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Abstract. Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite
plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the
element displacement function, the exact displacement function of the Timoshenko’s laminated composite
beam as the displacement on the element boundary is used to derive the element displacements. The
proposed element can be used for the analysis of both moderately thick and thin laminated composite
plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples
presented show that the present model indeed possesses the properties of higher accuracy for anisotropic
laminated composite plates and is free of locking even for extremely thin laminated plates.

Key words: laminated composite plate; displacement function of Timoshenko’s laminated beam; shear
locking.

1. Introduction

The finite element method is ideally suited for the analysis of fiber-reinforced composites because
it offers the versatility to model complicated geometries and loadings as well as varying material
properties. There are three element models based on two-dimensional theories of laminated
composite plates: 1) Kirchhoff model (Kirchhoff 1850), 2) Mindlin model (Mindlin 1951) and 3)
high-order displacement model (Reddy 1984, Lo et al. 1977, Sheikh et al. 2002). In classical
laminated theory (CLT) the usual Kirchhoff assumptions of plane sections remaining plane are
effective, thereby neglecting shear deformations totally. When dealing with composite material
applications, it is well known that this type of theory is too restrictive except in very thin plate
applications. Thus, the theories used are that is attributed to the Mindlin type and high-order
displacement type. The application of high-order displacement element is difficult because it has the
complexity to derive the element formulations and the low efficiency of numerical evaluation. The
Mindlin models based on first-order shear deformation theories (FSDT) are referred to as the
constant shear angle theory (CST). In this case, a constant shear angle through the thickness of the
plate is assumed. Actually, the shear deformation along the thickness of isotropic plate is quadratic.
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For laminated composite plates the distribution of shear deformation is very complex. To reduce the
error brought by this assumption (CST), some appropriate shear correction factor is chosen to
account for the through-thickness shear deformation (Whitney 1973, Lardeur and Batoz 1989, Sze,
He and Cheung 2000). To-date, FSDT is still considered the best compromise between the
capability for prediction and computational cost for a wide class of applications. Some methods
have been proposed to solve the above-mentioned problem of the FSDT. For example, the
distribution of transverse shear stresses can be evaluated by three-dimensional (3D) elasticity
equilibrium equation (Pryor et al. 1971). Vlachoutsis (1992) presented a simple procedure to
calculate shear correction factors for laminated plates. Rolfes and Rohwer (1997, 1998) presented a
simple post-processing approach to obtain improved transverse shear stresses in finite element
analysis based on FSDT. New finite elements based on the FSDT are still proposed by many
researchers (Singh et al. 1998, Sadek 1998, Auricchio and Sacco 1999, Kumar and Mukhopadhyay
2000). These efforts make it more convenient and reasonable to use the FSDT in practical
applications. 

During the past 30 years, many researchers have made significant contributions on the
development of simple triangular and quadrilateral elements based on FSDT. The major problem is
how to eliminate shear locking as the thickness-span radio of the plate becomes small. It is well
known that for Mindlin plates, only C0 continuity is required and the difficulties of C1 continuity
requirement for thin plate elements can be avoided. Moreover, both the thin plate and the thick plate
analysis can be integrated in the element model. Initial Mindlin plate elements used strain-
displacement relations to obtain bending and transverse shear strain. In this case, bending energy is
written in terms of nodal rotations only, whereas shear strain energy is given in terms of nodal
rotation and deflections. When the plate becomes thin, transverse shear effects are reduced, and
nodal deflections become associated only with vanishing shear energy. This is a difficult situation to
uphold, and shear locking was soon observed. In order to avoid this, reduced integration
(Zienkiewicz et al. 1971, Pugh et al. 1978) and selective integration technique (Malkus et al. 1978,
Hughes et al. 1978) were widely used. For the 3-noded triangular element, a single Gauss point
integration is used for calculating the shear strain energy. For the re-constituting shear strain
technique, especially, the shear-strain approximation along the edge-projection or discrete Mindlin
technique has been used to derive 3-noded triangular Mindlin plate elements. However, it is found
that such elements have low accuracy, and furthermore they very often cannot pass the patch test for
thin plates. It is fair to say, however, that the 9-DOF triangular Mindlin plate elements are less
successful compared with either the quadrilateral or higher order triangular Mindlin plate elements.
Therefore, there is a great interest in investigating new approaches, as the one discussed in this
paper that can lead to formula 9-DOF triangular Mindlin plate elements with high performances.

