], geometric stiffness matrix [KGS] and
mass matrix [MS] of a stiffener element placed anywhere within a plate element and oriented in the
direction of x may be derived as expressed as

Element stiffness matrix for stiffener 

(16)
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where

and

The element mass matrix can be expressed in isoparametric coordinate as

(17)

where

The geometric stiffness of the stiffener element can be expressed as

(18)

where AS is the area, FS is the first moment of area about reference plane, SS is the second moment
of area about reference plane, TS is the torsion constant and PS is the polar moment of area of the
stiffener cross-section.

 is the jacobian of the stiffener, which is half of its actual length within an element. 
The element matrices for the plate and stiffener are generated separately and then added up to

form overall matrices.

5. Computer program

A computer program is developed to perform all the necessary computations. The geometric
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stiffness matrix is essentially a function of the in-plane stress distribution in the element due to
applied edge loading. Since the stress field is non-uniform, for a given edge loading and boundary
conditions, the static equation, i.e.,  is solved to get these stresses. The geometric
stiffness matrix is now constructed with the known in-plane stresses. The computer program
developed accepts two sets of boundary conditions, the first for the static analysis and second for
the buckling analysis. In the present case, a three-point integration scheme is adopted for the
evaluation of all the matrices except the portion of the stiffness matrix related to shear strain
components.

The overall elastic stiffness matrix, geometric stiffness matrix and mass matrix are generated from
the assembly of those element matrices and stored in a single array where the variable bandwidth
profile storage scheme is used. The solution of eigenvalues is performed by the simultaneous
iteration technique proposed by Corr and Jennings (1976). 

6. Result and discussion

The loads and frequencies are converted into non-dimensional form according to the following
definitions. 

Non-dimensional load, (19)

Non-dimensional frequency,   (20)

The stiffener parameter terms δ and γ are defined as: 

 = Ratio of cross-sectional area of the stiffener to the plate, where AS is the area of the
stiffener. 

 = Ratio of bending stiffness rigidity of stiffener to the plate, where IS is the moment of
inertia of the stiffener cross-section about reference axis.

6.1 Convergence and validation studies with previous results

It is desirable to determine the critical (or lowest) value of load, which causes buckling before
studying the effects of concentrated forces upon the buckling and vibration of a stiffened plate. It is
necessary to keep the applied forces below their critical values in the subsequent vibration analysis.
In a finite element analysis, it is desired to have the convergence studies to estimate the order of
mesh size to be necessary for the numerical solution. The convergence studies have been carried out
for frequency of vibration and buckling loads for a plate subjected to concentrated load for various
plate geometries and load positions and the results are shown in Table 1. As the convergence study
shows that a mesh size of 10 × 10 is sufficient enough to get a reasonable order of accuracy. The
analysis in the subsequent problems is carried out with this mesh size. 

In the buckling and vibration analysis, it is necessary to mention the mode shapes. A
nomenclature of the mode shapes is adopted wherein, m denotes the number of approximate half
waves in x-direction, and n denotes the number of approximate half waves in y-direction. Table 2

K[ ] δ{ } F{ }=

λ Pb
D
-------=

ω ωb2 ρh D⁄=

δ
AS

bt
-----=

γ
EIS

bD
--------=



Buckling and vibration analysis of stiffened plate subjected to in-plane concentrated load695

Table 1 Convergence of non-dimensional frequency (ω) for a simply supported square unstiffened
 plate subjected to in-plane concentrated loads

c/b Mesh divison
Non-dimensional frequency parameter

P/Pcr −1 −0.5 0 0.5

0.25

4 × 4
6 × 6
8 × 8

10 × 10
12 × 12

26.52
26.43
26.54
26.37
26.39

23.74
23.51
23.56
23.47
23.54

19.75
19.73
19.73
19.73
19.73

14.23
14.29
14.37
14.41
14.37

0.5

4 × 4
6 × 6
8 × 8

10 × 10
12 × 12

27.54
27.59
27.64
27.67
27.69

24.01
24.02
24.04
24.05
24.06

19.75
19.73
19.73
19.73
19.73

14.07
14.06
14.05
14.05
14.04

Table 2 Comparison of non-dimensional frequency parameter with P/Pcr for simply supported 
square unstiffened plate subjected to in-plane concentrated load 

