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Stochastic optimal control of coupled structures
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Abstract. The stochastic optimal nonlinear control of coupled adjacent building structures is studied
based on the stochastic dynamical programming principle and the stochastic averaging method. The
coupled structures with control devices under random seismic excitation are first condensed to form a
reduced-order structural model for the control analysis. The stochastic averaging method is applied to the
reduced model to yield  stochastic differential equations for structural modal energies as controlled
diffusion processes. Then a dynamical programming equation for the energy processes is established based
on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control
law. The seismic response mitigation of the coupled structures is achieved through the structural energy
control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is
taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear
controlled structural response is predicted by using the stochastic averaging method and compared with
the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to
demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for
coupled adjacent building structures.

Key words: building structure; random vibration; optimal control; stochastic averaging; stochastic
dynamical programming.

1. Introduction

Interconnecting adjacent high-rise structures with control devices to mitigate the seismic or wind
response has been an active research subject in recent years. The control devices can generate
control forces by utilizing the relative motion of connected structures. The passive control of
coupled adjacent tall structures connected with linear or nonlinear devices has been widely studied
(Gurley et al. 1994, Iwanami et al. 1996, Luco and De Barros 1998, Xu et al. 1999, Sugino et al.
1999, Ni et al. 2001). The active or semi-active control of coupled adjacent tall structures under
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seismic excitation has been evolved (Mitsuta and Seto 1992, Seto 1994, Luco and Wong 1994,
Yamada et al. 1994, Matsumoto et al. 1999, Christenson et al. 1999). The linear quadratic control
method was applied to determine the control forces of coupled structures in those studies. However,
the nonlinear optimal control method is more effective than linear one in reducing the seismic
response (Yang et al. 1996, Agrawal and Yang 1996, Zhu and Ying 1999, Zhu et al. 1999, 2000,
2001). The seismic or wind excitation acting on building structures is random in nature. It is more
reasonable to apply the stochastic dynamical programming principle (Fleming and Rishel 1975,
Stengel 1986) and to take into account the random excitation spectrum features for the seismic or
wind response control of coupled structures.

In the present paper, the stochastic optimal nonlinear control of coupled adjacent building
structures under random seismic excitation is studied based on the stochastic dynamical
programming principle and the stochastic averaging method (Zhu and Lin 1991, Zhu et al. 1997). A
reduced-order model of coupled structures with an arbitrary number of stories and with connecting
control devices at any floors is first formulated.  stochastic differential equations for modal
energies of the coupled structures are derived by using the stochastic averaging method. Then a
dynamical programming equation is obtained by applying the stochastic dynamical programming
principle to the energy processes. The nonlinear optimal control law is determined by the dynamical
programming equation. The controlled structural response to random seismic excitation is predicted
by using the stochastic averaging method and compared with the uncontrolled structural response to
evaluate the control efficacy. A numerical study is conducted to demonstrate the seismic response
mitigation capabilities of the proposed stochastic optimal control method.

2. Equation of motion

Consider two adjacent high-rise building structures respectively with n1 and n2 (n1 n2) stories,
interconnected by control devices at n3 (n3 n2) floors as shown in Fig. 1. It is assumed that the

Itô
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Fig. 1 Coupled building structures
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coupled structures are subjected to a lateral ground acceleration excitation and the control forces are
provided also in horizontal direction. The equations of motion of the shear-type coupled structures
are of the form

 (1a)

(1b)

where Xi (i = 1, 2) is the ni-dimensional lateral displacement vector; Mi , Ci and Ki (i = 1, 2) are the
ni × ni-dimensional symmetric positive-definite mass, damping and stiffness matrices of structure i
respectively; Ei (i = 1, 2) is the ni-dimensional vector with unit elements; U is the n3-dimensional
control force vector; and Pi (i = 1, 2) is the ni × n3-dimensional matrix indicating the control devices
placement. Note that the control forces of the coupled structures are exerted upon each other
inversely. There exists the relation P1 = [0, −P2

T]T.  represents the random ground acceleration
excitation and for the seismic excitation, can be modeled as a non-white stationary random process
with Kanai-Tajimi power spectrum density (Kanai 1957, Tajimi 1960). The random seismic
excitation  is generated by

    (2a)

(2b)

where y is the random response of filtering system (2b); ξ(t) is a Gaussian white noise with unit
intensity; σ is the amplitude of the random excitation; ωg and ζg are respectively the natural
frequency and damping ratio of filtering system, which represent the characteristics of site soil.