Recently, a number of efficient 9-DOF triangular Mindlin plate elements based on the discrete
constraint and the equilibrium conditions are produced (Batoz et al. 1989, 1992, Katili et al. 1993).
These elements can converge towards the discrete Kirchhoff plate bending elements when the
thickness of the plate is very thin. Furthermore, new quadrilateral Mindlin plate elements RDKTQM
and triangular RDKTM with the re-constitution of the shear strain have been developed by Chen
and Cheung (2000, 2001). Based on this method, the displacement function of the Timoshenko’s
beam is used in the formulation to derive new triangular thin/thick plate elements. The elements
RDKQM and RDKTM indeed possess the properties of high accuracy for thin and thick plates, are
capable of passing the patch test required for Kirchhoff thin plate elements, and do not exhibit extra
zero energy modes. The elements RDKQM and RDKTM are free of locking for very thin plate
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(where the thickness/span ratio is less than 10−30) analysis and its convergence can be ensured
theoretically.

In this paper, based on the triangular discrete Mindlin plate element RDKTM, a refined 15-DOF
triangular discrete Mindlin element RDTMLC is formed by using the exact displacement function of
the Timoshenko’s laminated composite beam as the displacement on the element boundary. The
outline of this paper is as follows. In Section 2 and 3, the description of the element RDTMLC and
the displacement function of the Timoshenko’s laminated composite beam are presented separately.
In Section 4, formulations of membrane strain mode, bending strain mode and shear strain mode for
element RDTMLC are derived. Numerical solutions of practical laminated composite plate problem
are given in Section 5. Conclusions are drawn in Section 6.

2. Element description

The element RDTMLC is shown in Fig. 1. The displacement field is expressed as

(1)

in which x and y are the rectangular coordinates in the plane of the element, z is the thickness-
direction coordinate measured upwards from the mid-plane; U, V, and W are the displacements in
the x, y, and z directions respectively, u, v, and w are the corresponding mid-plane displacements,
and θx and θy are the rotations.

Consider the Mindlin assumptions, the membrane, bending and transverse shear strains are related
to the displacements and rotations by the following equations:

(2)

U x y z, ,( ) u x y,( ) zθx x y,( )+=

V x y z, ,( ) v x y,( ) zθy x y,( )+=

W x y z, ,( ) w x y,( )=

εm ∂u ∂x ∂v ∂y⁄ ∂u ∂y⁄ ∂v ∂x⁄+⁄[ ]T=

εb ∂θx ∂x ∂θy ∂y⁄ ∂θx ∂y⁄ ∂θy ∂x⁄+⁄[ ]T=

εs θx ∂– w ∂x⁄ θy ∂– w ∂y⁄[ ]T=

Fig. 1 The element RDTMLC in xy plane
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The element strain energy can be written as

 (3)

where membrane-bending energy functional is given by

(4)

and shear energy functional is given by

(5)

In Eqs. (4) and (5), A, B, D and S are extensional rigidity, flexural-extensional coupling rigidity,
flexural rigidity and shear rigidity of laminated composite plate element, and ve is the element
domain. 

For a laminated composite plate element (Fig. 2) consisting of n layers with element thickness t,
the rigidity coefficients can be written as follows,

(6)
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Fig. 2 The element RDTMLC in xz plane
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where  are the elastic constants of layer k in the global coordinate direction of element, and it
is necessary to transform from the principal laminate directions.  is the thickness-
direction coordinate between layer k and layer k + 1.  are the shear correction factors. For
isotropic plates, . And for anisotropic plates, they must be calculated by using some
special methods (Vlachoutsis 1992, Lardeur and Batoz 1989). 

