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On an improved numerical method to solve the equilibrium
problems of solids with bounded tensile strength

that are subjected to thermal strain
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Abstract. In this paper we recall briefly the constitutive equations for solids subjected to thermal strain
taking in account the bounded tensile stress of the material. In view to solve the equilibrium problem via
the finite element method using the Newton Raphson procedure, we show that the tangent elasticity tensor
is semi-definite positive. Therefore, in order to obtain a convergent numerical method, the constitutive
equation needs to be modified. Specifically, the dependency of the stress by the anelastic deformation is
made explicit by means of a parameter δ, varying from 0 to 1, that factorizes the elastic tensor. This
parameterization, for δ near to 0, assures the positiveness of the tangent elasticity tensor and enforces the
convergence of the numerical method. Some numerical examples are illustrated.
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1. Introduction and motivation

A masonry-like material is a material that can not sustain tensile stress or its tensile strength is
small. On the hypotheses of small strains, no tensile strength and a normality postulate, Del Piero
(1989) proposed the constitutive equations for a masonry-like material. On the further assumption
concerning the symmetry of the elastic tensor, the existence of the strain energy density was proved.
Lucchesi et al. (1994) proposed a non-linear numerical method to solve the equilibrium problem
for an isotropic body made of masonry-like material using the method of the finite element via
Newton Raphson procedure. Furthermore, Lucchesiet al. (1995) extended this method to solve
the equilibrium problems for materials in which the tensile strength is bounded.

The model of the no-tension material subjected to thermal loads was elaborated by Padovani et al.
(2000) and a complete model concerning the no-tension materials in the framework of the
thermodynamics and the thermoelasticity was presented by Lucchesi et al. (2000).

The aim of the present work is to extend the problem of the thermal loads acting on a masonry-
like material, to the case of bounded tensile strength. Without some loss of generality, the
dependence of the elastic moduli by the temperature is not made explicit.

In the framework of the numerical method, i.e., the finite element method, we will prove that the
tangent elasticity tensor is not positive definite and therefore the numerical method is unstable a
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priori . Following a suggestion of Padovani (2000) we consider an approximated material depending
by a parameter δ varying from 0 to 1. This is accomplished modifying the constitutive equation and
making linear the dependence of the stress by the anelastic part of the deformation by means of the
elasticity tensor factorized by the parameter δ. In this way, the modified constitutive law describes
the behavior of a family of isotropic materials that, in absence of the thermal loads and for δ = 0,
coincides with that described by Lucchesi et al. (1995) whereas for δ = 1 coincides with the one
linearly elastic. Clearly, for , the constitutive equations inherent materials with bounded tensile
strength or, in the limit case, with no-tensile strength, are verified only approximately. On the other
hand, as we will show in the section 3, the assumption of  renders the constitutive law strictly
monotone. In virtue of this assumption, the proposed numerical method possesses the indispensable
requirements to be convergent.

The problem inherent to the slowness or the loss of the convergence associated to the numerical
method based on the Newton Raphson procedure, is not new in the literature and it was recognized
by Padovani (2000). In this paper, the author asserted the opportunity to consider an approximated
material like-masonry in order to overcome the difficulties encountered during the solution of the
equilibrium problem via the finite element method.

Furthermore, a detailed discussion on the numerical strategies to solve numerically the equilibrium
problem of solids with no-tensile strength is illustrated in the paper of Alfano et al. (2000). In this
work, the authors proposed a numerical strategy, named enhanced tangent strategy, based on the use
of the tangent operator. In order to prevent the activation of zero-energy modes during the iterative
process, it was considered a fictitious elastic stiffness at the Gauss points in which the elastic strain
vanishes. The fictitious stiffness was assumed as the elastic stiffness scaled by an energy-
parameterized coefficient that goes to zero as the convergence is attained.

In the cited work, it was not made mention of the fact that at the Gauss points, where there is a
contemporary presence of the elastic-anelastic strains, the tangent operator is still not positive
definite. This circumstance is reflected on the equations system that results ill conditioned and the
convergence of the numerical method may be unavoidably compromised. 

2. The mechanical model and the modified constitutive law

In this section we shortly begin to show the constitutive assumption for the materials with
bounded tensile strength (Lucchesi et al. 1995) that are subjected to the thermal strains.

We denote by Lin the space of the second order tensors equipped by the inner product
A · B = tr (ATB),  whereas we denote by Sym, Sym+ and Sym− the subsets of Lin
constituted by the symmetric, symmetric positive semi-definite and symmetric negative semi-definite
tensors, respectively.

