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Abstract. Application of piezoceramic materials in actuation and sensing of vibration is of current
interest. Potential and more popular applications of piezoceramics are probably in the field of active
vibration control. However, the objective of this work is to investigate the effect of shunted piezoceramics
as passive vibration control devices when bonded to a host structure. Resistive shunting of a piezoceramic
bonded to a cantilevered duralumin beam has been investigated. The piezoceramic is connected in parallel
to an electrical network comprising of resistors and inductors. The piezoceramic is a capacitor that stores
and discharges electrical energy that is transformed from the mechanical motion of the structure to which
it is bonded. A resistor across the piezoceramic would be termed as a resistively shunted piezoceramic.
Similarly, an inductor across the piezoceramic is termed as a resonantly shunted piezoceramic. In this
study, the effect of resistive shunting on the nature of damping enhancement to the host structure has been
investigated. Analytical studies are presented along with experimental results.

Key words: vibration control; piezoceramic; resistive shunting.

1. Introduction

Piezoceramic materials are transformers that convert mechanical energy to electrical energy and
vice-versa. Conventional applications of these materials are as actuators to generate vibration or
acoustic waves, or sensors that convert mechanical motion and acoustic disturbances to electrical
signals. However, the very idea of a transformer that converts mechanical energy into electrical
energy gives rise to possibilities of controlling mechanical motion.

When these piezoceramics are bonded to a structure, the mechanical strain energy generated in the
piezoceramic is converted to electrical voltage across the poling direction of the piezoceramic
device. This voltage or electrical energy is dissipated or shunted to another frequency band using
electrical networks connected to the terminals of the piezoceramic as shown in Fig. 1. The
mechanical energy of motion of the structure is thereby controlled.

Note that if the electrical networks contain electrical energy sources, then we term the network as
an active network, and the control scheme as an active control one. If there are no energy sources in
the electrical network, then the network is known as a passive network, and the control scheme a
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passive control one. The present work will be concerned with the latter.
Passive vibration absorbers, or controllers, are well known in vibration engineering (Mallik 1990,

Harris 1996). Most of these passive controllers have limited tuning capability to adapt to different
operating regimes in which the dynamical system is likely to be subjected, such as changes in
external excitation frequency or amplitude, and even change in system parameters. This is one of
the reasons for the move towards active vibration control devices. However, piezoceramic materials
with tunable passive electrical networks are essentially passive vibration controllers that can be
tuned to cope with varied operating conditions. The tunable passive electrical networks connected to
the piezoceramic can modify the frequency selective vibration transmission properties of the
structure itself. 

It is important to note that a mechanical system is a frequency selective filter, with pass-bands and
stop-bands, and thus any vibration control device whether active or passive, essentially modifies the
frequency selective filtering capabilities of the mechanical system.

Electrical passive shunting of piezoceramics has been investigated in the recent past (Hagood and
von Flotow 1991, Davis and Lesieutre 1995). These studies have focused on experimental
investigation of the additive damping and change in resonance frequency. The analytic vibration
models represent the damping and stiffness due to electrical shunting of the piezoceramic as a
complex frequency dependent modulus similar to that used in viscoelastic solids (Hagood and von
Flotow 1991). The optimum shunting parameters for the piezoceramic vibration absorber is also
derived and experimentally verified. 

The subject of the present work is in a sense complementary to that of Hagood and von Flotow
(1991). The dynamic characteristic of a vibrating system that has piezoceramic layer bonded onto it
is studied with resistive shunting. Besides confirming the experimental and analytical results
obtained by Hagood and von Flotow (1991), the present work investigates the effect of thickness
and length ratios of the piezoceramic with reference to the host beam structure in changing the
damping loss factors and resonance frequencies. Results are also presented for the vibration
reduction in the first two modes of a cantilevered beam using resistively shunted piezoceramics. The
most suitable location of the piezoceramic in effecting this vibration reduction is also discussed.
Further, in order to investigate the presence of any nonlinearity due to the piezoceramic as well as

Fig. 1 (a) Physical model of uniaxial shunted piezoelectric, (b) network analog
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resistive shunting, the effect of vibration amplitude and excitation frequency on the loss factor is
also investigated.

