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Abstract. This paper presents a procedure for designing feedback controllers for defective systems with
repeated eigenvalues, and also for a nearly defective system with close eigenvalues. For the nearly
defective system, we first transform it into a defective one, and then apply the same method to deal with
the nearly defective system. A method for computing the gain matrices is discussed here. The methodologies
proposed are based on the modal coordinate equation to avoid the tedious mathematical manipulation. As
an application of the present procedure, a numerical example is given.
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1. Introduction

The complexity in the control of large flexible structures is that there may exist repeated or close
eigenvalues in these systems, thus it is desirable to develop an approach for designing the feedback
controller for such systems.

The conditions that the closed-loop eigenvectors have to satisfy in order to obtain the output
feedback gain matrices and to enable the desired eigenvalue placements have been discussed
(Kimura 1997). The techniques for synthesis of output feed-back gains have been developed
(Srinathkumar 1978, Maghami and Juang 1990, Andry et al. 1983). Dissipative output feedback
gain matrices were used to assign eigenproblem (Maghami and Gupta 1997). The measures of
controllability and observability of the repeated modes are discussed (Liu et al. 1994), but it does
not deal with the corresponding design of the feedback control laws. The standard design methods
for feedback control laws can be found in Meirovitch (1990).

The above discussions on the design of the feedback control laws mainly involve the control
problems of the non-defective system, which has the complete eigenvectors to span the eigenspace.
However, in actual engineering problems, such as general damping systems, flutter analysis of
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aeroelasticity, and so on, the system called defective system does not have a set of complete
eigenvectors to span the eigenspace (Xu and Chen 1994). Recent papers in this field include the
dynamic analysis of mobility and graspability of general manipulation systems (Prattichizzo and
Bicchi 1998), and the consistent task specification for manipulation systems with general kinematics
(Prattichizzo and Bicchi 1997). Recently, Chen et al. (2001) gave modal optimal control procedure
for nearly defective systems, and discussed the quantitative measurements of modal controllability
and observability of defective and nearly defective systems.

The defective systems differ from nondefective ones in that the state matrix A cannot be
diagonalized. For this reason, the standard methods for designing the feedback controllers cannot be
used to deal with the modal control problems of the defective and nearly defective systems.

This study will present an approach for designing modal controllers for the defective system with
repeated eigenvalues based on the modal control equations, and also for the nearly defective system
with close eigenvalues. For the nearly defective system, we first transform it into a defective one,
and then use the same method to deal with the nearly defective system. The theory is illustrated by
a numerical example to prove the validity.

2. Feedback control design of defective and nearly defective systems

Consider the control system indicated by the following state equation

(1)

where A is the state matrix.  is the state vector, Z(t) is the input,  is the
output vector,  and  are called the actuator distribution matrix and sensor
distribution matrix, respectively, indicating the locations of control forces and sensors.

Denote AM as the algebraic multiplicity of the eigenvalues of the A, and GM the number of the
linear independent eigenvectors corresponding to λ. If AM=GM for the distinct or repeated
eigenvalues, the system is non-defective; if AM>GM, the system with repeated eigenvalues is
defective (Deif 1992).

In Eq. (1), we assumed that  are defective repeated eigenvalues with m
multiplicity, and rest of eigenvalues, , are distinct. The right and left modal
matrices are expressed as the partitional form U=[Um, Un-m], V=[Vm, Vn-m]. ξm and ξd are the
modal coordinates corresponding to the repeated and distinct eigenvalues.

Using the modal transformation, we obtain modal control equations corresponding to the defective
repeated eigenvalues and distinct eigenvalues

(2)

(3)

(4)

(5)
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Eqs. (2) to (5) can be written as

(6)

(7)

where

(8)

(9)

If the control loops which generate the input vector by linear feedback of the state vector of the
system are introduced, then the response characteristic of the closed-loop system will be different
from that of the open loop system. Thus, it is possible to re-assign a closed-loop system
eigenvalues, which correspond to the controllable modes of the repeated defective system so that the
closed-loop response characteristic is superior to the defective characteristics of the original
uncontrolled system.

Since Eqs. (6) and (7) are much simpler than the state Eq. (1), the gain matrix of the close-loop
system can be derived directly without the tedious mathematical manipulation.

Here we assume that the modes corresponding to the m defective repeated eigenvalues of the
defective system and the distinct eigenvalues are controllable.

