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Abstract. The paper involves the study on the elastic and elasto-plastic stress wave propagation in the
1-D and 2-D solid media. The Smooth Particle Hydrodynamics equations governing the elastic and elasto-
plastic large deformation dynamic response of solid structures are presented. The proposed additional
stress points are introduced in the formulation to mitigate the tensile instability inherent in the SPH
approach. Both incremental rate approach and leap-frog algorithm for time integration are introduced and
the new solution algorithm is developed and implemented. Two examples on stress wave propagation in
aluminium bar and 2-D elasto-plastic steel plate are included. Results from the proposed SPH approach
are compared with available analytical values and finite element solutions. The comparison illustrates that
the stress wave propagation problems can be effectively solved by the proposed SPH method. The study
shows that the SPH simulation is a reliable and robust tool and can be used with confidence to treat
transient dynamics such as linear and non-linear transient stress wave propagation problems. 

Key words: dynamic response; elastic and elasto-plastic materials; large deformation; Smooth Particle
Hydrodynamics; stress point approach; stress wave propagation; tensile instability.

1. Introduction

Wave propagation is an important topic in engineering sciences, especially, in the field of solid
mechanics. In solid mechanics, there are two types of stress waves (i) the compression wave and
(ii) the shear wave. Due to continual reflection at boundaries and the propagation of waves in
bounded solid, a steady state is usually finally reached. Depending on the influence of the inertia
term, this state is governed by a static and dynamic equilibrium in frequency domain. However, if
the rate of onset of the load is high compared to the time needed to reach this steady state, wave
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propagation phenomena have to be considered. Applications of wave phenomena can be found in
nearly every field of engineering. Some examples include the design of defence structures, blasting
of rock and the destructive waves produced by earthquake. Knowledge on wave propagation
phenomenon and its amplitude is imperative for preventive design of structures from destruction
under impulse loading. 

Only a few simple stress wave propagation problems can be solved analytically (Graff 1975). In
most cases especially in 2-D and 3-D non-linear problems, the solutions are obtained through
numerical analysis. So far, the Finite Element Method (FEM) has been widely used to solve various
non-linear stress wave propagation problems. However, one of the main drawbacks of the FEM is
the need to re-mesh to avoid the severe element distortions. Unfortunately, the re-meshing procedure
introduces projection error and reduces the accuracy of the numerical solutions. In order to mitigate
this cause of inaccuracy, a meshless method (or particle method) such as Smooth Particle
Hydrodynamics (SPH) approach has been developed to solve the large deformation problems in
solid mechanics.

SPH is a meshless method that offers considerable promise as a numerical tool for modeling
problems involving large deformations and large distortions whereby the motion of a discrete
number of particles of a solid is followed in time. SPH, a pure Lagrangian particle method, was first
introduced by Lucy (1977) and Gingold and Monaghon (1977) respectively. It was originally
developed for treating astrophysics problems. The method was extended to solve solid mechanics
problems (Libersky and Petschek 1991), hypervelocity impact problems (Libersky et al. 1993) and
penetration problems. In SPH, the field variables such as velocity, density, deformation gradient and
stresses are obtained from particle values using interpolation functions known as kernel function. As
SPH uses a Lagrangian formulation for the equations of motion, it does not involve a distortion
limiting grid and is therefore very attractive for any high velocity impact and transient dynamics
simulation. 