Non-dimensional natural frequencies (ω)

c/b Mode shape
P/Pcr

−1 −0.5 0 0.5

0.25

Mode 11
26.37

(26.48)
(26.41)

23.47
(23.54)
(23.50)

19.73
(19.739)
(19.729)

14.41
(14.339)
(14.36)

Mode 12
59.31

(59.43)
(59.09)

55.28
(55.39)
(55.12)

49.31
(49.34)
(49.148)

39.86
(39.62)
(39.515)

Mode 21 53.00
(53.14)

51.15
(51.23)

49.31
(49.34)

47.40
(47.41)

Mode 22 90.53
(91.12)

84.65
(84.89)

78.86
(78.95)

73.51
(73.42)

0.5

Mode 11
27.67

(27.75)
(27.732)

24.05
(24.09)
(24.07)

19.73
(19.73)
(19.729)

14.05
(14.027)
(14.022)

Mode 12 63.73
(63.82)

57.12
(57.18)

49.31
(49.34)

39.58
(39.61)

Mode 21 49.47
(49.36)

49.40
(49.36)

49.31
(49.34)

49.21
(49.31)

Mode 22 83.36
(83.12)

81.15
(81.07)

78.86
(78.95)

76.47
(76.76)

Note: The values within the first brackets are from Leissa and Ayoub (1988) and second
bracket from Deolasi and Datta (1995).
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gives the comparison of vibration results for unstiffened plate for c/b = 0.25, 0.5 for different load
ratios for various modes with those obtained by (Leissa and Ayoub 1988, Deolasi and Datta 1995).

Now the validation studies are done for buckling of unstiffened plate subjected to a pair of
concentrated loads at different positions and the results are compared as shown with Deolasi and
Datta (1996) in Table 3. It represents values of non-dimensional critical buckling load (λ = Pcr b/D)
for the aspect ratios a/b = 1. The buckling load parameters are obtained in three modes and the
values so obtained are plotted as c/b vs load parameter in Fig. 4. It is found that the lowest buckling
load will occur for centrally applied concentrated loads, i.e., when c/b = 0.5 for all modes. Buckling
load parameters variation at different load positions is also plotted in Figs. 5, 6 for simply supported
and clamped edge conditions respectively for different aspect ratios. 

It is observed that buckling load parameter of a plate simply supported along all the edges
increase as the loads are nearer to the support. It is also observed that for plates with small aspect
ratios, the boundary condition on the loaded edge has the significant effect on the load required to
cause elastic stability.

Table 3 Variation of buckling load parameter with position of load for simply supported 
square unstiffened plate 

Buckling load parameter (λ)

c/b Deolasi (1996) Present

0
0.1
0.2
0.3
0.4
0.5

40.83
44.94
38.67
31.38
27.51
25.52

40.84
45.00
38.71
31.32
27.43
26.62

Fig. 4 Variation of buckling load parameter (λ) with position of load for simply supported square unstiffenned
plate subjected to concentrated load
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6.2 Buckling studies for stiffened plate under concentrated edge loading

To study the behaviour of stiffened plates under concentrated in-plane edge load, stiffened plates
for various boundary conditions, aspect ratios, stiffener parameters are considered. The cross-section
of the stiffened plates is shown in Fig. 2 and the data are as follows: a = 600 mm, b = 600 mm,
t = 6 mm, bS = 12.7 and dS = 22.2 mm. 