2. Modeling of shunted piezoceramic materials

The constitutive equations of a linear piezoelectric material can be written as Hagood and von
Flotow (1991)

 (1)

where the electric displacement, mechanical strain, electric field, and mechanical stress, are defined,
respectively, as:

(2)

The piezo dielectric constant matrix E, piezoelectric electromechanical coupling matrix D and
mechanical compliance matrix CSC, are expressed, respectively, as:

(3)
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In the above, the superscript SC indicates the value of the mechanical compliance with short
circuit boundary condition or constant electric field.

Representing these equations in terms of voltages and currents, where the voltages and currents
are defined respectively as:

(6)

Assuming that the field within, and electrical charge on the surface, is uniform for the
piezoelectric material, relations (6) become, in the Laplace domain, as:

 
 v(s) = LΦ(s) i (s) = sAq(s) (7)

where L is a diagonal matrix whose elements are the lengths of the piezoceramic patch in the i th

direction, A is the diagonal matrix whose elements are the areas of surfaces perpendicular to the i th

direction, and s is the Laplace parameter. By taking the Laplace transform of Eq. (1), and using Eq. (7)
to eliminate Φ and q, the general equation for a piezoelectric in terms of the external current input
and applied voltage is obtained as:

 (8)

The generalized compliance matrix in the upper left partition is diagonal and the elements of this
partition have the form,

AiEi/Li = Cpi  (9)

where Cpi is the capacitance between the surfaces perpendicular to the i th direction at constant stress.
By grouping these into Cp the constituent relations, Eq. (8), becomes, 

(10)

where YOC(s) is the open circuit admittance of the piezoelectric. For shunted piezoelectric
applications, a passive electrical circuit is connected between the surface electrodes, as shown in
Fig. 1. Since the circuit is placed across the electrodes, it appears in parallel to the inherent
piezoelectric capacitance in that direction. The admittances add in parallel. Hence the governing
constitutive Eq. (10) becomes,

(11)
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The externally applied current, i is the sum of the currents flowing through the shunting
impedance, the inherent piezoelectric capacitance, and the piezoelectric transformer (Fig. 1). The
shunting admittance matrix is assumed to be diagonal and frequency dependent, that is, 

 (13)

The superscript SU indicates the shunted value. The voltage appearing across the electrodes can
be estimated from Eq. (11), which will be

 (14)

where ZEL is the electrical impedance matrix and is equal to (YEL)−1. The strains in terms of stress
and input current can be obtained by substituting Eq. (14) in Eq. (11),

(15)

This governing equation for the shunted piezoelectric gives the strain for a given applied stress
and forcing current. The shunted piezoelectric compliance can be defined from Eq. (15), as

 (16)

It is to be noted that the short circuit electrical impedance and open circuit electrical impedance at
constant stress will be, ZSC(s) = 0 and ZOC(s) = (sCp)

−1, respectively, where 

 (17)

Eq. (16) can be now rewritten as 

(18)

where the non-dimensional electrical impedance matrix is defined as 

 (19)

Since  is diagonal, the electrical contribution to the compliance can be written as the
summation of electrical impedances,

, (20)
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(21)

The above equations constitute the expression for the compliance matrix of a piezoelectric
element. Eq. (20) can be simplified further, when the piezoelectric element is loaded uniaxially with
either a normal or shear stress, with only one pair of electrodes to provide an external electric field
in only one direction. For loading in the j th direction and the field in the i th direction, the shunted
compliance will be:

 (22)

Further study of the effectiveness of electrical shunting of a piezoceramic in controlling vibration
requires that we define a quantity known as the electromechanical coupling coefficient. It is defined
as the ratio of the peak energy stored in the capacitor to the peak energy stored in the material due
to mechanical strain with the piezoelectric electrodes short-circuited. It represents the percentage of
mechanical strain energy that is converted into electrical energy and vice-versa. The piezoceramic
material electromechanical coupling coefficient, kij is defined as:

(23)

The compliance  is obtained by substituting Eq. (23) in Eq. (22),
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(24)

The compliance of the shunted piezoelectric is equal to the short circuit compliance of the
piezoelectric material modified by a non-dimensional term that depends on the electrical shunting
circuit and the material’s electromechanical coupling coefficient. Substituting , for the
open circuit case, we get the open-circuit mechanical compliance as, 

(25)

In Eq. (25), OC denotes the value taken with open circuit boundary conditions (constant charge)
and it can be observed from Eq. (25) that the change in mechanical properties of the piezoceramic
as the piezoceramic electric boundary conditions are changed from short circuit to open circuit. 