If the material is isotropic and the temperature variation ∆θ is small, we can assume that the
thermal strain E t due to ∆θ is:

(1)

where β(θ) is the thermal expansion, αt is the linear coefficient of the thermal expansion and 1 is
the identity tensor.

Following a suggestion of Lucchesi et al. (1995) and Padovani (2000), from a kinematical point of

δ 0≠

δ 0≠

A B, Lin∈

Et β θ( )1 αt θ1∆= =
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view, we assume that the infinitesimal strain tensor E, minus the thermal part E t, may be
decomposed into an elastic part Ee and into an anelastic part Ea that is positive semi-definite: 

(2)

In the framework of the no-tension materials or bounded tension materials, the Cauchy stress
tensor T depends only on the elastic part of the deformation Ee (Del Piero 1989):

(3)

where C is the isotropic forth order tensor of the elasticity and I  is the forth order identity tensor
over the elements of Sym.

We assume that the Lame’s moduli µ and λ do not depend on the temperature and that they
satisfy the inequalities:

(4)

Moreover, we denote by σ the tensile strength of the material and we assume that:

(5)

where Eq. (5)1 is the limitation on the normal stress and Eq. (5)2 is the normality condition.
Following the scheme of the proof shown by Lucchesi et al. (1995) it is possible to demonstrate

that T and Ea are coaxial and by the isotropic properties of the elastic tensor C, T and Ee are also
coaxial. Finally, by Eqs. (1) and (2), the stress tensor T is coaxial with E and E t.

Using the representation theorem for the isotropic function, there exist three scalar function β0, β1

and β2 of the principal invariants of E such that:

 (6)

The Eqs. (1), (2), (3) and (5) define the response of an isotropic non-linear material with bounded
tensile strength that is subjected to the thermal loads. The elastic behavior, in the uniaxial stress
state is shown in Fig. 1.

In the uniaxial behavior, it is trivial to observe that, for e> ee, the response function is not
invertible and that the derivative of the stress respect to the total strain is zero. In the framework of
the three-dimensional case this means that there are strain directions for which the derivative of the
stress, i.e., the tangent elasticity tensor, is zero. In other words, the tangent elasticity tensor is
positive semi-definite.

E Et– Ee Ea+=

T C E Et– Ea–( )=

C 2µI λ1 1⊗+=

µ 0>

2µ 3λ+ 0>

T σ1–( ) Sym–∈

T σ1–( ) Ea⋅ 0=

T β01 β1E β2E
2

+ +( )=
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Looking at the plot in Fig. 1, we stipulate that for e> ee the stress T depends also on the anelastic
part of the strain Ea: 

(7)

where δ is a parameter that varies from 0 to 1. Using Eq. (2) we obtain:

(8)

under the conditions:

(9)

It appears obvious that the condition  is verified only approximately and that it
depends on the choice of the parameter δ. Choosing δ very close to zero, the effect on the material
response would be small. In fact, let us suppose E e = 0, that is . Thus, by
Eq. (7),  and the stress increases as the anelastic strain Ea grows according to the
choice of the parameter δ.

On the other hand, we will show that in the case of the plane stress and by the hypothesis (4), the
tangent elasticity tensor is positive definite for δ > 0.

Notice that in the case δ = 0 and σ = 0, the material behavior coincides with that described by
Padovani et al. (2000) whereas, for δ = 1, the material is simply linearly elastic.

We conclude this section observing that in order to calculate the derivative of T respect to E, it is
necessary to use the representation theorem of the isotropic functions. By the coaxiality property
between the stress tensor T and the strain tensor E and by Eq. (8), we obtain:

T C E Et– Ea–( ) δCEa+=

T 1 δ–( )C E Et– Ea–( ) δC E Et–( )+=

C E Et– Ea–( ) σ1–[ ] Sym–∈

C E Et– Ea–( ) σ1–[ ] Ea⋅ 0=

T σ1–( ) Sym–∈

C E Et– Ea–( ) σ1=
T σ1 δCEa+=

Fig. 1 The uniaxial stress-strain law for a material with bounded tensile strength
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 (10)

where the coefficients βi, i = 0, 1, 2 depend in a non-linear way on the eigenvalues of E and on the
thermal expansion β(θ), respectively. Moreover, the coefficients γ0 and γ1 are defined by:

(11)

3. The two-dimensional case

In this section, we consider the case of the plane stress. Here we denote by  the
eigenvalues of E such that  and  are the eigenvalues of E a that we assume non-
negative.