6.2.1 Effect of position of load with aspect ratio
As a first case, the effects of position of concentrated load and aspect ratios for buckling are

studied by taking different values of c/b and results obtained are shown in Fig. 7 for different aspect
ratios a/b = 0.5, 1, 2 considering in-plane displacements. In order to study the effect of aspect ratio
(a/b) of a stiffened plate on its buckling behaviour, the length (a) of the stiffened plate considered
above is varied keeping its other parameters unchanged. It can be observed from Fig. 7 that the
variation of buckling load with the position of the load on the edges is more pronounced for the
stiffened plates of the smaller aspect ratios. For the stiffened plates of higher aspect ratios, the
buckling loads are not as much affected with the position of the load. This is due to the fact that for
long stiffened plates subjected to concentrated load, a major part of the plate area is subjected to
fairly uniform stress distribution comparatively. It can be observed that buckling behaviour of the
stiffened plates with the aspect ratio is similar to that of a simply supported unstiffened plate under
similar loading (1996).

It is observed that a stiffened plate with one central stiffener loaded centrally by concentrated
loads (c/b = 0.5) buckles with the maximum load. This is because of stiffener placed at the centre.
This reason can be attributed by considering stiffened plate with two equispaced and three-
equispaced stiffener shown in Fig. 8. The dimension taken for this case are as follows: b =100 mm,
t =1 mm, δ = 0.1 and γ =10, a/b = 2. It is quite obvious from Fig. 8 that stiffened plate gets
maximum buckling load when the load position coincide with the location of the stiffeners. It is

Fig. 5 Variation of buckling load parameter (λ) with
position of load for simply supported un-
stiffenned plate subjected to concentrated load 

Fig. 6 Variation of buckling load parameter (λ) with
position of load for clamped unstiffenned
plate subjected to concentrated load
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observed that this behaviour of stiffened plate is distinctly different to that of corresponding
unstiffened plate (1996).

An unstiffened plate loaded centrally by concentrated loads (c/b = 0.5) buckles with the lowest
load. For unstiffened plate, it is observed from the Table 3 that the buckling load is higher for the
location of loads near the ends of the edges. The buckling load decreases rapidly as the load is
moved toward the centre of two opposite edges and becomes minimum for a concentrated loading at
the centre. The lower values of the buckling load for loading near the centre of the edges is because
of the fact that a substantial compressive zone under such loading lies near the centre of the plate
where the edge restraints are not much effective.

6.2.2 Effect of position of load with boundary condition
As a second case, the effect of boundary condition with different position of the concentrated load

is studied for buckling and the results obtained are shown in Fig. 9, considering in-plane
displacements. 

It can be observed from Fig. 9 that the variation of buckling load parameter for boundary
conditions (SSSS, CCCC, CSCS) with the position of loads are similar as described above for Fig. 7.
The buckling strength of clamped boundary edges are more than SSSS and CSCS edge condition. It
is observed that for small value of c/b, the buckling load is usually higher and it decreases gradually
upto some values of c/b depending upon degree of edge restraint. This may be due to the fact that
for loading near the corners, the edge restraints (x = 0) increase the capacity to withstand the higher
loads and as c/b increases, the effect of edge restraints decreases resulting in lower buckling loads.
Again as the position of concentrated load is nearer to the location of stiffener, the effect of stiffener
predominates. As a consequence, in the case of the stiffened plate problem considered here, the
value of buckling load parameter goes on increasing near the location of stiffener and becomes
maximum at stiffener position.

Fig 8 Variation of buckling load parameter (λ) with
position of load for stiffened plate subjected
to concentrated load. b =100 mm, t =1 mm, δ
= 0.1 and γ =10,  a/b = 2

Fig 7 Variation of buckling load parameter (λ) with
position of load for simply supported stiffened
plate subjected to concentrated load
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The buckling load parameter for square stiffened plate with one central stiffener (δ = 0.1 and γ = 10)
is also studied for various boundary conditions (SSSS, CCCC, CCSS, CSCS) at different load
position i.e. c/b from 0 to 1 with an interval of 0.1 and also for full uniform load. The maximum
buckling load will occur for centrally applied concentrated load, i.e. when c/b = 0.5 where stiffener
is placed for all boundary conditions. 