The mechanical impedance of the shunted piezoceramic can be obtained in the non-dimensional
form by using Eqs. (24) and (25). For uniaxial loading in the j th direction, the mechanical
impedance of the piezoelectric can be expressed as a function of the Laplace parameter, s, as

(26)

The superscript ME refers to the mechanical property in the system. The final expression for the
non-dimensional mechanical impedance, which is defined as the ratio of the shunted mechanical
impedance to the open circuit impedance, for the shunted piezoelectric, can be derived using Eq. (26)
and Eq. (24) as

(27)

Note that the non-dimensional mechanical impedance, , is in general complex and frequency
dependent since it depends on the frequency dependent complex electrical impedance. This complex
mechanical impedance can be represented in the familiar way as,

(28)

where  is the ratio of shunted stiffness to open circuit stiffness of the piezoelectric, and ηjj is the
material loss factor. This leads to frequency dependent equations for the complex modulus of the
shunted piezoelectric. The loss factor η and modulus E can be expressed as

 (29)

For the case when resistors are used as shunting devices, as shown in Fig. 2, the resistor acts as
an energy dissipater on the electrical side. As discussed above, electrical shunting of a piezoceramic
bonded to a host structure is equivalent to a viscoelastic damping treatment of the same host
structure. 
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The non-dimensional mechanical impedance of a resistive shunted piezoelectric, using Eq. (27)
and Eq. (19), is given by

(30)

(31)

The superscript RES relates to the resistive shunting, where Ri is the resistance across the
piezoceramic, and ρi is the non-dimensional frequency defined as 

(32)

Eq. (31) is the frequency dependent mechanical impedance of the vibrating structure with
resistively shunted piezoceramic bonded to it. The loss factor and the frequency dependent storage
modulus are, in terms of Eqs. (28) and (29), respectively,

(33) 
 

(34)
 

The behavior of material loss factor and stiffness ratio as a function of non-dimensional frequency
(or non-dimensional resistance), for various values of k31 is shown in Fig. 3 and Fig. 4. These
curves are similar to that of a linear viscoelastic solid (Mallik 1990, Nashif et al. 1985). In Fig. 3,
for a given resistance, the material loss factor of the resistively shunted piezoceramic changes from
its short circuit value at low frequencies to its open circuit value at high frequencies. The material
exhibits a maximum loss factor equal to

(35) 
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Fig. 2 Resistive shunting of piezoceramic
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Fig. 4 represents the variation of the non-dimensional stiffness, that is the ratio of the resistively
shunted piezoceramic stiffness to the open-circuit piezoceramic stiffness, as a function of non-
dimensional frequency or resistance. For a given resistance value, this ratio varies from the short-
circuit value at low frequencies to the open-circuit value at high frequencies.

In view of Eq. (32), Fig. 3 and Fig. 4 can also be interpreted as the variation of the loss factor and
non-dimensional stiffness as a function of the resistive load in the shunting circuit. In this case, the
frequency of vibration is kept fixed and only the resistance is varied.

Fig. 3 and Fig. 4, also show the effect of electromechanical coupling coefficient k31 on the loss
factor and stiffness. Higher k31 ensures higher added damping and stiffness. A maximum k31 value of
0.36 can be realized with current generation of commercially available piezoceramic materials.
Although values of k31 greater than 0.36 is not presently attainable, kp (planar electromechanical
coupling coefficient) and k33 values in the range of 0.6 are attainable with currently manufactured
piezoceramics. As shown in Fig. 3, the additive loss factor due to resistive shunting can be as high
as 25% for the case when kp = 0.6. A similar trend presents itself in the case of stiffness ratio as
shown in Fig. 4. It is to be noted that vibration control through piezoceramic shunting is not only
tunable, but also does not suffer from rubber-to-glass transition problems associated with
viscoelastic materials.