The coupled structural response can be expressed using the substructuring concept and the modes
of the corresponding uncoupled structures in the assumption that the higher-order mode effect is so
slight as to be neglected. The first mi (i = 1, 2) modes are taken for the response analysis of
structure i and are assembled into reduced mode matrix Φi normalized with respect to mass matrix
Mi. The displacement response of the coupled structures can be represented as Xi ΦiQi based on
the mode superposition method and then the coupled structural equations are represented by

(3a)

(3b)

where qji ( j = 1, 2) is the ith element of modal displacement vector Qj of structure j; ωji and ζji ( j =
1, 2) are the ith modal frequency and damping ratio respectively;  (j = 1, 2) is the
coefficient of the ith modal excitation; and  (j = 1, 2) is the control force
corresponding to the ith mode, in which φji ( j = 1, 2) is the ith mode vector in mode matrix Φj.

By combining Eqs. (3a,b) and (2a,b), the augmented matrix equation for the coupled structural
and filtering system is obtained and rewritten in the following  differential form

             (4)

M1X
··

1 C1X
·

1 K1X1+ + x··g t( )M1E1 P1U+–=

M2X
··

2 C2X
·

2 K2X2+ + x··g t( )M2E2 P2U+–=

x··g t( )

x··g t( )

x··g ωg
2y 2ζgωgy·+=

y·· 2ζgωgy
· ωg

2y+ + σξ t( )=

≅

q··1i 2ζ1iω1iq
·

1i ω1i
2 q1i+ + β1i x

··
g t( )– v1i , i 1 2 … m1, , ,=+=

q··2i 2ζ2iω2iq
·

2i ω2i
2 q2i+ + β2i x

··
g t( )– v2i , i 1 2 … m2, , ,=+=

βj i φj i
TMjEj=

vji φj i
TPjU=

Itô
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where W(t) is a unit Wiener process; (2m1 + 2m2 + 2)-dimensional state vector Z, (2m1 + 2m2 + 2) ×
(2m1+ 2m2 + 2)-dimensional constant matrix A, (2m1+ 2m2+ 2) × (m1 + m2)-dimensional constant
matrix B, (2m1 + 2m2 + 2)-dimensional constant vector C and (m1 + m2)-dimensional modal control
force vector Uv are respectively as

          (5a)

(5b)

(5c)

(5d)

(5e)

  (5f)

(5g)

in which Ii (i = 1, 2) is the mi × mi-dimensional identity matrix.

3. Optimal control law

For the control analysis, a further reduced-order model of the coupled structures involving m3

(m3 < m1) modes of structure 1 and m4 (m4< m2) modes of structure 2 can be obtained. The total
energy HjT ( j = 1, 2) of the reduced-order model is represented by structural modal energies Hji (i =
1, 2, …, mj+2) based on the modal transformation, i.e.,

                          (6)

where  is the displacement vector of the reduced-order model;  is the

Z Q1
T Q

·
1
T

Q2
T Q

·
2
T

y y·, , , , ,[ ]
T

=
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reduced modal displacement vector; and  is the reduced mode matrix. The
seismic response control of the coupled structures can be achieved through the corresponding modal
energy control. By applying the stochastic averaging method (Zhu and Lin 1991, Zhu et al. 1997) to
the reduced structural model, the averaged  equation for the modal energies is obtained as
follows

          (7)

where the modal energy vector  of the reduced structural model, the reduced modal displacement
vector , the modal control force vector , the drift coefficient vector , the diffusion
coefficient matrix  and unit Wiener process vector  are respectively as

(8a)

(8b)

(8c)

(8d)

 (8e)

(8f)

with

 (9a)

       (9b)

         (9c)

      (9d)

(9e)

It is assumed that all states such as displacements and velocities or modal energies of the reduced
structural model can be determined exactly by measurement. The optimal control problem is
independent of state observation (Fleming and Rishel 1975, Stengel 1986). Eq. (6) implies that
modal energy  is a controlled vector diffusion process. For the stochastic optimal control of the
modal energy processes, the performance index in finite time interval is of the form

Φj φj 1 φj2 … φjmj 2+
, , ,[ ]=

Itô
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         (10)

where E[·] denotes the expectation operator; L is a continuous differentiable convex function; and Ψ
is a terminal state function. In the case of infinite time interval, the performance index becomes

            (11)

According to the stochastic dynamical programming principle (Fleming and Rishel 1975, Stengel
1986), the following dynamical programming equations are obtained

(12)

for controlled system (7) with finite time-interval performance index (10), or

(13)

for controlled system (7) with infinite time-interval performance index (11), where tr[·] denotes the
trace operator of square matrix; V is a value function of  corresponding to the optimal control
force; and λ is a constant.