If the direct output feedback control is used, the modal control forces are given as follows

(10)

where

,  (11)

Substituting Eq. (10) into Eq. (6), yields

,   (12)

or

(13)

Eq. (13) indicates that the effect of the input variable given by Eq.(10) is to change the Jordan
matrix J and Λd into new matrices Hm and Hd given by

, (14)
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…
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=
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Eq. (14) indicates that the defective repeated eigenvalues, λ1 = λ2 = ... =λ m are not the eigenvalues
of matrix Hm, the Λd are not the eigenvalues of Hd.

Denote the assigned new distinct eigenvalues as ρj ( j = 1, 2, Î, m) and corresponding
eigenvectors as Wj, they satisfy the following eigenvalue problem

( j = 1, 2, Î, m) (15)

or

( j = 1, 2, Î, m) (16)

Since , the eigen-determinant of the matrix is zero

(17)

Considering the Eqs. (8) and (11), we have

(18)

where .
After introduction of Eq. (18) into Eq. (17), Eq. (17) becomes

 (19)

Expanding Eq. (19), yields

 (20)

If , from Eq. (20), we have

 (21)

In order to obtain a convenient form, we introduce the following notations

(22)
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where

(23)

and

(24)

where p1, p2, ..., pm are the elements of the Pm in Eq. (8).

(25)

(26)

Using these notations, the m Eq. (21) can be written in a matrix equation

(27)

It is possible to solve (27) for the gain vector Gm, i.e.,

(28)

This is the solution for the gain vector of the defective systems with repeated eigenvalues. The
control law of the defective system is given by

(29)

where 
Using the modal transformation

(30)

one has

(31)

Thus, Eq. (29) becomes

(32)

If the eigenvalues, λ1, λ2, ..., are distinct, the gain matrix Gd can be obtained by Meirovitch O1990)

( j = 1, 2, ..., n − m) (33)
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where ρk (k = 1, 2, ..., n − m) are the assigned new eigenvalues, λj ( j = 1, 2, ..., n − m) are
eigenvalues associated with the controllable modes.

It should be pointed out that if some small changes of parameters of the defective systems are
introduced, the system with the defective repeated eigenvalues can be perturbed into nearly defective
one with close eigenvalues. For such a case, from a mathematical view point, although the close
eigenvalues are distinct, the dynamic characteristic of the system is still defective.

In a similar way to the deduction presented in Chen et al. (2001) for nearly defective system with
close eigenvalues, the following equation can be obtained

(34)

where

(35)

(36)

(37)

Eq. (34) shows that the feedback control design problem of the nearly defective system with close
eigenvalues can be transformed into one of the defective system with repeated eigenvalues, which
are equal to the average value of the close eigenvalues.

3. Eigenvalue perturbation analysis for the closed-loop systems

From the above discussion, it can be shown that feedback control design of the nearly defective
system with close eigenvalues can be transformed into one of the defective system with a repeated
eigenvalue, which is equal to the average value of the close eigenvalues. If the feedback control law
given by Eq. (32) is applied to the nearly defective system with close eigenvalues, the assigned
eigenvalues will have some perturbations. In this section we present the eigenvalue perturbation
analysis of the closed-loop system. These are induced by the error matrix δJ0 in Eq. (37).

If the feedback control law (32) is applied to nearly defective system with close eigenvalues, from
Eq. (34) we obtain
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(38)

The eigenproblem corresponding to Eq. (38) is

(39)

where ,  

The eigenvalue  and eigenvector  of  can be expressed in the following form
(Chen 1999)

(40)

(41)

where , (i = 1, 2, ...) are the eigenvalues of the matrix AA, ρ1i and u1i are
the corresponding 1st order perturbations.

It can be shown that the 1st order perturbation, ρ1i , is

(i = 1, 2, ..., m) (42)

If the following condition

 (i = 1, 2, ..., m) (43)

is satisfied, the closed-loop system will have good dynamic stability, where ηi is the modal damping
ratio, and

(44)

It is obvious that as long as αi (i = 1, 2, ..., m) are large enough for designing the feedback control
law of the defective system with repeated eigenvalues, the closed-loop system may have the
dynamic stability we need. This indicates that the present procedure for designing the feedback
control law of the nearly defective system with close eigenvalues is available.

The procedure of feedback control design for the nearly defective systems with close eigenvalues
is summarized as follows:

1) Form state matrix A of nearly defective system and compute m close eigenvalues, λ1, ..., λm;
2) Compute
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3) Compute generalized modal matrices U and V using the invariant subspace recursive procedure
presented in Chen (1999);

4) Form a approximate defective system using Eq. (34);
5) Compute Gm0 and Gd from Eqs. (28) and (33) for the approximate system with defective

repeated eigenvalue λ0;
6) Eigenvalue perturbation analysis of the closed-loop systems using Eq. (40).