3. Timoshenko’s laminated composite beam function

It is well known that when constructing a Mindlin plate element, both thick and thin plates should
be taken into account, and it is necessary to eliminate the shear-locking phenomenon. To find such
an element displacement function is definitely very difficult. Consider the refined element method,
the interior strain or displacement of the element can be expressed in terms of the displacement on
the boundary of the element. Note that a closed form solution for both thick and thin beams exists
in the form of the Timoshenko’s laminated beam function, and it is possible to use it to derive more
efficient Mindlin laminated composite plate elements. 

For a strip composite laminated plate with length L, width b, and thickness t, the governing
equations can be written as follows,

 (7)

where  and  are bending elastic constant and shear elastic constant in the coordinate direction
of element boundary (Fig. 3), and it is necessary to transform from the principal laminate directions.
It should be noted that the well-known beam function is widely used in the approximation of
various analytical functions. As the solution for slender beam, the beam function is expressed only
in terms of the parameters of two endpoints of the beam without considering the distribution of load
within the beam. Similarly, the Timoshenko’s laminated beam function used in this paper is also
based on this consideration. Neglecting the load q, (which will be taken care of in the consistent
load matrix), we obtained

Qij( )k

zk k 0 1 … n, , ,=( )
χi j( )k

χ i j( )k 5 6⁄=

θ dw
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-------–

Qb

Qs

------d2θ
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2
--------=

dθ
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------ d2w

dx2
---------–

q

Qs

------=

Qb Qs

Fig. 3 Element boundary coordinate system
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(8)

where .

The solutions satisfying the displacement w and the rotations θ at the two ends (node i and j ) of
the strip plate can be obtained as follows,

 

        

      (9)

where . 

4. Finite element formulations

4.1 Displacement function of the element

In Fig. 4, the displacements of element are interpolated by six discrete nodes as follows,

(10)
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-------– λeL
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Fig. 4 6-nodes element with surplus mid-nodes
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where Ni is the shape function of the 6-node triangular element in area coordinates (Li), and

Ni = (2Li − 1)/Li (i = 1, 2, 3)

Nk = 4LiLj         (k = 4, 5, 6; ij = 12, 23, 31) (11)

The surplus parameters θxk, θyk and wk (k= 4, 5, 6) at the mid-node along the element boundary shown
in Fig. 3 can be eliminated by the use of the interpolating function of the boundary displacement.

4.2 The explicit expression of the rotations θx and θy of the element

By using the parameters of the i and j nodes which are θni, θsi and θnj, θsj, the interpolation of the
displacements  on the i − j boundary (see Fig. 3) can be given as 

(12)

       (13)
 

where Eq. (13) is Timoshenko’s beam function, µij = 1/1+12λij, , Sij is the i − j
boundary length, and Li = 1 − s/Sij and Lj = s/Sij in which s is the coordinate along the boundary. The
elastic constants  can be expressed as  in which  and  can be
obtained as D11 and S44 from Eq. (6), in which are replaced by the local coordinate directions along
the boundaries of the element to the principle material directions. It is obvious that the displacement

 shown in Eq. (13) on the boundary will become the displacements of a thin plate boundary
because  when . (see Eq. (6),  is the function of t2).

Substituting  into Eqs. (4) and (5), the θnk and θsk at the mid-side node k on the i − j
boundary can be obtained as follows,

                    (14)

(15)

in which the θn and θs on the i − j boundary shown in Fig. 1(b) can be expressed as

(16)

where lij, mij are the direction cosines of the i − j boundary.
Substituting Eq. (8) into Eqs. (6) and (7), we have for node k,
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where  and

(18)

 (19)

(20)

where, .
The explicit expression of the element rotations for describing bending strain of element can be

obtained as follows, 

(21)

where,

 and . (22)

For shape function ,
 

(23)

Other shape function  can be obtained by cyclic permutation.
Finally, the rotation function of the refined element can be expressed as

 (24)
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4.3 The membrane-bending strain and the membrane-bending part of stiffness matrix of
element

From standard elasticity theory the membrane-bending strain vector can be written as
 

(25)

where εm and εb are given in Eq. (2).
The membrane displacement function of the element is given as (Fig. 1)
 

(26)

where Li (i = 1, 2, 3) are the area coordinates of the element, ui, vi are the nodal displacement
parameters.