The advantage of the SPH method is that it is easy to work with and provides reasonably accurate
results for solid mechanics problems. However, the method suffers the loss in accuracy and often
the instability phenomenon resulting from the lack of nodal completeness and/or integrability of the
kernel approximations. If explicit time integration scheme is adopted, SPH shares the basic Courant
time step stability requirements for hydrodynamic analysis. Tensile instability is the main common
problem associated with SPH for solids experiencing state of tensile stress. An improvement on
completeness and integrability conditions as well as stability of the process is imperative for SPH to
become a robust tool. Monaghan (1989), Johnson and Beissel (1996) and Randles and Libersky
(1996) have proposed the correcting first derivative approximation method. Although these
correction techniques can restore various levels of nodal completeness, none of them is truly
complete as the integrability condition is not satisfied. In order to overcome tensile instability in
SPH, Hicks et al. (1997) proposed the conservative smoothing method while Dyka and Ingel (1995)
and Dyka et al. (1997) suggested the stress-point approach. Later, the SPH method has been
extended to a stress-point formulation with boundary conditions by Randles and Libersky (2000). In
their paper, the collocation nature of standard SPH is removed by adding a companion set of
Lagrangian points that carry the stress. By using this stress point treatment, a stable and linearly
consistent solution can be obtained. Recently, Chen et al. (1999a, 1999b, 2001) have proposed a
simple corrective kernel approximation technique, which was called the Corrective Smoothed
Particle Method (CSPM) by applying the kernel estimate to the Taylor series expansion. This
solution algorithm is capable of solving time-dependent partial differential equations of any order.
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As demonstrated by Chen et al. (1999a), the use of the corrective second derivative approximations
can result in stable and accurate solutions. For linear elasto-dynamics, the Corrective Smoothed
Particle Method with the corrective first derivative approximations not only can remove the tensile
instability in SPH but also can enhance solution accuracy over the entire domain, especially near
and on boundaries (Chen et al. 1999b). Belytschko et al. (1998) showed that for the case of nodal
quadrature, the element-free Galerkin solutions even with an integrable test function would exhibit
marked numerical instability. They found that the instability of solutions could be prevented by the
conservative smoothing technique of Randles and Libersky (1996) while dynamic solution
instability, if occurred, could be stabilised by the introduction of artificial viscosity (Monaghan and
Gingold 1983).

The Smooth Particle Hydrodynamics equations governing the elasto-plastic large deformation
dynamic response of solids are presented. The proposed additional stress points are introduced in
the formulation to treat tensile instability. Furthermore, in order to increase the accuracy of SPH
solutions, the incremental rate approach of SPH method suitable and effective for large
deformation stress wave propagation was proposed. Combining the incremental rate approach
with standard leap-frog algorithm for time integration, the new solution algorithm was developed.
Several examples covering the stress wave propagation in 1-D and 2-D elastic and elasto-plastic
media are presented. Comparison of results demonstrates the validity and stability of the proposed
approach. 

2. Smooth Particle Hydrodynamics

In Smooth Particle Hydrodynamics method, a continuum is represented by a set of points or
particles. The foundation of SPH is the interpolation theory. Through the use of kernel estimates, the
partial differential equations can be transformed into integral forms. Numerically, these integral
equations are approximated in terms of the field variables at a set of discrete points or particles.
These field variables are then directly evolved from the interactions among the particles using an
explicit time integration scheme. 

A kernel approximation for a function f representing a field variable at a particular point, whose
position vector is x = (x1, x2, x3), in a volume Ω can be expressed as

(1)

where  is a kernel (or smooth) function; h is a measure of the width of the kernel; 
is the differential volume. The kernel function is dependent upon two variables,  and h, and
has the following three special properties, i.e., 1) it has a compact support; 2) it reduces to the
Dirac-delta function, when h approaches zero and 3) it is normalised (Swegle and Attaway 1995).

The formulation of derivative estimates in SPH includes integration by parts, neglecting residual
boundary terms, and a linearization procedure that takes integrals of products equal to products of
integrals and drops the kernel estimates for quantities that do not involve spatial derivatives.
Through this technique and divergence theorem, the divergence estimates for a vector field f can be
generated, i.e., 

(2)

f x( ) f x′( )W x x′;h–( )dx′
Ω∫≅

W x x′;h–( ) dx′
x x′–( )

∇ f x( )⋅ f x′( ) ∇W x x′;h–( )dx′⋅
Ω∫–≅
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The kernel approximation allows spatial gradients to be determined from the derivative of the
kernel rather than the derivative of the function itself. 