Setting:

(12)

where:

(13)

the constitutive law (8) is:

(14)

In this case, the isotropic function (10) reduces to:

(15)

Denoting by I1 and I2 the invariants of E, i.e.:

(16)

the coefficients γ0 and γ1 are expressed by:

 
(17)

T 1 δ–( ) β01 β1E β2E
2

+ +( ) δ γ01 γ1E+( )+=

γ0 λtr E β θ( )1–[ ] 2µβ θ( )–=

γ1 2µ=

e1 e2,( )
e1 e2≤ a1 a2,( )

α λ
µ
--- 0≥=

ε σ
µ
--- 0≥=

η σ0

µ
-----=

σ0 2µ β θ( ) 2α
2 α+
-------------β θ( )+=

T 1 δ–( )2µ E Ea–( ) α
2 α+
-------------tr E Ea–( )1+ δ2µ E

α
2 α+
-------------tr E( )1+ σ01–+=

T 1 δ–( ) β01 β1E+( ) δ γ01 γ1E+( )+=

I1 tr E( ) e1 e2+= =

I2 E E⋅ e1
2 e2

2+= =

γ0
2λ

2 α+
-------------I1 σ0–=

γ1 2µ=
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Therefore, the derivative of (15) assumes the compact form:

(18)

Moreover, setting:

(19)

we obtain the engineering components of the tangent elasticity matrix:

(20)

where Eij are the components of E with respect to the basis .
The Eq. (9)2, projected in the strain principal reference frame, is split into a system of two

equations, namely:

(21)

 (22)

where a1, a2 are the principal anelastic strains. The condition a1 = a2 = 0 defines a subset of Sym in
which the behavior of the material is linearly elastic and the condition (5)1 determines it.
Specifically, in the domain:

(23)

DET 1 δ–( )
∂β0

∂I1

--------1 1⊗ 2
∂β0

∂I2

-------- 1 E⊗ E 1⊗+( ) 2
∂β1

∂I2

--------E E⊗ β1I+ + + 2µδ α
2 α+
-----------1 1⊗ I+ 

 +=

α1 1 δ–( )∂β0

∂I1
-------- δ 2λ

2 α+( )
------------------+=

α2 1 δ–( )2
∂β0

∂I2

--------=

α3 1 δ–( )2
∂β1

∂I2

--------=

α4 1 δ–( )β1 δ2µ+=

D11 α1 2α2E11 α3E11
2 α4+ + +=

D12 α1 α2 E11 E22+( ) α3E11E22+ +=

D13 α2E12 α3E11E12+=

D22 α1 2α2E22 α3E22
2 α4+ + +=

D23 α2E12 α3E22E12+=

D33 α3E12
2 α4

2
-----+=

e1 e2,{ }

2 e1 a1–( ) 2α
2 α+
------------- e1 e2 a1– a2–+( )+ ε η+( )–

 
 
 

a1 0=

2 e2 a2–( ) 2α
2 α+
------------- e1 e2 a1– a2–+( )+ ε η+( )–

 
 
 

a2 0=

ℜ1 E Sym; 2αe2 4 1 α+( )e1 ε η+( ) 2 α+( )–+ 0, 2αe1 4 1 α+( )e2 ε η+( ) 2 α+( )–+ 0≤≤∈{ }=
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the behavior of the material is linearly elastic and the following relations hold:

(24)

where by t1 and t2 we denote the principal stress of T.
The coefficients βα, α = 0, 1, are determined equating Eq. (24)1,2 to the components of (15) in the

principal reference frame constituted by the eigenvectors of E.
The condition  and  defines a domain dominated by the anelastic deformations. The

Eqs. (21) and (22) determine the value of a1 and a2 and the condition expressed by Eq. (5)1

determines the domain:

(25)

t1
2µ

2 α+
------------- 2 1 α+( )e1 αe2+[ ] σ0–=

t2
2µ

2 α+
------------- 2 1 α+( )e2 αe1+[ ] σ0–=

β0 γ0
2λ

2 α+
------------- I1 σ0–= =

β1 γ1 2µ= =

α1
2λ

2 α+( )
------------------=

α2 α3 0= =

α4 2µ=

a1 0≠ a2 0≠

ℜ2 E Sym; e1
ε η+( ) 2 α+( )

2 2 3α+( )
-------------------------------------– 

 ∈ 0≥  e2
ε η+( ) 2 α+( )

2 2 3α+( )
-------------------------------------– 

  0>,
 
 
 