In order to study the effectiveness of piezo-resistive shunting in controlling the dynamics of a
vibrating system, the dynamics of the host structure is modeled by a single vibration mode. The
piezoceramic is then coupled in parallel to this one degree-of-freedom (1-DOF) system as shown in
Fig. 5. The modal velocity of the vibrating system with piezoceramic can be expressed in the
Laplace domain as

(37)ν s( ) F s( )
Ms K s⁄( ) Zjj

RES s( )+ +
-----------------------------------------------------=

Fig. 3 Variation of material loss factor of a resistively
shunted piezoelectric in transverse case for
different k31

Fig. 4 Variation of storage modulus of a resistively
shunted piezoelectric in transverse case for
different k31
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where Ms is the impedance associated with modal mass of the host structure, K/s is the impedance
associated with the modal stiffness of the host structure, and  is the impedance associated
with the resistively shunted piezoceramic.

The transfer function for the mechanical system shown in Fig. 5 can be expressed as follows:

(38)

where, xST represents F/Ktot, and Ktot is the sum of base system modal stiffness and the piezoelectric
short-circuit modal stiffness.

The non-dimensional frequency and electrical damping ratio are, respectively,

(39)

where the system natural frequency (with the piezoceramic shorted) is

(40)

and Kpzt, is the short-circuit stiffness of the piezoceramic. K and M are the system modal stiffness
and modal mass respectively. We can define a generalized mechanical coupling coefficient Kij such
that

(41)

The generalized electromechanical coupling coefficient Kij is a measure of the overall conversion
of electrical energy into mechanical energy by the piezoceramic, when it is short-circuited, and
coupled to a host structure. Note that it is different from the material electromechanical coupling
coefficient, k31, in that, K31 accounts for the effect of the host structure on the piezoceramic
transformer’s electro-mechanical conversion efficiency.  
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Fig. 5 Sdof system model with shunted piezoelectric element in parallel with the system modal mass
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The above modeling of the resistively shunted piezoceramic bonded to the host structure assumes
a linear electro-mechanical coupling leading to a linear viscoelastic model of the overall structural
dynamics.

We next outline the experimental set-up to validate the analytical predictions made above.
Numerical simulations of the analytical results are compared with experimentally obtained results
for the test-specimen.

3. Experimental set-up

In order to investigate the dynamic behavior of the resistively shunted piezoceramic bonded to a
structure, dynamic tests were conducted on two duralumin cantilever beam specimens with surface
bonded piezoceramic patches. The first cantilever beam specimen (Beam-I) was 166 mm long,
30.5 mm wide, and 0.9 mm thick, where as the second beam (Beam-II) was 250 mm long, 26 mm
wide and 1.5 mm thick. Both are shown in Fig. 6 and Fig. 7. The piezoceramic patches were
attached to the beam with a very thin layer of epoxy. The material properties of the beam and

Fig. 7 Beam-II with PZT 

Fig. 6 Beam-I with PZT
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piezoceramic are listed in Table 1.
Dynamic tests were conducted on the bare duralumin model to determine the baseline vibration

characteristics such as the resonance frequencies, modal damping, and the mode shapes of the beam
without PZT. 

For all the vibration tests with electrically shunted piezoceramics, the shunting resistance was
varied between 0-1000 kΩ. The natural frequencies of the beam were found using impulse
excitation technique consisting of an instrumented impulse hammer model PCB Piezotronics
208A03, B&K 4344 accelerometer, and B&K 2635 charge amplifier.

The experimental setup is shown in Fig. 8. The beam was excited at its first two resonance
frequencies using Derritron VP2MM exciter, 25W Derritron power amplifier, and A&D AD-3525
signal generator. Input force was measured using B&K 8200 force transducer and amplified by
B&K 2626 conditioning amplifier. 