At c/b = 0.5, these values are obtained and also for uni-axial full uniform load for the above-
mentioned boundary conditions. It can be concluded from the above observation that a square
stiffened plate buckles with 140.25, 121, 137, 141.88 percent of the load which could be withstood
if the stiffened plate were uniformly loaded all over the two opposite edges. 

On the other hand, it is found that the lowest buckling load will occur for centrally applied
concentrated loads, i.e. when c/b = 0.5 for all aspect ratios and boundary conditions for unstiffened
plate. A square unstiffened plate buckles with only 65 percent of the load which could be withstood
if the plate were uniformly loaded all over the two opposite edges and for a plate with a/b = 2, this
value is only about 48 percent (Leissa 1988).

The variation of buckling load parameter for simply supported square stiffened plate with two-
equispaced stiffener having (δ = 0.1 and γ = 10) is also studied in various modes and the results are
shown in Fig. 10. It is observed that variation in all modes is almost similar with increased values
with modes. 

6.3 Vibration studies for stiffened plates under concentrated edge loading

To study the vibration characteristics of stiffened plates under concentrated in-plane edge load,
stiffened plates for various boundary conditions, aspect ratios, stiffener parameters are considered.
All the boundaries of the stiffened plates are simply supported unless otherwise stated. Vibration
frequencies were determined for all edges simply supported and clamped having three aspect ratios

Fig 9 Variation of buckling load parameter (λ) with
position of load for square stiffened plate
subjected to concentrated load

Fig. 10 Variation of buckling load parameter vs
position of load (c/b) for simply supported
square stiffened plate with two equispaced
concentric stiffeners having (δ = 0.1 and γ
= 10) 
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(a/b = 0.5, 1, 2) and various locations of point loading.
The variation of non-dimensional frequency parameter with P/Pcr for square stiffened plate having

one central stiffener (δ = 0.1 and γ = 10) subjected to concentrated load at c/b = 0.25 and 0.5 for
simply supported and all edges clamped in various modes is shown in Tables 4, 5 and plotted in
Fig. 11. It is observed that the compressive forces decrease the frequencies, and tensile forces
increase them. It is also observed that the slope of the curve increases negatively with increasing
P/Pcr as expected, the values of frequency parameter of clamped edges are more than all edges
simply supported cases for all modes and P/Pcr values.

The variation of frequency parameter with P/Pcr for square stiffened plate having one central
stiffener at different position of load is studied for different aspect ratios in Fig. 12. Now the
analysis for the same stiffened plate is extended for simply supported and clamped cases and the
variation is plotted in Fig. 13.

It is observed that stiffened plates with aspect ratios subjected to concentrated load at different
positions have the significant effect on frequency parameters. The variation with position of load is
noticeable. The values of vibration frequencies increase with the increase of aspect ratio. It is

Table 4 Variation of non-dimensional frequency parameter vs P/Pcr for square stiffened plate having
one stiffener (δ = 0.1 and γ = 10) subjected to concentrated load at c/b = 0.25

Non-dimensional frequency parameter

Edge condition SSSS CCCC

P/Pcr Mode 1 Mode 2 Mode1 Mode2

−1
−0.5

0
0.2
0.4
0.5
0.6
0.8

44.79
43.30
40.74
39.16
37.11
35.87
34.41
30.26

56.93
52.88
49.14
47.87
46.77
46.26
45.75
41.04

78.31
76.12
72.85
71.04
68.87
67.66
66.34
60.40

88.61
84.10
79.90
78.61
77.39
76.82
76.29
63.26

Table 5 Variation of non-dimensional frequency parameter vs P/Pcr for square stiffened plate having 
one stiffener (δ = 0.1 and γ = 10) subjected to concentrated load at c/b = 0.50

