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Abstract. The stochastic optimal nonlinear control of coupled adjacent building structures is studied
based on the stochastic dynamical programming principle and the stochastic averaging method. The
coupled structures with control devices under random seismic excitation are first condensed to form a
reduced-order structural model for the control analysis. The stochastic averaging method is applied to the
reduced model to yieldtd  stochastic differential equations for structural modal energies as controlled
diffusion processes. Then a dynamical programming equation for the energy processes is established based
on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control
law. The seismic response mitigation of the coupled structures is achieved through the structural energy
control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is
taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear
controlled structural response is predicted by using the stochastic averaging method and compared with
the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to
demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for
coupled adjacent building structures.

Key words: building structure; random vibration; optimal control; stochastic averaging; stochastic
dynamical programming.

1. Introduction

Interconnecting adjacent high-rise structures with control devices to mitigate the seismic or wind
response has been an active research subject in recent years. The control devices can generate
control forces by utilizing the relative motion of connected structures. The passive control of
coupled adjacent tall structures connected with linear or nonlinear devices has been widely studied
(Gurley et al 1994, lwanamet al 1996, Luco and De Barros 1998, Xtial 1999, Sugineet al
1999, Niet al 2001). The active or semi-active control of coupled adjacent tall structures under
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seismic excitation has been evolved (Mitsuta and Seto 1992, Seto 1994, Luco and Wong 1994,
Yamadaet al 1994, Matsumotet al 1999, Christensogt al 1999). The linear quadratic control
method was applied to determine the control forces of coupled structures in those studies. However,
the nonlinear optimal control method is more effective than linear one in reducing the seismic
response (Yangt al 1996, Agrawal and Yang 1996, Zhu and Ying 1999, &hal 1999, 2000,

2001). The seismic or wind excitation acting on building structures is random in nature. It is more
reasonable to apply the stochastic dynamical programming principle (Fleming and Rishel 1975,
Stengel 1986) and to take into account the random excitation spectrum features for the seismic or
wind response control of coupled structures.

In the present paper, the stochastic optimal nonlinear control of coupled adjacent building
structures under random seismic excitation is studied based on the stochastic dynamical
programming principle and the stochastic averaging method (Zhu and Lin 199&t Zh@997). A
reduced-order model of coupled structures with an arbitrary number of stories and with connecting
control devices at any floors is first formulatedo stochastic differential equations for modal
energies of the coupled structures are derived by using the stochastic averaging method. Then a
dynamical programming equation is obtained by applying the stochastic dynamical programming
principle to the energy processes. The nonlinear optimal control law is determined by the dynamical
programming equation. The controlled structural response to random seismic excitation is predicted
by using the stochastic averaging method and compared with the uncontrolled structural response to
evaluate the control efficacy. A numerical study is conducted to demonstrate the seismic response
mitigation capabilities of the proposed stochastic optimal control method.

2. Equation of motion

Consider two adjacent high-rise building structures respectively witmdn, (n; = n,) stories,
interconnected by control devicesrat(nz < n,) floors as shown in Fig. 1. It is assumed that the
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coupled structures are subjected to a lateral ground acceleration excitation and the control forces are
provided also in horizontal direction. The equations of motion of the shear-type coupled structures
are of the form

M1>.<l + C1X1+ lel

Xy ()M, E, + P,U (1)

M,Xo + CXo+ KX, = —%5(t)M,E, + P,U (1b)

whereX; (i = 1, 2) is then-dimensional lateral displacement vectigk;, C; andK; (i = 1, 2) are the

n; X ni-dimensional symmetric positive-definite mass, damping and stiffness matrices of structure
respectively;E (i = 1, 2) is then-dimensional vector with unit elementd;is the ns-dimensional

control force vector; an@; (i = 1, 2) is then, x n;-dimensional matrix indicating the control devices
placement. Note that the control forces of the coupled structures are exerted upon each other
inversely. There exists the relati® = [0, —-P,"]". X4(t) represents the random ground acceleration
excitation and for the seismic excitation, can be modeled as a non-white stationary random process
with Kanai-Tajimi power spectrum density (Kanai 1957, Tajimi 1960). The random seismic
excitationXy(t) is generated by

g = why + 20,y (2a)
Y+ 24,0y + iy = aé(t) (2b)

wherey is the random response of filtering system (&f)) is a Gaussian white noise with unit
intensity; o is the amplitude of the random excitatiosy and {, are respectively the natural
frequency and damping ratio of filtering system, which represent the characteristics of site soil.