The acceleration response of the beam was picked up near the tip by B&K 4344 accelerometer
and amplified by B&K 2635 charge amplifier. These signals were acquired by National Instruments
ATMIO 16 data acquisition card using LabView (Ver.5.0) software. Constant input force level was
ensured throughout the experiment.  

Damping was estimated from the energy dissipated in one cycle. The area enclosed within the
force-displacement curve for the vibrating system with piezo bonded to it gives this. That is,

(42)

where Ω is the excitation frequency and v(t) is the velocity. 
Displacement and velocity signals were obtained by integrating successively the acceleration

signal using high-pass Butterworth filters implemented in Matlab/Simulink (Ver.5.3(R11)) as shown
in Fig. 9. These filters are needed to remove the constant of integration that appears in the
integrated signal as a DC bias term. The filter order and cut-off frequency need to be chosen with
care since they can phase distort the integrated signal. To prevent phase distortion, the phase of the
acceleration, velocity and displacement signals were checked so that they successively lagged each
other by 90o (Kandagal et al. 2001). 

To compare the damping performance of shunted PZT, equivalent damping coefficient Ceqv was
evaluated using the relation

U Fdx∫° Fvdt
0

2π Ω⁄

∫= =

Table 1 Cantilever beam and PZT dimensions and properties

Material Duralumin Duralumin PZT PZT

Property Beam-I Beam-II AcX Sparkler
Length (mm) 166 250 50.8 50
Width (mm) 30.5 26 25.4 25
Thickness (mm) 0.9 1.5 0.762 0.5
E (GPa) 70 70 69 69
Capacitance (µF) - - 0.09 0.06
Density (kg/m3) 2700 2700 7700 7800
Coupling coefficient (k31) - - 0.30 0.35
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(43)

where U is the energy dissipated in one cycle, given by Eq. (42), Xo is the displacement amplitude,
and Ω is the frequency of excitation. Ceqv is evaluated for different resistance values. The damping
ratio, ζ, follows as:

Ceqv
U

πΩX0
2

--------------=

Fig. 8 Experimental setup

Fig. 9 Filter characteristics 
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 (44)

The excitation frequency in all the experiments was set equal to the one of the first two resonance
frequencies. 

4. Discussion of results

We conducted resistive shunting experiments with piezos bonded to two beams with different
thickness. The motivation was also to investigate the effect of thickness ratio on resistive shunting.
We first present results for Beam-I, the thinner beam, and subsequently for Beam-II.

4.1 Beam-I

The frequency response test results for Beam-I, shown in Fig. 6, using instrumented impulse
hammer, are presented in Table 2. The natural frequencies of the beam with piezo short- and open-
circuited are the same. Analytically predicted difference between the open and short circuit
resonance frequencies is shown in Fig. 10. The shift in the natural frequency is beyond the least-
count of the FFT analyzer (equal to 0.0625 Hz). Hence, change in the natural frequencies of the
beam with piezo short and open circuited was not observed. Indeed, this experimental observation is
discussed in more detail below together with numerical simulations.

Kpzt, appearing in Eq. (40), was determined using the procedure outlined in Crawley and de Luis
(1987).   

The added damping due to resistive shunting was evaluated from Eq. (38). The value of the
electromechanical coupling coefficient, kij, as given by the manufacturer, is equal to 0.3. As
discussed earlier, Fig. 3 and Fig. 4 show the variation in loss factor and stiffness of the
piezoceramic alone with variation in resistance. In order to study the effectiveness of resistive
shunting of the piezoceramic on vibration control of the structure, we evaluated the response transfer
function as given by Eq. (38). Note that rather than kij, it is the generalized electromechanical coupling
coefficient, Kij, that is critical. Kij evaluated from Eq. (41), and using the value of kij = 0.3, is 0.12.