As the state variables in SPH are known at discrete particle locations, integrals over a continuous
volume are equivalent to the summation of the values of neighbour particles. Assuming the sum is
over N interpolation points, Eqs. (1) and (2) become respectively

(3)

(4)

The above equations provide continuous approximations to a function and its gradient based on an
arbitrary set of discrete interpolation points at which the function is known. It is obvious from
Eqs. (3) and (4) that SPH particles should be thought of as interpolation points with no connectivity
or spatial relation among them. The sum is over the entire set of points, however, only those within
the range of the kernel function will contribute. In order to avoid an algorithm in which distances
between all particles are tested to establish those contributing to the sums, a search algorithm to find
neighbours is adopted. Searching for the neighbour particles for each particle i is usually the most
computationally intensive part in an SPH simulation. The present study adopts the linked list
algorithm proposed by Hockney and Eastwood (1981). The method reduces significantly the
computational cost. 

Function f and its gradient at the position xi of the i th particle can thus be expressed as
 

 (5)

(6)

in which the subscripts i and j represent the particle number; mj and ρj are the mass and density of
particle j ; N is the number of total particles in the field; Wij = W(xi − xj ; h) and 

. Since Wij = 0 for , N can be dually considered as the number of
particles that effectively interact with particle i. This approximation to the field variables forms the
basis of SPH. 

Two other widely used SPH formulas (Benz 1990) for gradients are:

(7)

(8)

f xi( ) f j xj( )W xi xj ;h–( )
mj

ρ j

-----
j 1=

N

∑≅

∇ f⋅ x i( ) f j x j( ) ∇W xi xj ;h–( )
mj

ρ j

-----⋅
j 1=

N

∑–≅

fi f= xi( ) f jWij

mj

ρj

-----
j 1=

N
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∇ f⋅ xi( ) f j ∇W⋅ i j

mj

ρ j
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∇ f x i( )⋅ 1
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N

∑=

∇ f xi( )⋅ ρ i– mj
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--------------
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  Wij∇⋅
j 1=
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∑=
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To implement the SPH algorithm, the kernel function must be specified. Although a few possible
kernel functions exist, one of the most efficient and widely used is the cubic B-spline kernel

(9) 

where , λ = 1, 2 and 3 for 1-D, 2-D and 3-D problems respectively. The three values of
the normalised constant C are 2/3, 10/(7π) and 1/π, corresponding to the cases of λ = 1, 2 and 3
respectively.

The first and second derivatives of the B-spline kernel function can be expressed as: 
 

(10)

(11)

with , (12)

The distributions of the kernel function W, its first derivative dW/dr and its second derivative d2W/dr2

as shown in Fig. 1 show that Wij and d2W/dr 2 are symmetrical functions while the first derivative
dW/dr is anti-symmetric.
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Fig. 1 Cubic spline kernel function and its derivatives
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3. SPH approach in solid mechanics

3.1 Equations of motion

The differential equations for the conservation of mass, linear momentum and energy are
expressed as:

(13)

(14)

(15)

where dxα/dt = vα, the vα is the velocity components, σ αβ is the stress tensor, E is the energy, ρ is
the density. The independent variables are spatial co-ordinates xα and time t. Various SPH forms of
conservation equations can be produced through the introduction of Eqs. (5) to (8) into Eqs. (13)
to (15) and integration by parts. 

(16)

 

(17)

(18)

The superscripts α and β indicate the components of the vector quantities. Summation over the
repeated indices is implied. The total time derivative, d( )/dt, is taken in the Lagrangian frame. For
given particle i the density change acceleration and change in internal energy are given by Eqs. (16)
to (18) respectively.