The coupled structural response can be expressed using the substructuring concept and the modes
of the corresponding uncoupled structures in the assumption that the higher-order mode effect is so
slight as to be neglected. The first (i = 1, 2) modes are taken for the response analysis of
structurei and are assembled into reduced mode mdirirormalized with respect to mass matrix
M;. The displacement response of the coupled structures can be represetedd®, based on
the mode superposition method and then the coupled structural equations are represented by

Gui + 2301 Gai + wiiqli = = BiXy(t) + vy, i=12...m (3a)
Uoi + 251 Wy Gai + wgiQZi = = BXy(t) + vy, i=12...m (3b)

whereg; (j = 1, 2) is thath element of modal displacement vea@rof structurg; «; anddj (j =
1, 2) are thath modal frequency and damping ratio_respectiv@ly;= (p]TiMJ-Ej j =@, 2) is the
coefficient of theith modal excitation; andv; = (,qTinU j(= 1, 2) is the control force
corresponding to thigh mode, in whichyg; (j = 1, 2) is thath mode vector in mode matrii;.

By combining Egs. (3a,b) and (2a,b), the augmented matrix equation for the coupled structural
and filtering system is obtained and rewritten in the followliray differential form

dZ = (AZ+ BU)dt+ CdW ) (4)
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whereW(t) is a unit Wiener process; i + 2m, + 2)-dimensional state vecta@; (2m,+ 2m,+ 2) x
(2my + 2mp + 2)-dimensional constant matriR, (2m+ 2my+ 2) % (M + mp)-dimensional constant
matrix B, (2my; + 2m, + 2)-dimensional constant vect@ and (m + mp)-dimensional modal control
force vectorU, are respectively as

T T T
Z=1Q, Q Q Q v (52)
Au 0 Ay . )
A = 0 A22 A23 ’ All = |: cDTK q) cDTC CD} (5b)
0 0 As 1K1P; 1L1 P,
0 I 0 1
A22 = |: T - 2 w, A33 = |: 5 J (50)
—q)szq)z —q)202q)2 _wg _ZZgw
_ 0 0 _
Az = 2. T T (5d)
—wyP M E; 2,0, M, Ey
_ 0 0 _
Ags = 2 . T T (5€)
—WyP,ME;, -2 w,®;M;E,
01, 0 0 @
B = 1 , C=[0,0,..,0,0]" (59)
0O 0 O01I, O
T
Uy, = [Viy Vig, -y Vi Vou, Voo ooy V2m2]T = [PIq)la qu’z] U (59)

in which|; (i = 1, 2) is than x m-dimensional identity matrix.

3. Optimal control law

For the control analysis, a further reduced-order model of the coupled structures inwalving
(ms <my) modes of structure 1 and, (my<m,) modes of structure 2 can be obtained. The total
energyHr (j = 1, 2) of the reduced-order model is represented by structural modal ergrgies
1, 2, ...,m.) based on the modal transformation, i.e.,

Hjr = E(Xi M; X + Xj K; X)) DE(QJ’ ®; M;®;Q; + Q; @ K; @, Q)

1 ~T = —T — My
= E(Qi Qi +QjQQ) = _;Hji (6)

where X; is the displacement vector of the reduced-order mQyet; [Di1 Gz, - qij]T is the
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reduced modal displacement vector; abd= (@1 Bor oo (Hmm] is the reduced mode matrix. The
seismic response control of the coupled structures can be achieved through the corresponding modal
energy control. By applying the stochastic averaging method (Zhu and Lin 199&t Zh@997) to