ζ
Ceqv

2ωn

----------=

Table 2 Experimentally measured parameters for resistive shunting

Parameters Beam-I Beam-II Beam-II

Mode I I II
Natural frequency without PZT 16.8 Hz 18 Hz 97 Hz
Natural frequency (PZT-shorted) 22.5 Hz 21 Hz 105 Hz
Natural frequency (PZT-open) 22.5 Hz 21.32 Hz 105.4 Hz
Loss factor (without PZT) 0.0016 0.0058 0.0034
Loss factor (with PZT short circuited) 0.0078 0.0214 0.011
Generalized coupling coefficient (estimated) Kij 0.04 0.165 0.0127
Generalized coupling coefficient (measured) Kij 0.035 0.153 0.11
Capacitance 0.09 µF 0.06 µF 0.06 µF
Optimal resistance 70 kΩ 110 kΩ 25 kΩ
Non-dimensional resistance 0.9 0.9 0.9
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The response of the 1-DOF system at various non-dimensional resistance values is shown in Fig. 10.
The response is similar to that of a 1-DOF system with a linear viscoelastic solid in parallel as
shown in Fig. 5. At optimal resistance, the peak of the transfer function is reduced due to the
addition of damping, which is mainly attributed to the dissipation of energy across the resistance.
The modal damping ratio can be found exactly by solving the roots of the cubic equation in the
denominator of Eq. (38). The electromechanical coupling coefficient is mainly dependent on the
system modal stiffness K and the piezoceramic stiffness Kpzt. The solution to the denominator of
Eq. (38) gives the additive damping due to PZT. For a fixed value of non-dimensional resistance, r,
the added damping mainly depends on Kij. However, the experimentally evaluated value was found
to be 0.035 following the procedure outlined by Hagood and von Flotow (1991, page 262). This
large deviation is attributed to the effect of the bonding layer on the PZTs ability to transform
mechanical energy into electrical energy. We now simulated the transfer function given by Eq. (38),
fixing the value of Kij = 0.035. The result is presented in Fig. 11. Note that the change in the
resonance frequency is only about 0.001 Hz when the non-dimensional resistance is changed from
0.1 to 10. This confirms our experimental observation while performing the impulse hammer test, of
no change in the resonance frequency with piezoceramic open- or short-circuited. 

An experimental study of the effect of resistive shunting on vibration tip amplitude and added
damping was carried out, and the results are shown in Figs. 12 and 13. In the case of variation in
added damping with resistive shunting, Fig. 13, the experimental results match well with the
analytical results, indicating that the assumptions made in the electro-mechanical modeling of the
host beam and PZT with resistive shunting is quite accurate. Note that the additive damping as a
function of non-dimensional resistance is similar to that of the variation of loss factor with
frequency of a viscoelastic solid. However, in contrast to that of a viscoelastic material, piezo-
resistive shunting is not prone to problems such as the ‘rubber to glass’ transition at a certain
temperature that occur in most viscoelastic material used as vibration dampers. The experimental
results for tip amplitude deflection as a function of resistance, Fig. 12, shows that the maximum
reduction in tip deflection is about 4% at the optimum resistance value. The time-domain response
of the beam with piezo short-circuited and piezo resistively shunted at the optimum resistance value

Fig. 10 Response of 1-DOF system with resistively
shunted piezoelectric; Kij = 0.12

Fig. 11 Response of 1-DOF system with resistively
shunted piezoelectric; Kij = 0.035
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is shown in Fig. 14.
Since the vibration reduction with resistive shunting was only around 4% for the first mode, we

did not pursue to investigate the effect of resistive shunting on the second mode. Rather, we chose
to investigate effect of form factors such as thickness ratio on piezo-resistive shunting.   

4.2 Beam-II

Given the fact that the maximum electromechanical efficiency of the piezo alone, in the 1-3
direction, is at best 35%, resistive shunting is quite unlikely to significantly change the natural
frequencies and enhance the damping. Of course, higher efficiencies can be realized when the piezo
acts in a plane, kp, or even in the 3-3 direction. Therefore, in order to maximize the effectiveness of

Fig. 14 Time domain response of beam with PZT (Beam-I; Mode 1)

Fig. 12 Variation of tip amplitude as a function of
resistance (Beam-I; Mode-I); Experiment