=

a1 e1
ε η+( ) 2 α+( )

2 2 3α+( )
-------------------------------------–=

a2 e2
ε η+( ) 2 α+( )

2 2 3α+( )
-------------------------------------–=

t1 1 δ–( )σ δ 2µ
2 α+
------------- 2 1 α+( )e1 αe2+[ ] σ0–

 
 
 

+=

t2 1 δ–( )σ δ 2µ
2 α+
------------- 2 1 α+( )e2 αe1+[ ] σ0–

 
 
 

+=

β0 σ, γ0
2λ

2 α+
-------------= I1 σ0– , β1 0= , γ1 2µ==

α1 δ 2λ
2 α+( )

------------------= α2 α3 0= = α4 2δµ=, ,
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Let us denote by  the principal extra stress. Thus, we have:

(26)

In the particular case, defined by α = 0, i.e., when the Poisson modulus vanishes, we obtain

(27)

where the role played by δ results evident.
Finally, setting a1 = 0 and  we find the domain  and the values of the anelastic strains.

For this domain we will show explicitly the calculation. We set: 

(28)

(29)

where, in virtue of Eq. (22) we obtain the anelastic deformation a2 and Eq. (29)2. Therefore, using
Eq. (14) jointly to Eq. (5)1, we obtain Eq. (28)1.

Furthermore, denoting by ϕ = µ(2 + 3α)/(1 + α) = Em, the elasticity modulus of the masonry, by
the aid of Eqs. (14) and (29), we compute the principal stress: 

(30)

The calculation of the coefficients β0 and β1 is performed solving the following system:

(31)

obtained equating Eq. (25)3 to Eq. (15).

Recalling that  we get:

ti δ( )∆ ti δ( ) ti 0( )–= i 1 2,=,

t1 δ( )∆ δ 2µ
2 α+
------------- 2 1 α+( )e1 αe2+[ ] σ0 σ+( )–

 
 
 

=

t2 δ( )∆ δ 2µ
2 α+
------------- 2 1 α+( )e2 αe1+[ ] σ0 σ+( )–

 
 
 

=

t1 δ( )∆ δ 2µe1 σ0 σ+( )–[ ]=

t2 δ( )∆ δ 2µe2 σ0 σ+( )–[ ]=

a2 0≠ ℜ3

ℜ3 E Sym; e1
ε η+( ) 2 α+( )

2 2 3α+( )
-------------------------------------–∈ 0<  2αe1 4 1 α+( )e2 ε η+( ) 2 α+( )–+ 0>,

 
 
 

=

a1 0= a2 e2
α

2 1 α+( )
----------------------e1

ε η+( ) 2 α+( )
4 1 α+( )

-------------------------------------–+=,

t1 1 δ–( ) ϕe1
α σ σ0

+( )
2 1 α+( )
------------------------- σ0–+ 

  δ 2µ
2 α+
------------- 2 1 α+( )e1 αe2+[ ] σ0–

 
 
 

+=

t2 1 δ–( )σ δ 2µ
2 α+
------------- 2 1 α+( )e2 αe1+[ ] σ0–

 
 
 

+=

β0 β1e1+ ϕe1
α σ σ0

+( )
2 1 α+( )
------------------------- σ0–+=

β0 β1e2+ σ=

e1 2⁄
I1+− 2I2 I1

2–
2

------------------------------=
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(32)

Finally, deriving Eq. (32) respect to the invariants of E, we obtain the coefficients of the tangent
elasticity matrix collected in Eq. (20):

(33)

In this domain, the principal extra stresses assume the form:

(34)

Here, it is interesting to consider the case α = 0. Thus, recalling the expression of ϕ, Eq. (34)
reduce to

(35)

β0
ϕ
2
---

I1
2

I2–( )

2I2 I1
2–

--------------------- ϕε
4 2 3α+( )
------------------------- 3α 2

2 α+( )I1

2I2 I1
2–

-----------------------–+
 
 
  σ0 2 α+( )

4 1 α+( )
------------------------ 1

I1

2I1 I1
2–

---------------------+
 
 
 

–+=

β1
ϕ
2
---

I1 2I2 I1
2––( )

2I2 I1
2–

------------------------------------–
ϕε 2 α+( )

2 2 3α+( ) 2I2 I1
2–

---------------------------------------------- σ0 2 α+( )