3.2 Artificial viscosity

In SPH, artificial viscosity and heat flux are often employed to overcome the numerical instability
caused by shock waves (Libersky et al. 1993). The artificial viscous pressure used in this study was
developed by Monaghan and Gingold (1983) and is expressed as: 

(19)

dρ
dt
------ ρ∂vα

∂xα
--------=

dvα

dt
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ρ
---∂σαβ

∂xβ
-----------=
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--------∂vα
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∂xβ
----------
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=
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where

(20)

(21)

in which, c is the sound speed on particle i, ζ and η are constants and k is usually taken as 0.1. The
linear term in Eq. (19) produces a shear and bulk viscosity while the quadratic term is roughly
equivalent to the Von Newmann-Richtmyer viscosity. If the artificial viscous functions are
introduced into the momentum equations, Eqs. (16) to (18) become 

(22)

(23)

(24)

3.3 Constitutive equation

In hydrodynamic analysis, the stress tensor appearing in the conservation equations is defined as
functions of the hydrostatic pressure P = −1/3Tr(σ) and the traceless symmetric deviatoric stress S
as

(25)

In classical plasticity, hydrostatic pressure P is usually calculated using the linear Hooke’s law
when P is small. For severe hydrostatic pressure, the pressure should be evaluated with Equation of
State (EOS) having the functional P = P(ρ, E). The EOS employed in this study is the well-known
Mie Ḡruneisen EOS for solids (Libersky et al. 1993, Drumheller 1998).

(26)

(27)

where η = ρ /ρ0 − 1 and the subscript H refers to Hugoniot curve representing compression and Γ is
the Gruneisen constant of material. The constants, a1 to a3, can be related to parameters c and s in
linear shock velocity-particle velocity relation vs = c + svp through the Taylor’s series expansion of
the Hugoniot function expressed as:

µi j
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(28)

in which s is the slope of the approximate linear relationship between the shock velocity (vs) and
particle velocity (vp), and c is the sound speed of the material. The details are given in Drumheller
(1998). In this study, the EOS will be determined by the conservation of mass, balance of linear
momentum and linear-Hugoniot relationship and Eq. (26) is simplified to

. (29)

In the elastic range, the deviatoric stress rate can be determined through Hooke’s law

(30) 

where G is the shear modulus and  is deviatoric strain rate tensor. For finite
rotation, the deviatoric stress should be determined through the incremental plasticity theory. To
account for the large rotation effect, the elastic deviatoric stress rate, , is computed using the
Jaumann rate definition: 

(31)

where
  

and (32)

are the strain rate and rotation rate tensors, respectively. Using particle equation, the SPH
expressions for evaluating these two tensors are derived as

(33)

(34)

In view of Eq. (16), Eq. (33) becomes

(35)

Therefore Eq. (31) can be rewritten as

(36)

3.4 Tension instability treatment 

Standard SPH methods have been plagued by a serious problem referred to as tension instability.
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It is imperative to search for a suitable method to treat this problem. Swegle et al. (1995) carried
out a formal stability analysis and discussed the roots of tension instability. In essence, standard
SPH simulation may result in a prematurely fracture in tension. In 1-D problems, tension instability
will cause the simple elastic bar to break apart in tension (Dyka et al. 1995 & 1997). For 2-D and
3-D problems, tension instability will produce a clustering of particles which may lead to a
premature fracture. Dyka et al. (1997) proposed a stress point method to treat this problem. Its main
idea is that the stresses are calculated at points other than the SPH centroids in order to remove the
instability. This approach completely eliminates tension instability for a 1-D bar producing very
accurate solutions for several SPH formulations. However, their study did not cover 2-D and 3-D
problems. Randles and Libersky (2000) have extended SPH to a normalized, staggered particle
formulation with boundary conditions. In their study, a companion set of interpolation points is
introduced that carry stress, velocity gradient, and other field variables. The proposed method is
shown to be stable and linearly consistent. 

The concept of stress points of Dyka is adopted and expanded to cover 2-D and 3-D problems in
particular to plate and shell structures. The stress-point method for SPH is analogous to full
integration in FEA, and staggered finite difference schemes. For standard SPH, the stress
components are calculated at the centroid of the SPH particle analogous to a reduced integration
form of FEA. Fig. 2 illustrates the typical SPH particles based on the stress point approach. The
stress points are symmetrically shifted away from the centre of the particle by a parametric distance µ.
µ = 1 indicates the stress points at the boundaries while µ = 0 corresponds to the standard form of
SPH where stress point is located at the centroid of each particle. In this approach, stress, internal
energy, and density are calculated and tracked at the stress points while the displacement, velocity
and acceleration are all calculated and monitored at the centroid of each particle.