Fig. 13 Variation of additive damping as a function
of resistance (Beam-I; Mode-I); Experiment
and theory
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the piezoceramic shunting on the dynamics of the host beam structure, a study of the effect on
added damping due to purely structural factors such as thickness ratio of beam to that of
piezoceramic, and the length ratio of beam to that of piezoceramic, was carried out. The results of
these investigations are presented in Figs. 15 and 16. Fig. 15 shows that the relative thickness values
of the host beam and PZT, as well as their relative lengths, have an important influence on the
added damping due to resistive shunting. However, for a given ratio of piezoceramic length to beam
length, the added damping is a maximum at a thickness ratio of around 2.72. Above this thickness
ratio, the added damping decreases. This is in-spite of the fact that increasing the beam thickness
should increase the strain induced in the piezoceramic and thereby the added damping due to
resistive shunting. However, the additive damping factor is really the ratio of the damping force to
the product of the inertia and restoring forces. Increasing the beam thickness till some point induces
greater strain in the piezoceramic, but beyond this thickness, the induced damping due to resistively
shunted strain actuated piezoceramic is counteracted by the increase in inertia and stiffness due to a
thicker beam. Therefore, the damping factor decreases with increase in thickness ratio beyond the
value 2.72. Fig. 16 shows the resulting variation in the vibration amplitude of the beam with PZT
resistively shunted at optimum resistance value. It is assumed in the numerical simulation that the
beam with piezo short-circuited is has no damping. This is assumed to be the baseline configuration.
The graphs clearly show the amplitude reduction as a function of thickness. At a thickness ratio of
2.72, the vibration amplitude, for a given length ratio, shows a minima. This is as it should be, as
the added damping due to resistive shunting of the piezo is maximum at this value. The
experimental results also show good agreement. 

Based on the above results, we conducted experiments on another duralumin beam specimen with
piezo bonded to it as shown in Fig. 7. This beam dimensions, henceforth referred to as Beam-II,
were 250 mm long, 26 mm wide and 1.5 mm thick. The piezo-beam thickness ratio works out to
approximately 3. Note that the added damping in this case was almost twice that of the Beam-I
configuration. We conducted experiments to study the effect of resistive shunting on reducing the
amplitude for two modes of the system. For the first mode, the variation of amplitude of response

Fig. 15 Variation of added damping with thickness
ratio(beam/PZT) for different beam length
(l)/PZT length (L) ratios

Fig. 16 Variation of vibration amplitude with thickness
ratio (beam/PZT) for different beam length (l)/
PZT length (L) ratios
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and added damping as a function of resistance are shown in Figs. 17 and 18. Note that the
maximum reduction in tip amplitude at a resistance value is around 23%. The added damping shows
an increase of 60%. The time-domain response of the beam with piezo short-circuited and piezo
resistively shunted at the optimum resistance value is shown in Fig. 19. It is illustrative at this point
to plot the strain mode shape of the beam with piezo bonded onto it as shown in Fig. 20. Note that
the maximum value of the strain in the first mode occurs at the root. So bonding the PZT close to
the root will induce maximum strain in the piezo and consequently maximum voltage will be
developed across the piezo. Of course, the electromechanical efficiency is governed by the k31 value
that is approximately equal to 0.35 or 35% efficiency. In the present experiment we place the PZT
as close to the root as possible taking into consideration space for leads and wires from the piezo to

Fig. 19 Time domain response of beam with PZT
(Beam-II; Mode 1)

Fig. 20 Strain mode shape of Beam-II for first mode

Fig. 17 Variation of tip amplitude as a function of
resistance (Beam-II; Mode 1); Experiment

Fig. 18 Variation of additive damping as a function of
resistance (Beam-II; Mode 1); Experiment and
theory
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the resistance, etc.   
For controlling the second mode of the beam we placed the piezo at a location close to the

maximum value of the second strain mode shape as shown in Fig. 21. The variation of tip-
amplitude of the beam and the added damping for the second mode as a function of resistance is
shown in Figs. 22 and 23. The reduction in tip amplitude is 30% and increase in added damping is
50%. The time-domain response of the beam with piezo short-circuited and piezo resistively shunted
at the optimum resistance value is shown in Fig. 24. Note that reduction in vibration amplitude is
more in the second mode than in the first. This inspite of greater augmentation of damping due to
resistive shunting in the first mode, which is 60%, than in the second mode, that is 50%. This is due
to the fact that damping due to resistive shunting is viscous in nature and is proportional to the