Non-dimensional frequency parameter

Edge condition SSSS CCCC

P/Pcr Mode 1 Mode 2 Mode1 Mode2

−1
−0.5

0
0.2
0.4
0.5
0.6
0.8

49.66
48.93
40.75
36.59
31.82
29.12
26.13
18.62

56.98
50.29
49.14
48.76
48.27
47.96
47.59
45.43

71.14
72.62
72.85
72.51
71.64
70.07
67.83
55.34

93.85
87.74
79.99
76.39
72.57
71.43
70.56
62.62
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observed that the vibration frequencies increase as the load position shift away from the supported
edge for all aspect ratios as observed from Fig. 12 for all edges simply supported. On the other
hand, it is interestingly noted that this variation is somewhat different for all edges clamped as
observed by Fig. 13. For clamped case, it is observed that the vibration frequencies decrease as the
load position shifts away from the supported edge.

The variation of non-dimensional frequencies with non-dimensional load factor (P/Pcr) for
unstiffened plate and above dealt stiffened plate with one central stiffener is also carried out for
simply supported and clamped edges at load position c/b = 0.5. 

Fig. 11 Variation of frequency parameter with P/Pcr for square stiffened plate having one stiffener (δ = 0.1 and
γ = 10) subjected to in-plane concentrated load at c/b = 0.25

Fig. 12 Variation of frequency parameter with P/Pcr for stiffened plate having one stiffener (δ = 0.1 and γ =
10) subjected to concentrated load at different position of load
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The aim is to get the outlook of the comparative study of unstiffened and stiffened plates. The
variation is shown Fig. 14. As the applied compressive load increases, the frequencies decrease and
finally tend to zero at the respective value of buckling loads.

As expected the values of vibration frequencies for clamped cases are more than simply supported
and also the values of frequencies for stiffened plate are more than unstiffened. 

Fig. 14 Variation of non-dimensional frequency parameter with P/Pcr for unstiffened plate and stiffened plate
having one central stiffener (δ = 0.1 and γ = 10) subjected to concentrated load. c/b = 0.5

Fig. 13 Variation of frequency parameter with P/Pcr for stiffened plate having one stiffener (δ = 0.1 and γ = 10)
subjected to in-plane concentrated load at different position of load
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7. Conclusions

The results from the study of the compressive buckling and vibration behaviour of a stiffened
plate subjected to in-plane concentrated load can be summarized as follows.

The buckling load parameter of a unstiffened plates simply supported along all the edges increases
as the loads are nearer to the support. It is also observed that for plates with small aspect ratios, the
boundary condition on the loaded edge has the significant effect on the load required to cause
elastic instability.

For stiffened plates, compression buckling analysis shows that the variation of buckling load with
the position of the load on the edges is more pronounced for the stiffened plates of the smaller
aspect ratios. For the stiffened plates of higher aspect ratios, the buckling loads are not as much
affected with the position of the load.

The stiffened plate gets maximum buckling load when the load position coincides with the
location of the stiffeners.

Natural frequencies decrease as compressive load increases. As expected, the fundamental
frequencies become zero at respective values of buckling loads. Also there is significant change in
the natural frequencies with position of loading over the edges. The values of frequency parameter
of clamped edges are more than all edges simply supported cases for all modes and P/Pcr values.
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Notation

a : Plate dimension in longitudinal direction
b : Plate dimension in the transverse direction
c : distance of concentrated load from bottom edge along y direction
t : Plate thickness
E, G : Young’s and shear moduli for the plate material
υ : Poisson’s ratio
bs, ds : Web thickness and depth of a x-stiffener
ξ, η : Non-dimensional element coordinate
AS : Cross sectional area of the stiffener
IS : Moment of inertia of the stiffener cross-section about reference axis
{q} r : Vector of nodal displacement a rth node
[DP] : Rigidity matrix of plate
[DS] : Rigidity matrix of stiffener
[Ke] : Elastic stiffness matrix of plate 
[KS] : Elastic stiffness matrix of stiffener
[Mp], [MS] : Consistent mass matrix of plate, stiffener
[KG] : Geometric stiffness matrix
[N]r : Matrix of a shape function of a node r
Pcr : Critical buckling load