The formulation of the conservation equation can be derived based on the stress point approach
and the momentum equation, Eq. (17), can be expressed as 

 (37)

in which l = 1 to 8, l = 1 to 4 and l = 1 & 2 correspond to the eight, four and two stress points for

dvi
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dt
-------- mjl
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ρ i
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--------
σ j l
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ρj l
2

---------+
 
 
  ∂Wij

∂xβ l
----------

l =1 2 … 8, , ,
∑

j
∑=

Fig 2 Typical SPH particles for the stress point method
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3-D, 2-D and 1-D problems respectively as shown in Fig. 2. In addition, one-eighth the mass, one-
fourth the mass and half the mass of particle j is assigned to each stress point. The stress at the
centroid of particle i,  can be approximated to be

(38)

As the stress tensors in particle i are included in the linear momentum equation of the same
particle, the tension instability is eliminated, accuracy of the results improved and undesirable
oscillations mitigated. 

4. Large deformation elasto-plastic dynamics   

As large deformation elasto-plastic transient dynamic analysis is path-dependent, the incremental
procedure is adopted. The strategy is to develop the solution process for the next required
equilibrium position corresponding to time t + ∆t when the values of kinematic variables at all time
steps from 0 to time t are known. The conservation equations of solid mechanics at time t + ∆t can
be obtained from Eqs. (13) and (15) as

(39)

(40)

(41)

Let  be the increment of stresses of particle i from time t to t + ∆t with the following
relation

(42)

Therefore Eq. (40) becomes

(43)

Essential effort for solving Eq. (43) is to establish the stress increment gradients . 
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4.1 Large deformation elastic case 

The incremental stresses can be expressed in terms of incremental strains. In the hydro-dynamics
analysis, the incremental stress can be defined in terms of hydrostatic pressure and traceless
symmetric deviatoric stress:

(44)

The incremental deviatoric stress, , is computed using the Jaumann rate definition as stated
in Eq. (31).

4.2 Elasto-plastic materials 

For elasto-plastic small strain case, the incremental stress can be expressed as functions of
incremental strain in an average sense (Chen et al. 2001). In this situation, the constitutive equation
can be given by

 (45)

where  are elastic-plastic stiffness coeffients during the time interval (t, t + ∆t). The
detailed derivation of the elasto-plastic stiffness coeffients can be found in Owen and Hinton (1980).

Based on the Von-Mises assumption that plastic flow depends only on the deviatoric stress, the
Von Mises JII  criterion and the associated flow rule are adopted to describe the plastic deformation
in this type of materials. 

(46)

With JII and yield stress σY, the deviatoric stress can be limited to the Von-Mises yield surface.

5. Time integration in SPH

An explicit central difference method can be used in the time integration process. Though many
possible time integration schemes exist, the most common and simple procedures adopted in SPH
literature are leap-frog explicit process (Monaghan 1985) and the predictor-corrector method
(Monaghan 1989). Both conserve linear and angular momentum exactly. 

The field variables in the SPH equations are directly updated using an explicit, leap-frog time
integration algorithm. The magnitude of each time step ∆t is controlled by the Courant-Friedrichs-
Lewy (CFL) condition (Libersky et al. 1993). 

(47)

CFL is usually set to 0.3, c the sound speed and vp the particle velocity. For a standard leap-frog
scheme, the intermediate velocity vector at a field point i is defined as:
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(48)

where ∆t and  are current and previous time step increment respectively.  is the
acceleration vector at the point computed using the equilibrium equation at time t. The vector can
be obtained through particle equation, Eq. (40), and the particle positions are updated to

(49)

The other variables at time t + ∆t can be updated to:

(50)

(51)

(52)

The density rate, internal energy rate and stress rate can be evaluated from the particle equations. 