2 1 α+( ) 2I2 I1
2–

-------------------------------------------+ +=

γ0
2λ

2 α+
-------------I1 σ0–=

γ1 2µ=

α1 1 δ–( ) ϕ
2
---

I1 3I2 I1
2–( ) ε 2 α+( )

2 3α+( )
----------------------I2–

2I2 I1
2–( )

3 2⁄
-----------------------------------------------------------

σ0 2 α+( )I2

2 1 α+( ) 2I2 I1
2–( )

3 2⁄
---------------------------------------------------– δ 2λ

2 α+( )
------------------+=

α2 1 δ–( ) ϕ
I2–

ε 2 α+( )
2 2 3α+( )
-------------------------I1+

2I2 I1
2–( )

3 2⁄
---------------------------------------------

σ0 2 α+( )I1

2 1 α+( ) 2I2 I1
2–( )

3 2⁄
---------------------------------------------------+=

α3 1 δ–( ) ϕ
I1

ε 2 α+( )
2 3α+( )

----------------------–

2I2 I1
2–( )

3 2⁄
-------------------------------- σ0 2 α+( )

1 α+( ) 2I2 I1
2–( )

3 2⁄
------------------------------------------------–=

α4 1 δ–( ) ϕ
2
---

I1– 2I2 I1
2–+( ) ε 2 α+( )

2 3α+( )
----------------------+

2I2 I1
2–

---------------------------------------------------------------------- σ0 2 α+( )

2 1 α+( ) 2I2 I1
2–

--------------------------------------------+ 2µδ+=

t1 δ( )∆ δ 2µ
2 α+
------------- 2 1 α+( )e1 αe2+[ ] ϕe1–

α σ σ0
+( )

2 1 α+( )
-------------------------–

 
 
 

=

t2 δ( )∆ δ 2µ
2 α+
------------- 2 1 α+( )e2 αe1+[ ] σ0 σ+( )–

 
 
 

=

t1∆ 0=

t2 δ( )∆ δ 2µe2 σ0 σ+( )–[ ]=
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that is, the expression of t1 in Eq. (30) is exact.
As announced in the previous section, we prove that, for δ > 0, the elasticity matrix defined by

Eq. (20) is positive definite. We begin to observe that, (Ogden 1997, Appendix), the positiveness of
the elastic tensor is equivalent to require:

(36)

Using Eqs. (24), (25) and (30), we write (36) for the three regions :

(37)

If we assume µ > 0 and , we see that the conditions (a) and (b) of (37) hold simultaneously
only in the region . They are true in the regions  and  only when δ > 0. 

We conclude this section observing that if (36) holds, then, for the convexity of Sym, (14) is
strictly monotone in the interior points of, , i = 1, 2, 3 i.e.:

(38)

that is an equivalent condition to assure that the energy is a strictly convex function in the regions
 of Sym.

a( ) J[ ]
∂tα

∂eβ
--------  α β, 1 2 is positive definite,=,=

b( )
t1 t2–
e1 e2–
--------------- 0>

 
 
 
 
 
 
 

ℜi

If E ℜ1∈ ,

J[ ] 2µ
2 α+
------------- 2 1 α+( ) α

α 2 1 α+( )
=

t1 t2–
e1 e2–
--------------- 4µ

2 α+
-------------=

 
 
 
 
 
 
 

If E ℜ2∈ ,

J[ ] 2µδ
2 α+
------------- 2 1 α+( ) α

α 2 1 α+( )
=

t1 t2–
e1 e2–
--------------- δ 4µ

2 α+
-------------=

 
 
 
 
 
 
 

If E ℜ3∈ ,

J[ ]
1 δ–( )ϕ δ4µ 1 α+( )

2 α+
------------------------- + δ 2µα

2 α+
-------------

δ 2µα
2 α+
------------- δ4µ 1 α+( )

2 α+
-------------------------

=

t1 t2–
e1 e2–
--------------- 1 δ–( )ϕ

e1 e2–( )
-------------------- e1

ε η+( ) 2 α+( )
2 2 3α+( )

------------------------------------– δ 4µ
2 α+
-------------+ 0>=

 
 
 
 
 
 
 
 
 
 
 

λ 0≥
ℜ1 ℜ2 ℜ3

ℜi

T* T–( ) E* E–( )⋅ 0, E*> E≠ Sym∈

ℜi i, 1 2 3, ,=
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Finally, defining the derivative of (15) respect to E:

(39)

we note that the first part of (39) is positive semi-definite whereas the second part is positive
definite if δ > 0. Therefore, if δ > 0, then DET is positive definite.