Fig. 22 Variation of tip amplitude as a function of
resistance (Beam-II; Mode 2); Experiment

Fig. 23 Experimentally determined variation of additive
damping as a function of resistance (Beam-
II; Mode 1)

Fig. 21 Strain mode shape of Beam-II for second mode
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frequency of vibration. Therefore higher modes are more easily damped.    
Although additive damping due to resistive shunting behaves predictably along the lines of the

linear theory derived above, we wished to investigate any deviation from linear behavior at relatively
high amplitudes of vibration. In order to study the effect of vibration amplitude on damping, the
loss factor at the optimum resistive shunting value is plotted as a function of amplitude in Fig. 25.
Note that the loss factor is almost independent of amplitude pointing to the fact that the damping
behavior of the resistively shunted piezoceramic structure is viscous in nature.

We also studied the effect of excitation frequency on the damping behavior of the resistively
shunted piezoceramic. The excitation frequency was varied close to the first resonance frequency so
that the beam-piezo dynamics could be modeled as a sdof system. We would like to point out that
the vibration amplitude at off-resonance frequencies could not be kept at the level as at resonance
since the forcing amplitude necessary to do so at off-resonance turns out to be very high. However,
since we know that the loss factor does not change with amplitude, the variation of loss factor
would only be a function of frequency. The loss factor variation is presented in Fig. 26. The
variation of the loss factor with frequency is similar to that of a linear viscoelastic solid (Mallik
1990, Nashif et al. 1985). Also note the fact that the loss factor variation with frequency is similar
to that of the variation of loss factor with resistance, since the non-dimensional resistance given in
Eq. (32) or (39).

  

5. Conclusions

The effect of resistive shunting of a piezoceramic material bonded to a duralumin cantilever beam
is investigated with reference to its vibration control effectiveness. Specifically, we have focused on
the reduction of tip response amplitude, additive damping and change in resonance frequency for
two modes of vibration of a cantilever beam. The studies on the added damping due to resistive
shunting on a beam indicate the fact that the electro-mechanical coupling coefficient is an important

Fig. 24 Time domain response of beam with PZT
(Beam-II; Mode 2)

Fig. 25 Experimentally determined variation of loss
factor with amplitude
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parameter. Higher values of k31 ensure better added damping and larger percentage change in natural
frequency. We also investigated the effect of thickness ratio of the piezo with reference to the host
beam structure on augmenting damping due to resistive shunting of the piezo. It is shown that for a
given value of k31 and specified piezo length to beam length, there is an optimum thickness ratio at
which damping due to resistive shunting is maximized. Vibration amplitude reduction of the order
of 23% and 30%, respectively, for the first two modes of vibration were observed. The change in
natural frequencies with resistive shunting of the piezoceramic was quite marginal.

We also experimentally investigated the effect of amplitude and frequency on the nature of
damping. The loss factor was plotted as a function of measured tip amplitude of the beam for a
fixed frequency of excitation. The results indicate that the loss factor is almost independent of
amplitude, confirming that the damping behavior is predominantly viscous in nature. The variation
of loss factor with damping too behaves as that of a linear viscoelastic solid modeled using spring-
dashpot models. Experimental and analytical simulations are in close agreement. 

Values of electromechanical coupling coefficient, k31, are limited to a value of 0.35-0.36 with
currently available piezos. However, for circular plates one can exploit the planar electromechanical
coupling coefficient, kp, whose values range between 0.65-0.70. The PZT should be in the form of a
disc. Further, shear type piezoceramic actuators (here the poling direction is the 1 or 2 direction as
opposed to the 3 direction in conventional piezos) higher electromechanical efficiencies of about
70% can be achieved. We plan to work with these types of actuators, and hope to present our results
at a later date.
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