6. Numerical examples

6.1 Wave propagation in an aluminium rod

The first example involves the study on the wave propagation in an aluminium rod. The problem
description, geometry and material properties are given in Fig. 3 and Table 1. The rod is fixed at
one end, and excited by a pressure jump according to a unit step function Px = 100 MPa H(t) at its
loaded end. The remaining surfaces are traction free. The material is assumed to be elastic and the
Poisson’s ratio is neglected to enable the comparison of results with existing 1-D longitudinal wave.
According to Graffi (1954), the displacement and the normal stress in the 1-D rod can be expressed
as
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Fig. 3 Aluminum rod subjected to step function excitation at loaded end
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(53)

(54)

in which L denotes the length of the rod and the 1-D wave velocity is . H(t) is the
Heaviside step function and has the following properties.

(55)

In SPH simulation, the particles are placed along 1-D line to represent the 1-D bar, as shown in
Fig. 4. To study the effects of number of particles on the convergence of the results, 3 set of
particles are chosen to model the bar. They are 26, 51 and 101 particles with the smoothing length
of each particle taken as 0.4 mm, 0.2 mm and 0.1 mm respectively. The time step is chosen as 2.5
nano-second and the artificial viscosity suggested by Monaghan and Gingold (1983) was introduced
before the completion of the 2nd cycle. The adopted value of 2.5 nano-second is smaller than the
critical value given by Eq. (47) to ensure convergence of the time integration.

Both numerical and analytical results are normalised by their corresponding static values, namely,
the displacement usta = 0.01428 mm and the traction, σsta = 100 MPa. The normalised displacement
history at the rod’s loaded end and traction history at the fixed end are depicted in Figs. 5 and 6
respectively. In comparison with Graffi’s results, they are in good agreement especially during the
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Table 1 Material properties and geometry data of the rod

Young’s modulus of elasticity E = 70. × 103 MPa

Poisson’s ratio ν = 0.
Mass density ρ = 0.0027 g/mm3

Length of rod L = 10 mm.
Rod section area A = 1 mm2

Fig. 4 SPH model for aluminum rod 
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first 2 cycles. However, oscillation of stress wave is observed afterwards for model with 101
particles. The latter is most likely caused by accumulation of computational error. Three cases are
considered to study the effects of size of the time step and artificial viscosity introduced to mitigate
undesirable noises, They are Case 1: ∆t = 5 nanosecond, Case 2: ∆t = 2.5 nanosecond and Case 3:
∆t = 2.5 nanosecond incorporating artificial viscosity given by Monaghan and Gingold (1983). All
these values are smaller than the critical value obtained from Eq. (47). Both displacement and stress
histories of the rod from the above 3 cases are depicted and compared with existing analytical
results in Figs. 7 and 8 respectively. Comparison of results show good agreement especially during
the first 2 cycles and the introduced artificial viscosity is effective in the reduction of undesirable
noises at later stages.

Fig. 5 Displacemnet history at loaded end for different
numbers of particles

Fig. 6 Stress history at fixed end for different numbers
of particles

Fig. 7 Displacement history at loaded end for different
time increments and artificial viscosity

Fig. 8 Stress history at fixed end for different time
increments and artificial viscosity
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6.2 Plane stress elasto-plastic wave propagation in rectangular steel plate

In this example, a rectangular steel plate subjected to a suddenly applied pressure load in x
direction along its edges as indicated in Fig. 9, is used to verify the linear and nonlinear wave
propagation and dynamic response of the proposed SPH approach. The plate is constrained in the x-
direction along the left edge (x = 0) and excited by a pressure jump of a unit step function
Px = 150N/mm2 H(t) on the loaded edge. The remaining surfaces of the plate are traction free. The
properties of materials and geometry data of the steel plate are given in Table 2.