The stochastic optimal control law can be determined by minimizing the right-hand side of
dynamical programming Eq. (12) or (13). Let function L be of the form

 (14)

where g is a continuous differentiable convex function; R is a positive-definite symmetric weight
matrix

,

                              (15)

in which R1 and R2 are the m3 × m3-dimensional and m4 × m4-dimensional positive-definite
symmetric constant matrices corresponding to structure 1 and structure 2 respectively. If the
dimension of the reduced structural model is not less than the number of control devices, i.e.,
m3 + m4 n3 and the rank of matrix  is equal to n3 for a certain placement
of the control devices, Rp is a positive-definite symmetric matrix. Then the optimal control force is

    (16)

which acts as a generalized nonlinear damping force since the partial derivative of the ith mode
energy Hji ( j = 1, 2) with respect to modal velocity  is just the corresponding modal velocity .
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Substituting the optimal control force (16) into Eq. (12) or (13) and averaging terms involving the
control forces yield the final dynamical programming equation, for example, in the case of infinite
time interval as

         (17)

where

, (18a)

(18b)

The value function V can be obtained from solving Eq. (17) and then the optimal control force U* is
determined as a function of modal energy  or modal displacement  and modal velocity .
Suppose that function g is of the form

              

    (19)

where  and the weight coefficients are non-negative. Then a polynomial solution
of the value function is obtained as follows

           (20)
    

where  and . The weight coefficients in the value function are determined by
Eq. (17) for certain coefficients  and .
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4. Response prediction

The stochastic-optimally controlled structures are nonlinear due to the control forces. The random
response of the nonlinear coupled structures can be predicted by using the stochastic averaging
method. Substituting the optimal control force (16) into the coupled structural Eq. (4) and applying
the averaging method to it yield the following averaged  equation for the modal energies

          (21)

where the structural modal energy vector H, the drift coefficient vectors m(H) and  involving
the control forces, the diffusion coefficient matrix σ (H), and unit Wiener process vector  are
respectively as

(22a)

(22b)

                           (22c)

(22d)

(22e)

Note that the averaged  equation of the uncontrolled structures corresponding to Eq. (21) is
separable. In vector mu  of averaged  equation of the controlled structures, the first m3

elements of mu1 and first m4 elements of mu2 are represented by Eq. (18a) and the other elements of
mu1 and mu2 are equal to zeros. Thus the optimal control forces affect only the controlled reduced
mode processes in the sense of stochastic averaging. Since Rp is a positive-definite symmetric matrix
as stated previously, (i = 1, 2, ..., mj+2; j = 1, 2) is non-negative. And g  is taken so
that  (i = 1, 2, ..., mj+2; j = 1, 2), for example, the derivative of value function (20)
with non-negative coefficients. Then the controlled response process of the coupled structures is
stabilized based on the averaged  Eq. (21) with (18).

The Fokker-Planck-Kolmogorov (FPK) equation associated with the averaged  Eq. (21) can be
established. The stationary FPK equation is

        (23)

A stationary probability density is obtained as follows
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Itô
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Itô
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where Cp is a normalization constant; the probability potential ϕ is represented by

   (25a)

              (25b)

               (25c)

The mean square (MS) modal displacement and modal velocity are obtained from Eq. (24) as

                   (26a)

                  (26b)
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obtained by using the modal transformation as follows
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where  is the ith element of mode vector φjk of structure j; mjii  is the ith diagonal element of mass
matrix Mj;  is the ith row vector of inverse matrix  and

              (29)

The response statistics of the uncontrolled structures can be obtained in the same way by making
the optimal control forces vanishing.

To evaluate the optimal control efficacy, two performance criteria are used as follows (Zhu et al.
1999, 2000, 2001)

          (30a)

        (30b)

where RMS(·) denotes the root mean square value; the subscripts u and c denote the uncontrolled
and controlled structures respectively. The ratio K measures the relative response reduction of the
controlled and uncontrolled structures, and the ratio µ measures the relative response reduction per
control force or control efficiency. The higher K and µ indicate the control method with more
response mitigation capabilities.

5. Numerical results

A numerical study is conducted on the stochastic optimal control of coupled adjacent building
structures consisting of a 20-storey building and a 10-storey building with a few control devices.
The mass of each floor is 1.6 × 106 kg; the interstorey stiffness is 1.2 × 1010 N/m; and the modal
damping ratio is taken to be 0.02. The spectral parameters of random seismic excitation are taken as
σ2 = 0.6 m2/s3, ωg = 19 rad/s and ζg = 0.2 unless otherwise mentioned. The numbers of structural
modes used for response analysis m1 = 6 and m2 = 4 while the control mode numbers m3 = 3 and
m4 = 2. The weight coefficients of control forces and modal energies are R1 = diag{10, 10, 8}, R2 =
diag{3, 2},  = 0,  = 0,  = [0.08, 0.1, 0.04],  = [0.08, 0.04], = 0, = 0 and

= 0. Some numerical results are displayed in Figs. 2-6 and in Tables 1-4.
Fig. 2 shows the performance criteria K and µ of displacements and interstorey drifts of the

coupled structures by using the proposed control method when the control device connects the two
adjacent buildings only at the 10th floor level. About 60% displacement response reduction (K) with
0.85 efficiency (µ) at the middle of taller building and 55% response reduction with 0.80 efficiency
for shorter building are achieved. The interstorey drift is relative to the corresponding displacement
response and then only the numerical results of interstorey drifts are given in the following.