By using standard displacement finite element method, the membrane-bending strain vector can be
expressed as

 (27)

where Bmb is the membrane-bending strain - displacement matrix of the element; q is the
displacement vector of the element, and it can be written as

(28)

The part of membrane-bending of the element stiffness matrix can be written as follows,
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(31)

In order to remove the shear locking, the Timoshenko’s beam function can be used to define the
rotation and deflection on the element boundary. The interpolation of the displacements  on the
i − j boundary (see Fig. 3) by using the parameters of the i and j nodes which are wi, θsi and wj, θsj,
can be given as 

             (32)

and we have,

             (33)

It is obvious that the displacements  shown in Eqs. (13) and (33) on the boundary
will always be constant because

 (34)

Therefore the shear strains at node i can be expressed by the constant shear strains. We have for
node 1 (see Fig. 4),
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Finally the shear strain can be obtained as follows,

 and 

(37)

where
 

   

γsk(k = 4, 5, 6) are the natural shear strains at mid-side nodes 4, 5, 6 of the element (see Fig. 4),
such that,

(38)

Substituting Li = Lj = 0.5 into Eq. (35), we have for node k (see Fig. 3)

(39)

It is obvious that  when . The element RTDMLC is free of shear
locking for thin plate analysis and its convergence can be ensured theoretically.
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The shear strain of the element RTDMLC can be obtained as follows:

(42)

where

(43)

The shear part of the stiffness matrix of the element RTDMLC can be written as follows,

(44)

Finally the stiffness matrix of element RTDMLC in the element local coordinate system can be
written as follows,

(45)

Once the displacement variables are known the plane stresses σp are obtained by

(46)

and the transverse shear stresses given by Lardeur and Batoz (1989) can be obtained by integration
of the 3D equilibrium equations using Eq. (46).

5. Numerical examples

In this section, a series of problems taken from various literature sources are used to determine the
capability of the element to adequately predict the behavior of composite laminates. These problems
involve varied boundary conditions, aspect ratios, loading conditions and laminate configurations.
For several of these problems, comparisons are made with available ‘exact’ analytical solutions as
well as other independent finite element solutions. The results are compared with finite element
solutions of other models. These elements include a triangular element with high-order displacement
model and several quadrangle elements. They are

MQH3T : hybrid element proposed by Spliker et al. (1985) which contains eight nodes with five
DOF per node. 
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SQUAD4 : mixed element proposed by Wilt et al. (1990) which contains four nodes with five
DOF per node. 

TRIPLT : element proposed by Lakshminarayana and Murthy (1984), which contains three nodes
with fifteen DOF per node.

QUAD4 : four-node laminated anisotropic plate/shell element proposed by Somashekar et al.
(1987).

DST : discrete shear triangular element for composite plates proposed by Lardeur and Batoz
(1989)

5.1 Two-layered angle-ply clamped square plates under uniform pressure

In this problem, a square two-layer plate (a = 10, t = 0.02, see Fig. 5) subjected to a uniformly
distributed load p = 100 is considered. The clamped boundary conditions have all DOF restrained
along the plate edge. The material properties for the problem are: E1 = 40 × 106, E2= 1 × 106, G12=
G23= G31= 0.5 × 106, ν12= 0.25. 

The results of displacement  at the center of the plate are given in Table 1. Note,  is a
nondimensional parameter, and it is given as . The results are compared to
exact solutions and other finite element solutions using the MQH3T element and the SQUAD4
element. MQH3T element used a 6 × 6 mesh (665 DOF), SQUAD4 element used a 10 × 10 mesh
(605 DOF). The present 15-DOF triangular Mindlin plate element RDTMLC used 6 × 6 mesh (245
DOF), 8 × 8 mesh (405 DOF), and 10 × 10 mesh (605 DOF) for this case. 