Only incidentally, here we recall the procedure proposed by Alfano et al. (2000) that is at the base
of the enhanced tangent strategy.

In the ith structural iteration, for every Gauss point belonging to the finite element, the elasticity
tensor is so evaluated:

(40)

where ρ is a coefficient that progressively decrease to zero when the convergence is attained. The
properties of the elasticity tensor , when E belongs to , were not discussed.

4. The numerical implementation

In this section we propose the numerical implementation of the problem described in the Section 3
by means of the finite element method. In particular, we use the four nodes finite element discussed
by Simo et al. (1990) that is based on the incompatibility modes method. Of course, for the
applicability of this procedure, the assumption of δ > 0 is crucial.

Here we recall only the main features of the method remanding the reader to the work of Simo
(1990) for further details.

According to the common usage in the finite element method, we use the matrix and vector
notation. In the two-dimensional case we set:

(41)

and the components of the elasticity matrix D are collected in Eq. (20).
In the method of incompatible modes it is customary to consider the strain field of the form:

(42)

where  is the symmetric gradient of the displacement field and  is the enhanced part of the
strain field.

We will denote by  the isoparametric map from the two-unitary domain onto the space
of the quadrilateral finite element. Let  be the gradient of the map and

DET 1 δ–( )DE β01 β1E+( ) δ γ01 1⊗ γ1I+( )+=

C i( )

C if E ℜ1∈
ρC if E ℜ2∈

Ctan if E ℜ3∈





=

C ℜ3

ε E11  E22  2E12[ ]T=

∇su u1 1,   u2 2,   u1 2, u2 1,+[ ]T=

σ T11  T22  T12[ ]T=

ε ∇su ε+=

∇su ε

x f ξ( )=
J ξ( ) ∂f ∂ξξ⁄=
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J(ξ) = det[J(ξ)] be the Jacobian determinant. Next we denote by  and  the
map gradient and the Jacobian of the map evaluated at ξ = 0, respectively.

The main idea of Simo and Rifai (1990) is to interpolate the enhanced part of the strain field in
the isoparametric space and push it forward in the physical space according to standard rules of
tensor calculus. Specifically, let  be the strain matrix in the isoparametric space, the enhanced
field  in the physical space is obtained by the formula:

(43)

The components of the Jacobian are listed in the matrix F0 and α is the vector of the internal
parameters, (see Simo and Rifai (1990) for details).

In the aim of Simo’s work, we assume the following interpolation for the enhanced isoparametric
field  and we write explicitly the components of F0:

(44)

Finally, we define by B the standard strain displacement matrix in order to obtain the relation
between the symmetric gradient of the displacement field and the vector d of the nodal
displacements: .

The solution of the structural problem requires to solve the discrete non-linear system of
equations:

(45)

where  denotes the standard assembly operator, fe is the vector of the external forces including

the equivalent thermal forces and:

 

(46)

The solution is accomplished by the Newton Raphson procedure that incorporates static
condensation of the parameters αe at the element level.
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The method leads to solve the following incremental system:

(47)

and starting with the elastic elasticity matrix, the iteration, over a single loop, proceeds as follow.
At the step k we suppose to know the following quantities: dk, αe

k , he
k , He

k and Γe
k, then:

(a) Given an increment in displacement, recover the total value:

(48)

(b) Update at the element level  by setting:

(49)

(c) For each of the four Gauss point, compute the total strain by Eq. (42):

(50)

 in order to find, by Eqs. (23), (25)1 and (28), the regions , i = 1, 2, 3.
(d) Then, for each Gauss point, compute the value of β0, β1, γ0 and γ1 in order to find, by Eq.

(15) the stress vector σ k + 1

(e) Compute, by Eqs. (19) and (20), the components of the tangent elasticity matrix Dt
k + 1

(f) Integrate element matrices and residuals:

(51)

(g) Perform static condensation:

(52)
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(h) Assemble and solve for the new increment of displacements.

(53)

(i) Compute the relative error and check for the convergence:

(54)

(j) If  then finish and test for the global balance forces, else go to (a).

5. Numerical examples

The proposed numerical method has been implemented on an existing FEM code named Solver
that is distributed and commercialized in Italy by a software house.

In order to illustrate the effectiveness of the numerical method developed in the preceding section,
we perform some numerical simulations. First, we consider a rectangular block subjected to a
trapezoidal load and to a thermal load. Next we consider a cantilever beam subjected to a constant
curvature and to a uniform thermal strain in the cases of no-tensile strength and bounded tensile
strength, respectively. 