the reduced structural model, the averadsal equation for the modal energies is obtained as
follows
= = = H= T
dH = |m(H)+ —U,|dt+ o(H)dW(1) @)
Q
where the modal energy vecter  of the reduced structural model, the reduced modal displacement
vector Q , the modal control force vecttf, , the drift coefficient vechgH) , the diffusion
coefficient matrixa(H) and unit Wiener process vedid(t) are respectively as
= =T —=T.T
H = [Hl, H2] = [Hlli H12! Ty Hlm3! H211 H221 ey H2m4]T (8&)
— =T =T,T
Q = [Qli QZ] = [q11! Q12 -+ q1m3! 021 G22: -+ q2m4]T (8b)
UV = [Vll! V12, ceey Vlm31 V21, V22, ceey V2m4]T = [PIq_)l, P;q_)Z]TU (8C)
- — —T —T.T
m( H) = [m-{! m;] = [mll! Mo, ..., r'nlm3! My, Mgy, -.ey m2m4]T (8d)
o(H) = diag{ 01, 02} = diag{ 04y, 01y ..., Oum, Oo1, O .., Ton } (8e)
V_V( t) = [\7V11, le, ey V_V1m3, WZl, WZZ, ceey \TVZmA]T (8f)
with
Hy = (dhi+ @hidl)/2,  Ha = (Go + whio)/2 (92)
_ 1
my(Hy) = =243 w0Hy + éﬁiisg(wli) (9b)
_ 1
My (Hy) = —2{505Hy + EBSISQ(O)ZI) (9¢)
2 _ 2 2 —
01i(Hy) = BuiHyuS(wy), 0%(Hy) = B;iHZng(a)Zi) (9d)
4 2 2 2
+4
S(w) = o = Zgwg(;) 2 2 (%e)

(p— o)’ + 4 w,w

It is assumed that all states such as displacements and velocities or modal energies of the reduced
structural model can be determined exactly by measurement. The optimal control problem is
independent of state observation (Fleming and Rishel 1975, Stengel 1986). Eq. (6) implies that
modal energyH is a controlled vector diffusion process. For the stochastic optimal control of the
modal energy processes, the performance index in finite time interval is of the form
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J=E }L(T—I(r), U(r))dr+‘P(ﬁ(T))} (10)

whereE[:] denotes the expectation operatoiis a continuous differentiable convex function; &hd
is a terminal state function. In the case of infinite time interval, the performance index becomes

J= li[nm_%_J:'L(ﬁ(r), U(n))dr (11)

According to the stochastic dynamical programming principle (Fleming and Rishel 1975, Stengel
1986), the following dynamical programming equations are obtained

N —mlnEL(H u) + Y0 {m(H)ﬂHUV} tr{ﬂa(H) (H)}E (12)
ot oo 90 2" | oH 0
for controlled system (7) with finite time-interval performance index (10), or
A= m|n g_(H U) + wvg {m( H) + BH v:| + t{azva(H)a (H)} (13)
it 90 2" | oH 0

for controlled system (7) with infinite time-interval performance index (11), where tr[-] denotes the
trace operator of square matri;is a value function oH corresponding to the optimal control
force; andA is a constant.

The stochastic optimal control law can be determined by minimizing the right-hand side of
dynamical programming Eq. (12) or (13). Let functlobe of the form

L = g(FI) + UIRD\, = g(Fh, HZ) + UTRpU (14)

where g is a continuous differentiable convex functidd;is a positive-definite symmetric weight

matrix
R = R, O , Ro
0 R,
(15)

in which R, and R, are the mzx ms-dimensional andm, x my-dimensional positive-definite
symmetric constant matrices corresponding to structure 1 and structure 2 respectively. If the
dimension of the reduced structural model is not less than the number of control devices, i.e.,
M+ my = ng and the rank of matrikP; s, P;®,] nx(m+m,) IS equal g for a certain placement
of the control devicesR, is a positive-definite symmetric matrix. Then the optimal control force is

[Pldy, Pad,] R PLd1, Prds]
P-{al Rlalpl + P;(T)Z RZ(TJ-ZI—PZ

* D
U = 2R mvlmla—mﬂwz%a—HZﬂD (16)
20 andHl 9Q> OH20

which acts as a generalized nonlinear damping force since the partial derivativeitbf tinede
energyH; (j = 1, 2) with respect to modal velocity; is just the corresponding modal vetpcity
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Substituting the optimal control force (16) into Eq. (12) or (13) and averaging terms involving the
control forces yield the final dynamical programming equation, for example, in the case of infinite
time interval as