Both elastic and elasto-plastic dynamic analyses using SPH and finite element methods
(Swaddiwudhipong and Liu 1996) have been carried out. In the latter, 8 quadratic shell elements are
used to idealise the plate with the time increment, ∆t, of 1.0 µsec. For SPH, three different types of
particle models are adopted in order to study the convergence of the problem. They are Type 1 :
51× 26, Type 2 : 101× 51 and Type 3 : 201× 101 2-D particle models with the smoothing lengths
of 4.0 mm, 2.0 mm and 1.0 mm and the time steps of 0.4 µsec, 0.2 µsec, and 0.1 µsec, respectively.
Parametric studies show that for Type 1 model, even with reduced time-step increment, results are
not acceptable as oscillation is prominently apparent even during the early stage of response.
However, no significant discrepancy is observed from results of Types 2 and 3 SPH models
indicating convergence of results when 101 × 51 2-D particle model is adopted. Subsequent
discussion is based on the results obtained from this model. 

The displacement time histories at the middle point B (x = 100 mm, y = 0 mm) and the end point
C (x = 200 mm, y = 0 mm) for elastic response from SPH and FEM analyses are depicted in Fig. 10.

Table 2 Steel plate material properties and geometry data

Initial Young’s modulus of elasticity E = 200. × 103 MPa

Poisson’s ratio ν = 0.3
Mass density ρ = 0 .0078 g/mm3

Initial yield stress σy = 200. MPa
Linear strain hardening modulus ET = 2.0 × 103 MPa
Length and width of plate L = 200 mm and b =100 mm
Thickness h = 1 mm

Fig. 9 FEM and SPH models of steel plate subjected to suddenly applied edge load
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Comparison of these results shows good agreement. The displacements at the middle point register
about 20 µsec time-lag when compared with those at the end point. The phenomenon is also
observed during the theoretical study (Drumheller 1998). The stress histories of points A and B
from both SPH and FEM analyses are shown in Fig. 11. More oscillations are observed in stress
histories than those of displacement. Comparison of the results from both approaches reveals that
stress histories at point B are in better agreement than those at point A as the latter is located at the
fixed end and hence suffered more from the reflection of stress from the edge. This stress reflection
also causes more oscillation in stress histories at point A and stress at the nearest particle to the
fixed edge are usually monitored and presented. It is noted that the time lag of stress wave
propagation is similar to that of displacement.

Both displacement and stress histories of points B and C and/or A resulting from the elasto-plastic
analyses are shown in Figs. 12 and 13 respectively. Similar to the elastic response, the displacement
histories obtained from both SPH and FEM analyses, are in good agreement and the stress time
histories at the middle point has better agreement than those at point A. The phenomenon is mainly
due to the stress wave reflection from the constraint boundary. Time lag for results at different

Fig. 10 Displacement histories at middle and end
points for elastic case

Fig. 11 Stress histories at middle and end points for
elastic case

Fig. 12 Displacemnet histories at middle and end
points for elasto-plastic case

Fig. 13 Stress histories at middle and end points for
elasto-plastic case
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points in the domain is observed from both displacement and stress histories. This delayed time is
the same as that observed earlier in the elastic case as the deformation is still elastic at this stage.
However, as the stress wave reflection from the boundary reaches the observing points, the values of
stress increase and the plastic deformation takes place. Plasticity effect in the material causes the
stress wave propagation to slow down and hence the duration of elasto-plastic period is longer than
that of the elastic case. Permanent deformation is apparent and the stress wave durations, the plastic
stress amplitudes as well as the travel patterns for various points in the domain tend to converge to
the same values. These phenomena are in accordance with those observed in theoretical study.

7. Conclusions

The elasto-plastic large deformation dynamic responses of structures are studied using the Smooth
Particle Hydrodynamics approach. Additional stress points are introduced in the formulation to
mitigate tensile instability phenomenon which is inherently present in the method. The incremental
rate approach, which is effective to treat large deformation transient dynamics problems, and the
leap-frog algorithm for time integration are adopted and embedded in the conventional SPH method
to improve the accuracy of the results. Two examples including stress wave propagation in elastic
aluminium bar and in 2-D elasto-plastic steel plate are presented to demonstrate the performance of
the proposed algorithm. Numerical results obtained by the proposed SPH method compare
favourably with those obtained by analytical and/or finite element method. 
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