Finally, we analyze in detail a concrete example inherent a masonry panel in order to show the
convergence properties of the proposed numerical method.

5.1 The rectangular block

This is a rectangular block in plane stress state supported by a rigid plane. A trapezoidal load, as
shown in Fig. 2, loads the block that is subject also to a thermal strain. The material is assumed
with no-tensile strength.

This example has been studied by Lucchesi et al. (1990) which shown the analytical solution in

Ke
k 1+

e 1=

nel
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ε dk 1+∆
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Fig. 2 The rectangular block
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the case of the plane strain. In the case of the plane stress and assuming a unitary thickness, the
solution is: 

The block is discretized first into fifty finite elements for a total of sixty-six nodes and next into
two hundred elements for a total of two hundred and thirty-one nodes.

The following data are assumed:

a = 5.0 m, h = 5.0 m, th = 1.0 m
q = 0.001 GPa, ν = 0.1, E = 5.0 GPa
σ = 0, αt = 1.0 E−5(oC)−1, ∆θ = −20.0 oC
δ = 0.002, Tol = 1.0 E−5

and the analysis results are summarized in Table 1. 
The inspection of the Table 1 show that the results are in agreement to the analytical values and

that the refinement of the mesh has not a meaningful effect on the solution. The use of the coarse
mesh is sufficient to fully describe the behavior of the loaded block. Furthermore, the principal
extra stresses assume very small values.

In order to assess the effectiveness of the proposed numerical method, i.e., the consequences of
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Table 1 The rectangular block

Displacements v(m) × 10−4 and stress σσ, ∆t (GPa) × 10−3

50 elements 200 elements Theoretical

v(x = 0, y = a) −20.005 −19.999 −20.0
v(x = a, y = a) −19.661 −19.631 −20.0
v(x = 2a, y = a) −10.004 −9.9987 −10.0
σY(x = 0, y = a) −1.0013 −0.9995 −1.00
σY(x = a, y = a) −0.9996 −0.9999 −1.00

σY(x = 2a, y = a) −1.2809E−3 2.2817E−6 0
σX(x = 0, y = a) −0.0103 0.0000221 0
σX(x = a, y = a) −0.108 −0.095 0
σX(x = 2a, y = a) −0.010 0.000021 0
∆t1(x = 0, y = a) 0 2.12E−6 0
∆t1 (x = a, y = a) 0 0 0

∆t1 (x = 2a, y = a) 0 2.28E−6 0
n. of. iterations 11 12 =
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the assumption on the modified constitutive equations (see Eqs. (8) and (9)) and the choice of the
finite element type (the model of Simo and Rifai), we reconsider the example of the block
comparing the results in terms of convergence with that shown in the paper of Lucchesi et al.
(1994).

In the cited work, the authors used an eight-node element and discretized the block into one
hundred and twenty-eight elements for a total number of four hundred and thirty-tree joints. They
defined the relative convergence error ξ as the ratio of the norm of the residual forces vector on the
norm of the applied forces vector. Setting ξ = 10−3, the convergence was reached in fifteen iteration
and the norm of the residual forces was 0.2 ×10−3 .

Using our proposed numerical method, we have tested the block subjected only to the trapezoidal
load forcing the relative error ξ (or ε) to be 10−14. Thus, the convergence was attained in thirteen
iterations and for nine iterations the relative error was about 10−4. The plot is presented in Fig. 3.

The same examples were examined using a four nodes isoparametric finite element assuming δ = 0.
The elaboration was stopped for the apparition, in the phase of the stiffness matrix reduction, of a
negative term on the diagonal.

5.2 The cantilever beam

This is a cantilever beam subjected to a constant curvature and to a uniform thermal strain. The
geometry is shown in Fig. 4.

This example is necessary to test the performance of the proposed numerical method in bending
dominated situations. We assume the following data:

L = 10.0 m, h = 2.0 m, th = 1.0 m, E = 1500 GPa,
ν = 0.25, αt = 0.00025(oC)−1, ∆θ = 100oC, δ = 0.001

For σ = 0 and under a constant curvature χ = 0.0010, q = 1.50 GPa. In the second load condition
we assume σ = 0.75 GPa.

fe

Fig. 3 The rectangular block loaded by a trapezoidal load: relative error vs. number of iterations
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The theoretical vertical displacement of the cantilever tip beam is ν = χL2/2 + αt∆θh = 0.10 m.
Discretizing the beam into eighty elements and setting the relative error ε = 10−5, the convergence
was attained in eight iterations and the analysis results are summarized in Table 2. Notice that the
results are in perfect agreement to the theoretical one.