A= g(H1, H2) + ooV T ml(Hl) + NV O mz(Hz) += mul(H)_

hH,H o OH1
L FV 1. [V = —1,=
*5my (H)?;zt{ = Ul(Hl)Ul(Hl)}+2t{dﬁzaz(H2)0—;(H2)} 17)
2
where
0 - ov. O 0 Jp o.H. 2L O
E (pllpuqollHlldHll E E AL ] 2191, E
O oy O O o o O
— = 10 @LP@Hp—— O 0 @Pu@oHeonr— O
maF) = 50 AORTGR, 5 mad) = 50 T e 0 asa
5 : : 5
T ﬂV T (7V
“v_ P, H, ———
%qolmJ:)u(pJ.m3 lmgaH1mg E E(pzmz: (p2m4 2m40H2m4E
P,=P,R'PI, P, =P,R'P, (18b)

The value functiorv can be obtained from solving Eq. (17) and then the optimal control Wbrise
determined as a function of modal eneidy or modal displace@ent and modal \@Iocny
Suppose that functiog is of the form

_ mg m,
g(Hy H2) = s+ StiHu+ SiHy+ 31 H1+ 32 H2
IZ] I | lZ] I | I_Zl I ] I_Zl | ]
m, m, m, m,
+ ZsiiHii + ngngi + ZskiinliHlj + nginzinj
i= i= E3) i Z]

m,, m, .
* Z 53”- 1|H21 +O(H111 212Hi313) (19)
ihj=1

wheresy; = sy, Sy; = Sy and the weight coefficients are non-negative. Then a polynomial solution
of the value function is obtained as follows

s s my m,
V(RiHz) = 3 piHy+ 3 piHa+ 3 pib+ 5 pak:

mg, m,

mg my
+ ;p?inliHlj + ;pSinzin, +3 paHuHy (20)

=1

where plIJ = p1JI andp2IJ = pzjI The Welght coeff|C|ents in the value function are determined by
Eq. (17) for certain coefficients;;, sy;, Si;, Sy, sl,J, 52” amﬁ

ij
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4. Response prediction

The stochastic-optimally controlled structures are nonlinear due to the control forces. The random
response of the nonlinear coupled structures can be predicted by using the stochastic averaging
method. Substituting the optimal control force (16) into the coupled structural Eqg. (4) and applying
the averaging method to it yield the following averagged equation for the modal energies

dH = [m(H) + m,(H)]dt+ a(H)d\7V(t) (21)
where the structural modal energy vediprthe drift coefficient vectora(H) and m,(H) involving

the control forces, the diffusion coefficient mataXH), and unit Wiener process vectdr(t) are
respectively as

.

H = [H1, H3] = [Hyp Hig ooy Himy Hog Hogy ooy Hog 1T (22a)
T

m( H) = [mI! m;] = [mll! My, ..., r'nlmli My, My, ...y r'anZ]T (22b)

— T _ — T
my(H) = [my, my,] = [Myy, 0, My, O]

= [mulla My12s «-s r'nulmla My21, My2, -, muZmz]T (22C)
o(H) = diag{ 0, 05} = diag{ 04y, 15 -y O1y, Ooy Oy -y Oy } (22d)
\7V(t) = [\7V11, Wi, ... \7V1m1, Wor, Was, ..., \7V2m2]T (22e)

Note that the averagetto equation of the uncontrolled structures corresponding to Eqg. (21) is
separable. In vectom,(H) of averageditdo equation of the controlled structures, the rfigst
elements ofm,; and firstmy elements o, are represented by Eq. (18a) and the other elements of
my; andmy, are equal to zeros. Thus the optimal control forces affect only the controlled reduced
mode processes in the sense of stochastic averaging.R3iisca positive-definite symmetric matrix
as stated previouslyiP,R,'P/@; i € 1, 2, ..M j = 1, 2) is non-negative. Ang{H) is taken so
that dV/é’HJ-i 20 (=1, 2, ...msy j =1, 2), for example, the derivative of value function (20)
with non-negative coefficients. Then the controlled response process of the coupled structures is
stabilized based on the averade¢d Eq. (21) with (18).