4. Numerical example

In order to illustrate the application of the present procedure, a numerical example of the defective
system is given as follows.

We consider the flutter problem of an airfoil in simplified formulation. The airfoil is replaced by a
rigid rectangular panel with two degrees of freedom, the vertical displacement h and the rotation α .
It is assumed that aerodynamic lift force is proportional to the angle of attack α and to the square of
the velocity ν of flight. The differential equations of motion are Shi et al. (1989)

where m is the mass of the panel, s the static moment of the cross section area of the panel, Jα the
moment of inertia, Kh the bending stiffness, Kα the torsional stiffness, respectively.

If the parameters are given as follows: m/(ρab2) = 5, s/(mb) = 0.25, Jα /(mb2) = 0.5, e/b = 0.4,
Kh/m = 0.25, Kα /Jα = 1, and u = v(Jα /Kα)1/2/b, then the above differential equations become

where

 

If the parameter u = 1.32567735, the state matrix has the following form

The control matrix B in Eq.(1) for single-input control force is

mh
··

sα·· Khh+ + ρν– 2
abα=

sh
··

Jαα·· Kαα+ + ρν2
abeα=

Mq·· Kq+ 0=

M 1 0.25

0.25 0.5
= K 0.25 0.2u2

0 0.5 0.08u2–
=

A 0 M 1–  – K
I 0 

0.0  0.0  0.28571428571429  – 0.19632103395740–

0.0  0.0  0.14285714285714  0.62065221321282–

1.0  0.0  0.00000000000000    0.00000000000000

0.0  1.0  0.00000000000000  0.00000000000000

= =

B
0

…

M 1–

0

1

0.00000000000000

0.00000000000000

0.57142857142857–

2.28571428571429

= =



Design procedure for modal controllers for defective and nearly defective systems 559

The flutter of the airfoil is characterized by the conditions: if , which
describe the critical state of the flutter; if , which describe the flutter occurs,
and the eigenvalue is also the corresponding flutter frequency.

From the above discussion, we see how important it is to know the behaviours of eigenvalues of
systems.

The eigenvalues of A are

 

 

where . This system is defective. Because , the system is in the
critical state of the flutter. The main problem of the control is to stabilize the system, i.e., make it
more safe.

The Jordan matrix of this system is

The right and left modal matrices U and V are

and

Taking the singular-value decomposition of Pm1 and Pm2 yields (Chen et al. 2001)

Re λ( ) 0= Im λ( ) 0≠,
Re λ( ) 0> Im λ( ) 0≠,

λ1 0.67318886946616i= λ2 0.67318886946616i=

λ3 0.67318886946616– i= λ4 0.67318886946616– i=

i 1–= Re λ i( ) 0= Im λ i( ) 0≠,

J

λ1 1 0 0

0 λ1 0 0

0 0 λ3 1

0 0 0 λ3

=

U
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=
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= =

Σ1 diag σ1
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2 0=,( )=
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Since , the 1st and 3rd modes are controllable, the 2nd and 4th
modes are uncontrollable.

In order to improve the defective characteristic of the original uncontrolled system, the new
eigenvalues ρ1 and ρ3 can be assigned as ρ1 = −0.25 + 1.0i and ρ3 = −0.25− 1.0i.

Because the 2nd mode is uncontrollable, the modal control force can be given by

where Vm1 contains only the first 2 columns of V, Gm1 = [GM1, 0]T, .
From Eq. (14), one has

The eigendeterminat (19) becomes

Expanding this equation, yields

or

If , we have

It follows that the gain vector, where Gm1 = [GM1, 0]T, where GM1 is given by

where ρ1 = − 0.25 + 1.0i.
The required control law for the λ1 is
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-----------------–

GM1p2

ρ1 λ1–( )2
-----------------------– 0=
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-----------------
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-------------------------------------- 0.11847597715311– 0.00743570028943i+= =
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T X t( )=

0.08100749758773 0.00508413171795i–
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If ρ3 = − 0.25− 1.0i, the required control law for the λ3 can be also obtained

        

It can be verified that state matrix of the closed-loop system in Eq. (13) is

and that the eigenvalues of this matrix is

The results show that λ1 and λ3 are the required eigenvalues. The original defective system with
repeated eigenvalues is changed into nondefective one with distinct eigenvalues. It should noted that
because of the coupling between the 1st and 2nd modes, the 2nd eigenvalue is changed into
0.25651334758476 + 0.45015750272135i from 0.67318886946616i. For the uncontrollable mode 4,
the similar results can be also obtained. From the results we see that since Re(λ2) > 0, and
Re(λ4) > 0, the 2nd and 4th modes of the closed-loop system obtained by the 1st stage design can
not be stabilized. To stabilize the system the 2nd stage design is necessary. After the 1st stage
design, the system is changed into nondefective one with distinct eigenvalues, it is easy to obtain the
gain matrix Gd with Eq. (33).