Again, due to the lackness of material symmetry, the entire plate was modeled.

w w
w wE2t

3
pa

4⁄( ) 104×=

Table 1 Normalized center deflection for clamped square plate with uniform pressure

 R D T M L C 

Laminate MQH3T SQUAD4  6× 6  8× 8  10× 10 Exact

+5/−5 1.083 1.040 1.154 1.095 1.074 0.946
+15/−15 2.009 ------ 1.919 1.944 1.959 1.691
+25/−25 2.572 2.602 2.378 2.466 2.508 2.355
+35/−35 2.844 2.914 2.611 2.726 2.782 2.763
+45/−45 2.929 3.013 2.687 2.809 2.868 2.890

Fig. 5 Mesh (2 × 2) for quadrant of a square plate
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The effect of fiber orientation θ on the convergence of the results is shown in Fig. 7.

5.2 Two-layered angle-ply simply supported square plates under uniform pressure

The same plate as in Section 5.1 is considered. The plate is now simply supported on all four
edges. The simply supported boundary conditions have, in addition to the transverse displacement,
the in-plane displacement normal to the plate edge restrained. Table 2 shows some comparisons of
plate center deflection w with the SQUAD4 element and the TRIPLT element used a 6 × 6 mesh
(735 DOF). The SQUAD4 element that is the same as in Section 5.1 used a 10 × 10 mesh (605
DOF).

Fig. 6 Three meshes for quadrant of a circular plate

Fig. 7 The effect of fiber orientation θ on the convergence of the results

Table 2 Center deflections for simply supported square plate with uniform pressure

 R D T M L C 

Laminate TRIPLT SQUAD4  6× 6  8× 8  10× 10 Exact

+5/−5 606 597 602 597 595 592
+15/−15 904 ------ 863 877 883 893
+25/−25 992 1004 932 955 965 984
+35/−35 952 968 893 916 926 945
+45/−45 922 938 867 888 898 915
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5.3 Cross-ply, laminated, square plate with clamped edges under a uniformly distributed
load of intensity q

We consider a nine-layered, symmetrical laminate with [0/90/0/90/0/90/0/90/0] lay-up square
plate. The total thickness of the 0o and 90o layers is the same. A high modulus graphite/epoxy
composite material is used. The material properties for the problem are: E1 = 0.30 × 108,
E2 = 0.75 × 106, G12= G31= 0.45 × 106, G23= 0.375 × 106, ν12= 0.25. The plate is acted upon by a
uniformly distributed load of intensity q, and has thickness t and side length a. The total thickness
of all the 00 layers is the same as that of all 900 layers. Symmetry allows a quarter of the plate to be
modeled. The correction factors are χ55 = 1.054 and χ44 = 0.917. 

Table 3 shows the accuracy of the displacement at the center of plate w*(w* = (wE2t 3/qa4)×103)
obtained by element RDTMLC with 6 × 6, 8 × 8 and 10 × 10 meshes. In Table 3, the element
TRIPLT results shown are based on a 4 × 4 mesh (375 DOF) of the quarter plate, the element
QUAD4 based on an 8 × 8 mesh (405 DOF) of the quarter plate. The standard of comparison was
taken to be the converged solution obtained by using the element SQH (Noor and Mathers 1975).

5.4 Cross-ply, laminated, square plate with simply supported edges under a uniformly
distributed load of intensity q 

We consider the same plate as in Section 5.3. The plate is now simply supported on all four
edges. Table 4 shows some comparisons with the exact solutions and other finite element solutions
using the TRIPLT and QUAD4. The TRIPLT and the QUAD4 are same as in Section 5.3.

The effect of decreasing thickness radio t/a on the convergence of the results is shown in Fig. 8.