The Fokker-Planck-Kolmogorov (FPK) equation associated with the averaged Eq. (21) can be
established. The stationary FPK equation is

s 0 1 N 19 0
i;dHliQ:_ myi(Hy) + zqolipu(pliHlidHljp'i' 2é,Hli[Uli(Hli)p]%

M9 17 oV 19 ) O
+ i;dei ﬁ— m,; (Hy) + Z(PZiPW(Pzinidejp + 20H2i[02i(H2i)p] %_ 0 (23)

A stationary probability density is obtained as follows
p(Hi, Hy) = Coexp{-¢(Hy, Hp)} (24)
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whereC, is a normalization constant; the probability potergia represented by

(Hl 2) m1
¢(Hy, Hp) = I ZaHlldHll + z aHZIdei (252)
29 _ aaii/aHli —2my; + golipuqoliHliaV/aHli (25b)
dHli ali
29 — aagi/aHZi —2my; + (P-ZriPW(PZiHZidV/aHZi (25¢)

dHZi O-gi
The mean square (MS) modal displacement and modal velocity are obtained from Eq. (24) as

+o0

1
E[qd] = o [ Hi p(Hy, Hp)dH, dH, (26a)
k O

+o0

E[Gi] = [ Hip(Hy, Hp)dH dH, (26b)
0

Then the MS displacement, interstorey drift and base shear of the controlled coupled structures are
obtained by using the modal transformation as follows

EE] = 3 () ElG) (272)

B[4 —%0-0°] = 3 (dhe— b ) ELGE] (27b)
k=1

i=1

2

£ B m 5+ %) + (1) S U F
||X| X - U
E]ZJ i + Xg > J

= E[(E'M,(X + %E;) —E]P,U")]

= Z %Z J,,(ﬁkD( q]k] + 4ZJk kE[qjk]) (27¢)
K04

while the MS optimal control force is

* 1 JV
E[Uiz] 2 p||:Pl|:|z (Plk(Plk [%ka qupl

gms N e T
+ Pl TE['ZD— JEP R (28)
Zﬂzl%k%k qZKDdekD 0 1
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where qk is theth element of mode vecta of structurej m; is theith diagonal element of mass
matrix M;; R is theith row vector of inverse matrlR and

E|: fka EZJ J—HJK%M_%ZD(HL Hz)dHlde (29)

The response statistics of the uncontrolled structures can be obtained in the same way by making
the optimal control forces vanishing.

To evaluate the optimal control efficacy, two performance criteria are used as followst(Zhu
1999, 2000, 2001)

RMS(responsg —RMS(responsg

K= RMS(responsg

(30a)

y = K (30b)

S RMS(U)/ | o e < . o
U; . .
i; [ O-Szzlmln + i:z]mZHE

where RMS(-) denotes the root mean square value; the subsceptsc denote the uncontrolled
and controlled structures respectively. The r#tioneasures the relative response reduction of the
controlled and uncontrolled structures, and the ratimeasures the relative response reduction per
control force or control efficiency. The high& and u indicate the control method with more
response mitigation capabilities.

5. Numerical results

A numerical study is conducted on the stochastic optimal control of coupled adjacent building
structures consisting of a 20-storey building and a 10-storey building with a few control devices.
The mass of each floor is 1.6 x°1Ky; the interstorey stiffness is 1.2 xX4®/m; and the modal
damping ratio is taken to be 0.02. The spectral parameters of random seismic excitation are taken as
0° = 0.6 nf/s’, wy, = 19 rad/s and; = 0.2 unless otherwise mentioned. The numbers of structural
modes used for response analysis= 6 andm, = 4 while the control mode numbearg = 3 and
m,; = 2. The weight coefficients of control forces and modal energidalarejiag{lo, 10, 8},R; =
diag{3, 2}, St =0,S =0,[S]] =[0.08, 0.1, 0.045; =[0.08, 0.08, =%, =0 and
53,J = 0. Some numerical results are displayed in Figs. 2-6 and in Tables 1 4.

Fig. 2 shows the performance critef@ and u of displacements and interstorey drifts of the
coupled structures by using the proposed control method when the control device connects the two
adjacent buildings only at the 10th floor level. About 60% displacement response redctiotn (

0.85 efficiency 1) at the middle of taller building and 55% response reduction with 0.80 efficiency
for shorter building are achieved. The interstorey drift is relative to the corresponding displacement
response and then only the numerical results of interstorey drifts are given in the following.