5. Conclusions

The vibration control of the systems with repeated or close eigenvalues is an important problem in
engineering. This paper focuses on the case of the defective or nearly defective systems with
repeated or close eigenvalues, and presents the design methods of the modal controller based on the
generalized modal coordinates, thus avoiding the tedious mathematic manipulation. From
mathematical view point, although the close eigenvalues of the nearly defective system are distinct,
the dynamic characteristic of the system is still defective. For such case, the methods for computing
the gain vector of the distinct eigenvalues can not be used, and we have to use the methods

Zm2 t( ) Gm2
T Vm2

H X t( )=

0.08100749758773 0.00508413171795i+

0.05424816982607 0.00340468288821i+

0.00242893882782 0.03870125070536i–

0.00345682427529 0.05507895933404i–

T

X t( )=

H J
Pm1GM1

T    0
…  …

    Pm2Gm2
T

+  = =
Î
Î
Î

0.006513 0.776968i   + 1.0  0.000000  0.000000

0.008760– 0.139589i   – 0.0  0.000000  0.000000

0.000000  0.0  0.006513 0.776968i   – 1.000000

0.000000  0.0  0.008760– 0.139589i   + 0.673188i–

λ1 0.25– 1.0i λ2 0.25651334758476 0.45015750272135i+=,+=

λ3 0.25– 1.0i λ4 0.25651334758476 0.45015750272135i–=,–=
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presented by this paper, so as to obtain the effective results. The conclusions are supported by the
given numerical example.

Acknowledgements

This work is supported by National Science Foundation of China(19872028) and Mechanical
Technique Development Foundation of China.

References

Andry, A.N., Shapiro, E.Y. and Chung, J.C. (1983), “Eigenvalue assignment for linear systems”, IEEE
Transactions on Aerospace and Electronic Systems, 19(5), 711-729.

Chen, S.H. (1999), Matrix Perturbation Theory in Structural Dynamic Design (in Chinese), Science Press,
Beijing.

Chen, Y.D., Chen, S.H. and Liu, Z.S. (2001), “Modal optimal control procedure for near defective systems”, J.
Sound Vib., 245(1), 113-132.

Chen, Y.D., Chen, S.H. and Liu, Z.S. (2001), “Quantitative measurements of modal controllability and
observability in vibration control of defective and nearly defective systems”, J. Sound Vib., 248(3), 413-426.

Deif, A.S. (1982), Advanced Matrix Theory for Scientist and Engineers, Abacus House, England.
Kimura, H. (1977), “A further result on the problem of pole assignment by output feedback”, IEEE Transactions

on Automatic Control, 22(3), 458-463.
Liu, Z.S., Wang, D.J., Hu, H.C. and Yu, M. (1994), “Measure of modal controllability and observability in

vibration control of flexible structures”, Journal of Guidance, Control and Dynamics, 17(6), 1377-1380.
Maghami, P.G. and Juang, J.-N. (1990), “Efficient eigenvalue assignment for large space structures”, Journal of

Guidance, Control, and Dynamics, 13(6), 1033-1039.
Maghami, P. and Gupta, S. (1997), “Design of constant gains dissipative controllers for eigensystem assignment

in passive systems”, Journal of Guidance, Control, and Dynamics, 20(4), 648-657.
Meirovitch, L. (1990), Dynamics and Control, Wiley, New York.
Prattichizzo, D. and Bicchi, A. (1997), “Consistent task specification for manipulation systems with general

kinematics”, Journal of Dynamic Systems Measurement and Control, Transaction of the ASME, 119(4), 760-
767.

Prattichizzo, D. and Bicchi, A. (1998), “Dynamic analysis of mobility and graspability of general manipulation
systems”, IEEE Transations on Robotics and Automation APR, 14(2), 241-258.

Shi, G.Q. and Zhu, D.C. (1989), “Generalized modal theory for linear vibration defective systems (in Chinese)”,
ACTA Mechanica Sinica, 21(2), 212-217.

Srinathkumar, S. (1978), “Eigenvalue/eigenvector assignment using output feedback”, IEEE Transactions on
Automatic Control, 23(1), 79-81.

Xu, T. and Chen, S.H. (1994), “Perturbation sensitivity of generalized modes of defective systems”, Comput.
Struct., 52(2), 1377-1380.




