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A spatial displacement model for horizontally 
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Abstract.  A new approach to the analysis of horizontally curved beams is presented in this paper. The
proposed method simplifies a two-dimensional structure into a one-dimensional structure just like a
normal beam for structural analysis and, therefore, reduces the computational effort significantly.
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1. Introduction

Over the last two decades, there has been a steady increase in the use of curved bridges (Hall
1996). Although horizontally curved steel bridges constitute roughly one-third of all steel bridges
being erected today, their structural behavior is not well understood (Hall 1996, Luo and Li 2000).
Basically, there are four main methods used for curved bridge analysis: (1) plane grid and space
frame methods that treat curved members as straight members (Hall 1996, Li et al. 1996); (2)
numerical and analytical methods, such as finite strip, finite difference, slope-deflection, finite
element, and closed form solutions to differential equations (Li, Yang, Ou, Li and Liu 2001; Li,
Yang and Li 2001; Li 2001); (3) experimental methods (Zureick et al. 2000, Pi et al. 2000,
Shanmugam et al. 1995, Rajasekaran and Padmanabhan 1989); (4) the force method (Weaver and
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Gere 1980). Among these methods, the finite element method is probably the most involved and
time consuming. However, it is still the most general and comprehensive technique. Although the
force method is convenient in the analysis of continuous curved beams, it is difficult to be
programmed in the analysis of curved frame structures. Therefore, it lacks generality and is no
longer used as often as the displacement method (Weaver and Gere 1980). The plane grid and space
frame methods are approximate methods that are only used for primary design. The experiment
methods are not cost effective and are often used for checking of other methods.

In this paper, using a curved beam element in a local coordinate system, a spatial displacement
field for circular beam structures was constructed. Based on structural mechanics, the equilibrium
equation for a circular beam structure is derived.

2. Coordinate system and element stiffness matrix

Fig. 1 shows the circular beam element , with its circular angle ϕ 0; radius r; cross section
flexure stiffness, EI; torsion stiffness, GJ; rotation angles α i and α j. Selecting the local coordinate
system  and nodal coordinate system (tnz), the element end forces and displacements are
shown in Fig. 1.

2.1 Displacement equation for perpendicularly supported circular beam

As shown in Fig. 1, when α i = α j = 0, from the force method, the bending-torsion displacement
equation for the two-fixed-ends perpendicularly supported circular beam is,

 (1) 

where  is the end force vector;  is
the end displacement vector; and  is the element stiffness matrix. Using the force method,
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Fig. 1 Coordinate system and end forces, displacements notations
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where the sub matrices are,
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2.2 Stiffness matrix of the rotated supported circular beam element

As shown in Fig. 1, in the nodal coordinate system (tnz), the vector 
and the vector  are, respectively, the displacement and internal force
vectors of the rotated cross section at the support line. The rotated circular element equilibrium
equations can be expressed as , where [k] is the element stiffness matrix in the
nodal coordinate system. The transformation relationship between the local coordinate system and
the nodal coordinate system is

(3)

The coordinate transformation matrix is

(4)

So, the element stiffness matrix in the nodal coordinate system is

(5)

3. Equivalent nodal forces 

The equivalent nodal force vector for the circular beam element under loads between the end
points is
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where  is the end force vector of the element in the local coordinate system.
The direct stiffness method can be used to establish the global stiffness matrix of the structure in

the global coordinate system (nodal coordinate system),

(7)

where the structural stiffness matrix, [K0], can be constructed using each element in the nodal
coordinate system; {∆0} is the nodal displacement vector; {P0} is the nodal force vector, and it is
composed of the equivalent nodal forces {PF} and the structural nodal loads. Introducing support
conditions into Eq. (7), the global stiffness matrix can be modified and solved for the nodal
displacements and support reactions (Fang et al. 1998).

4. Examples

4.1 Example 1

As shown in Fig. 2, a three span constant cross section circular beam, under uniformly distributed
load q = 220 kN/m; EI = 3 × 109 kNm2; k = EI/GJ = 1.5; r1 = 150 m; ϕ10 = 40o ; r2 = 250 m, ϕ20 =
45o; r3 = 200 m, ϕ30 = 35o.

Table 1 lists the results of the support forces and torsions under the perpendicular (α1 = α2 = α3 =
α4 = 0) and the rotated (α1 = 30o, α2 = −α3 = 20o, α4 = 30o) support conditions. The results are
identical with those obtained by the force method (not shown here).

F0{ }

K0[ ] ∆0{ } P0{ }=

Fig. 2 Three span continuous circular beams

Table 1 Reaction and torsion of the three span circular beam at supports

Support
Condition

Support Reaction (MN) Support Torsion (MNm)

V1 V2 V3 V4 T1 T2 T3 T4

Perpendicular 5.63 38.71 40.63 8.05 -2.29 40.07 21.81 16.72
Rotated 5.82 38.50 40.72 8.07 -29.16 26.64 42.48  0.88
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4.2 Example 2

Fig. 3 shows a two-span constant-cross-section circular beam frame system, under concentrated
load P = 0.568 kN/m; k = EIB/GJB = 2; i = EIB/r ; ix = EIx/H, iy = EIy/H; let i = ix = iy = 1.

The stiffness matrices for the circular elements (1) and (2) are determined using Eq. (5); the
column element (3) is a two-end-fixed straight beam element. Table 2 presents the results of the
support forces and torsions under the perpendicular (α1 = α2 = α3 = 0) and rotated (α1 = −α3 = 60o,
α2 = 0) supported conditions.

5. Conclusions

The proposed approach can be used for the analysis of curved beams under various support
conditions. The approach can be easily programmed to solve large-scale problems, or used on a
calculator for two or three span horizontally curved structures.
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