The effect of seismic excitation features on the control efficacy is studied with the control device
at the 10th floor level. Fig. 3 illustrates the relative response reductard control efficiencys of



Stochastic optimal control of coupled structures 679

RMS interstorey drifts under different excitation intengityWith the increase of intensity, the
response reduction capability is enhanced while the efficiency is decreased. Fig. 4 shows the relative
response reduction and control efficiency of RMS interstorey drifts under different dominant
excitation frequencyu,. It is observed that the response reduction or mitigation capability increases
as the dominant frequeney, is close to the structural natural frequency, even though the efficiency
has a little decrease.

The effect of control device placement and number on the control efficacy is eventually studied.
Fig. 5 shows the relative response reduction and control efficiency of RMS interstorey drifts when a
single control device is placed at the 10th floor, the 8th floor or the 6th floor. It is seen that the
seismic response mitigation capability of the control device at the 10th floor level is better than at
the others. The result means the optimum position of control devices close to the floor level of the
largest amplitude of dominant structural modes. Fig. 6 shows the relative response reduction and
control efficiency of RMS interstorey drifts under different control device number and placement
(three cases: one control device at the 10th floor; two control devices at the 10th and 8th floors;
three control devices at the 10th, 8th and 6th floors respectively). It is found that the response
reduction capability does not increase with using more control devices at lower floors, due to the
interaction among the control devices. A similar observation is made for the RMS base shears as
given in Tables 1-4.

Table 1 Relative reductiok and efficiencyu of RMS base shears under different

5 Taller building Shorter building
g
K u K u
0.6 0.796 1.10 0.808 1.12
0.9 0.830 1.00 0.842 1.01

Table 2 Relative reductioki and efficiencyu of RMS base shears under differesgt

Taller building Shorter building
“ K u K u
8 0.925 0.51 0.562 0.31
11 0.882 0.88 0.819 0.82
14 0.850 0.82 0.876 0.84
19 0.796 1.10 0.808 112
23 0.785 1.23 0.767 1.20

Table 3 Relative reductio and efficiencyu of RMS base shears for various control device position

Position of control Taller building Shorter building
device K u K u

10th floor 0.796 1.10 0.808 1.12

8th floor 0.779 1.04 0.787 1.05

6th floor 0.734 0.91 0.761 0.95
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Table 4 Relative reductiok and efficiencyu of RMS base shears for various control device nhumber

Control devices Taller building Shorter building
Number Position K u K u
1 10th floor 0.796 1.10 0.808 1.12
2 10th & 8th floors 0.810 0.79 0.816 0.80
3 10th, 8th & 6th floors 0.768 0.09 0.756 0.09
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(d) Shorter building: 1

interstorey drifts under differeny, (drift-1: w, =19,
drift-2: ay= 23; drift-3: = 14; drift-4: wy= 11; drift-5: cy; = 8)
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Fig. 5 Relative reductiofrk and efficiencyu of RMS interstorey drifts for various control device position
(drift-1: at the 10th floor; drift-2: at the 8th floor; drift-3: at the 6th floor)
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Fig. 6 Relative reductioik and efficiencyu of RMS interstorey drifts for various control device number

(drift-1: 1 device at the 10th floor; drift-2: 2 devices at the 10th and 8th floors; drift-3: 3 devices at the
10th, 8th and 6th floors)

6. Conclusions

The stochastic optimal nonlinear control of coupled adjacent building structures under random
seismic excitation has been studied based on the stochastic dynamical programming principle and
the stochastic averaging method. The proposed control method has the following advantages: (a) the
random seismic excitation spectrum is taken into account according to the stochastic dynamical
programming principle; (b) the structural energy control instead of usual state control is conducted
and then the dimension of the optimal control problem is reduced based on the stochastic averaging
method; (c) the optimal control force is a generalized nonlinear damping force which can be
provided by active or semi-active dampers; (d) it is applicable to coupled structures with an arbitrary
number of stories and with connecting control devices at any floors. The numerical study has drawn
the following points: (a) the seismic response mitigation of coupled structures can be achieved by
using only a few connecting control devices at properly selected floors; (b) the response reduction
capability can increase with seismic excitation intensity and dominant frequency approaching the

structural natural frequency; (c) the proposed stochastic optimal control method for coupled
structures is more effective and efficient.
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