In the case of no-tensile strength and in absence of the thermal loads, the Fig. 5 illustrates the
distribution of the fractures evaluated at the four Gauss points of the finite element belonging to the
mesh. The directions of the fractures are obtained considering the eigenvectors of the anelastic
strains. By the fracture distribution, we note that at the Gauss points, almost everywhere, the strain
E belongs to the region , that is, for δ = 0, the tangent elasticity matrix is semi-definite positive.

5.3 The masonry panel

This example was exhaustively studied by Alfano et al. (2000) in the case of no tensile strength
and it is inherent to a masonry wall endowed by apertures that is progressively loaded by a lateral

ℜ3

Fig. 4 The cantilever beam

Fig. 5 The fractured cantilever beam

Table 2 The cantilever beam

Displacements u(m) and stress σ, ∆t (GPa)

σ = 0 σ = 0.75

Computed Theoretical Computed Theoretical

uy(C) 0.09979 0.10 0.10001 0.10 
ux(C) 0.24002 0.24 0.24000 0.24
σx(B) 0.001581 0 0.7508 0.75
σx(A) −1.4953 −1.50 −1.4996 −1.50
∆t2(B) 0.001581 0 0.000798 0
∆t1(A) 1.678E-9 0 0 0
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load which intensity is governed by a multiplier α. The geometrical scheme is shown in Fig. 6 and
the following data are assumed:

For this example, Alfano et al. (2000) used an eight nodes finite element, a nine Gauss points
scheme for the integration and a tolerance ε = 10−16.

In our numerical simulation, we assume a discretization into one hundred and thirty-six elements
for a total of one hundred and seventy-four nodes in contrast to a fifty hundred and ninety-four
nodes necessary for the discretization with the eight nodes element. The mesh is shown in Fig. 7. 

In order to force the tolerance to a value ε = 10−14 and the parameter δ to small values, we
assume a nine Gauss points integration scheme, that is, it is necessary to evaluate accurately the

L1 3.0 m= L2 4.80 m= L3 1.8 m= th 1.0 m= Em 1.0 GPa= ν 0.2=, , , , ,
qa 1.0E5Pa= qb 7.0E4Pa= qc 1.0E3Pa, q0 2.0E4Pa, qv 1.428E5Pa===, ,

Fig. 7 The discretized masonry panelFig. 6 The masonry panel with apertures

Fig. 8 The masonry panel: load-displacement curve
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stiffness matrix and the residual loads.
In Fig. 8 we present the curves load-displacement of the top right corner of the panel obtained

increasing the load factor α and decreasing the value of δ. We see that the collapse load was
attained for a value of  that is in agreement to the value found by Alfano et al. (2000). We
remark that the value of δ was stopped at 0.00025 because, for its smaller values and for some load
factor α, the proposed numerical method became unstable. This is not amazing because the
numerical instability is implicitly contained in the problem when δ = 0.

In the Fig. 9 for α = 8.7, we present the curves relating the relative error to the iterations number.
Notice that for δ = 0.00025, the convergence was obtained in twenty-seven iteration whereas the
best performance obtained by Alfano et al. (2000) was fifty-five iterations for an error on the energy
norm as 1.0E−9.

Finally, only for an illustrative picture, in Fig. 10 it is presented the distribution the fracture
evaluated at the four Gauss points.

α 8.7≅

Fig. 9 The masonry panel: relative error vs. number of iterations

Fig. 10 The fractured masonry panel
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6. Conclusions

We have presented an approximated numerical method to study structural problems regarding
bodies made of masonry-like materials with bounded tensile strength in presence of thermal strains.
By setting δ > 0, we have shown that the tangent elasticity tensor is positive definite and thus the
proposed numerical method is stable and convergent.

The numerical examples show that the proposed numerical method is effective too. The use of the
four nodes finite element based on the model by Simo and Rifai (1990) contributes to reduce the
equations system number and to obtain the same accuracy that may be reached by means of the
employment of the eight nodes element.

Furthermore, the convergence rate is fast, especially when δ is not too much small. Moreover, the
illustrative examples show that the analysis results obtained by the proposed numerical method, are
in agreement with the theoretical solution.

We conclude remarking that, for values of δ = 0.002ý0.005, four Gauss points are sufficient to
integrate the stiffness matrix and to compute the residual load vector whereas, for smaller values of
δ, a nine Gauss points integration scheme is recommended.
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