The effect of seismic excitation features on the control efficacy is studied with the control device
at the 10th floor level. Fig. 3 illustrates the relative response reduction K and control efficiency µ of
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Table 2 Relative reduction K and efficiency µ of RMS base shears under different ωg

ωg

Taller building Shorter building

K µ K µ
8
11
14
19
23

0.925
0.882
0.850
0.796
0.785

0.51
0.88
0.82
1.10
1.23

0.562
0.819
0.876
0.808
0.767

0.31
0.82
0.84
1.12
1.20

Table 3 Relative reduction K and efficiency µ of RMS base shears for various control device position

Position of control 
device

Taller building Shorter building

K µ K µ
10th floor
8th floor
6th floor

0.796
0.779
0.734

1.10
1.04
0.91

0.808
0.787
0.761

1.12
1.05
0.95

Table 1 Relative reduction K and efficiency µ of RMS base shears under different σ

σ 2 Taller building Shorter building

K µ K µ
0.6
0.9

0.796
0.830

1.10
1.00

0.808
0.842

1.12
1.01

RMS interstorey drifts under different excitation intensity σ. With the increase of intensity σ, the
response reduction capability is enhanced while the efficiency is decreased. Fig. 4 shows the relative
response reduction and control efficiency of RMS interstorey drifts under different dominant
excitation frequency ωg. It is observed that the response reduction or mitigation capability increases
as the dominant frequency ωg is close to the structural natural frequency, even though the efficiency
has a little decrease.

The effect of control device placement and number on the control efficacy is eventually studied.
Fig. 5 shows the relative response reduction and control efficiency of RMS interstorey drifts when a
single control device is placed at the 10th floor, the 8th floor or the 6th floor. It is seen that the
seismic response mitigation capability of the control device at the 10th floor level is better than at
the others. The result means the optimum position of control devices close to the floor level of the
largest amplitude of dominant structural modes. Fig. 6 shows the relative response reduction and
control efficiency of RMS interstorey drifts under different control device number and placement
(three cases: one control device at the 10th floor; two control devices at the 10th and 8th floors;
three control devices at the 10th, 8th and 6th floors respectively). It is found that the response
reduction capability does not increase with using more control devices at lower floors, due to the
interaction among the control devices. A similar observation is made for the RMS base shears as
given in Tables 1-4.
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Fig. 3 Relative reduction K and efficiency µ of RMS interstorey drifts under different σ (drift-1: σ2 = 0.6;
drift-2: σ2 = 0.9)

Fig. 2 Relative reduction K and efficiency µ of RMS displacements and interstorey drifts

Table 4 Relative reduction K and efficiency µ of RMS base shears for various control device number

Control devices Taller building Shorter building

Number Position K µ K µ
1
2
3

10th floor
10th & 8th floors

10th, 8th & 6th floors

0.796
0.810
0.768

1.10
0.79
0.09

0.808
0.816
0.756

1.12
0.80
0.09
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Fig. 5 Relative reduction K and efficiency µ of RMS interstorey drifts for various control device position
(drift-1: at the 10th floor; drift-2: at the 8th floor; drift-3: at the 6th floor)

Fig. 4 Relative reduction K and efficiency µ of RMS interstorey drifts under different ωg (drift-1: ωg = 19;
drift-2: ωg= 23; drift-3: ωg = 14; drift-4: ωg = 11; drift-5: ωg = 8)
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6. Conclusions

The stochastic optimal nonlinear control of coupled adjacent building structures under random
seismic excitation has been studied based on the stochastic dynamical programming principle and
the stochastic averaging method. The proposed control method has the following advantages: (a) the
random seismic excitation spectrum is taken into account according to the stochastic dynamical
programming principle; (b) the structural energy control instead of usual state control is conducted
and then the dimension of the optimal control problem is reduced based on the stochastic averaging
method; (c) the optimal control force is a generalized nonlinear damping force which can be
provided by active or semi-active dampers; (d) it is applicable to coupled structures with an arbitrary
number of stories and with connecting control devices at any floors. The numerical study has drawn
the following points: (a) the seismic response mitigation of coupled structures can be achieved by
using only a few connecting control devices at properly selected floors; (b) the response reduction
capability can increase with seismic excitation intensity and dominant frequency approaching the
structural natural frequency; (c) the proposed stochastic optimal control method for coupled
structures is more effective and efficient.
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