Table 3 Convergence of normalized center deflection for clamped nine-layered plate

 R D T M L C 

t/a TRIPLT QUAD4 SQH  6× 6  8× 8  10× 10

0.1000 2.320 2.316 2.319 2.308 2.314 2.318
0.0100 0.964 0.957 0.963 0.982 0.973 0.969
0.0010 0.934 0.944 0.949 0.972 0.962 0.957
0.0001 ------ 0.944 ------ 0.972 0.962 0.957

Table 4 Convergence of normalized center deflection for cross-ply, nine-layered plate with simply supported
edges under a uniformly distributed load

 R D T M L C 

t/a TRIPLT QUAD4  6× 6  8× 8  10× 10 Exact

0.1000 5.85 5.84 5.859 5.858 5.858 5.85
0.0100 4.48 4.47 4.479 4.482 4.483 4.49
0.0010 4.45 4.46 4.468 4.470 4.471 4.47
0.0001 ----- 4.46 4.468 4.470 4.470 -----
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5.5 Cross-ply, laminated, square plate with simply supported edges under a doubly sinu-
soidal loading

This example, proposed by Pagano and Hatfield (1972), is the same plate as in Section 5.4. The 

plate is acted upon by a doubly sinusoidal distributed load of intensity . The

material properties for the problem are: E1= 25 × 106, E2 = 1 × 106, G12 = G31 = 0.5 × 106, G23 =
0.2 × 106, ν12 = 0.25. The total thickness of all the 00 layers is the same as that of all 900 layers.
The correction factors are given by Lardeur and Batoz (1989) which are χ55 = 0.689 and χ44 =
0.611. Three different meshes, i.e., (6 × 6), (8 × 8) and (10 × 10), are used to model a quadrant of
the plate, and five a/t aspect ratios are considered.

Displacement and stress are given in the form 

 with  and Q = 4G12+

(Note: µ23= 0.25 here. It is necessary for 3 D elastic solution, but it is no need for FDST);
= 1/q0S

2(σx, σy, τxy). The results obtained together with some other solutions are
presented in Table 5. It is noted that the transverse shear stresses are obtained by integration of the
3D equilibrium equations and these are not listed in Table 5.

 
5.6 A clamped circular plate with uniform pressure

A circular plate of radius a with clamped edge under uniformly distributed load of intensity q is
considered. The material is a unidirectional laminate, with the material fibers at an angle θ = 0 with
respect to the global coordinate. Due to symmetry only one-quarter of the plate was modeled using
mesh sizes of 6, 24, and 96 elements (see Fig. 6). In this problem, the material properties are:
E1 = 5.6 × 106, E2= 1.2 × 106, G12= G23 = G31= 0.6 × 106, ν12= 0.26. Table 6 gives comparison of
center deflection of circular plate with the exact solutions and QUAD4 element. The QUAD4
element is same as in Section 5.4, and its results shown are based on mesh sizes of 3, 12, and 48
elements for one-quarter of the plate. Note that the quantities in the Table 6 are normalized
deflections, w*, i.e., w* = wD/qa4, where D = 3(D11+ D22) + 2(D12 + 2D66) and D11, D22, D12, and D66

are bending rigidity coefficients found by laminate theory.

q = q0
πx
a
------ πy

a
------sinsin

w̃ wπ4Q 12S4tq0⁄= S a t⁄= E1 + E2 1+ 2µ23( )( ) 1 µ12– µ21( )⁄

σ̃x σ̃y τ̃xy, ,( )

Fig. 8 The effect of decreasing thickness radio t/a on the convergence of the results
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Table 5 Maximum deflection and stresses for cross-ply, nine-layered plate with simply supported edges
under a doubly sinusoidal distributed load

a/t Model Mesh

4 6 × 6 4.227 ± 0.469 ±0.541 0.0219
RDTLMC 8 × 8 4.217 ±0.461 ±0.539 0.0220

10 × 10 4.212 ±0.457 ±0.538 0.0220
DST 10 × 10 4.242 ±0.547 ±0.419 --------

3D elasticity 4.079 ±0.720 ±0.663 --------
FSDT 4.242 ±0.491 ±0.487 0.0217

10 6 × 6 1.522 ±0.517 ±0.481 0.0216
RDTLMC 8 × 8 1.524 ±0.510 ±0.478 0.0216

10 × 10 1.524 ±0.507 ±0.477 0.0216
DST 10 × 10 1.526 ±0.541 ±0.425 --------

3D elasticity 1.512 ±0.551 ±0.477 0.0233
FSDT 1.522 ±0.519 ±0.454 0.0215

50 6 × 6 1.015 ±0.545 ±0.435 0.0213
RDTLMC 8 × 8 1.017 ±0.543 ±0.435 0.0213

10 × 10 1.019 ±0.541 ±0.434 0.0213
DST 10 × 10 1.020 ±0.522 ±0.447 --------

3D elasticity 1.021 ±0.539 ±0.433 0.0214
FSDT 1.021 ±0.538 ±0.432 0.0213

100 6 × 6 1.000 ±0.545 ±0.433 0.0213
RDTLMC 8 × 8 1.002 ±0.543 ±0.433 0.0213

10 × 10 1.003 ±0.541 ±0.432 0.0213
3D elasticity 1.005 ±0.539 ±0.431 0.0213

FSDT 1.005 ±0.538 ±0.431 0.0213
100,000 6 × 6 0.995 ±0.544 ±0.433 0.0213

RDTLMC 8 × 8 0.997 ±0.542 ±0.432 0.0213
10 × 10 0.998 ±0.541 ±0.431 0.0213

3D elasticity 1.000 ±0.539 ±0.431 0.0213
FSDT 1.000 ±0.539 ±0.431 0.0213

w̃ a
2
--- a

2
--- 0, , 

  σ̃x
a
2
--- a

2
--- t

2
---±, , 

  σ̃y
a
2
--- a

2
--- 2t

5
-----±, , 

  τ̃xy 0 0
t
2
---±, , 

 

 +−
 +−
 +−

 +−
 +−
 +−
 +−

 +−
 +−
 +−
 +−
 +−

 +−
 +−
 +−
 +−
 +−
 +−
 +−
 +−
 +−
 +−
 +−
 +−

Table 6 Normalized center deflection of circular plate

 S Q U A D 4  R D T M L C

a/t 3 12 48 6 24 96 Exact

1000 0.1163 0.1231 0.1246 0.1360 0.1310 0.1265 0.1250
100 0.1193 0.1242 0.1249 0.1361 0.1311 0.1266 --------
50 0.1211 0.1247 0.1253 0.1362 0.1313 0.1268 --------
25 0.1237 0.1264 0.1270 0.1366 0.1319 0.1276 --------

16.67 0.1266 0.1291 0.1297 0.1375 0.1331 0.1291 --------
10 0.1355 0.1378 0.1384 0.1408 0.1376 0.1344 --------

Variation of normalizing center deflection of circular plate with decreasing thickness ratio t/a is
shown in Fig. 9.
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6. Conclusions

Based on the preceding discussions and the numerical examples, the following conclusions can be
drawn.

(1) The exact solution of the Timoshenko’s laminated beam as a displacement of the boundary of
the element can be used to derive the Mindlin laminated composite plate element. This results
in the thin and thick laminated composite plate analysis being integrated in a uniform model
and the convergence for very thin laminated composite plate can be ensured theoretically.

(2) The proposed triangular discrete Mindlin laminated composite plate element RDTMLC is a
re-constitution shear strain element. The element RDTMLC based on first-order shear
deformation theories, and it possesses higher accuracy when the span/thickness ratios more
than 10. It is also free from shear locking for extremely thin laminate plates.

(3) Based on the results from numerical evaluation, the proposed element has satisfactory rate of
convergence and acceptable accuracy within reasonable mesh refinement for multilayer
laminated plates of both homogeneous isotropic and laminated anisotropic materials. The
formulations of the element RDTMLC are simpler, so it can be considered as the most
efficient and simplest one among the 15-DOF triangular laminated composite plate elements.
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