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Buckling of rectangular plates with mixed edge supports
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Abstract. This paper presents a domain decomposition method for buckling analysis of rectangular
Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is
decomposed into two rectangular subdomains along the change of the discontinuous support conditions.
The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system.
Compatibility conditions are imposed for transverse displacement and slope along the interface of the two
subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse
displacement and slope are continuous along the entire interface of the two subdomains. The validity and
accuracy of the proposed method are verified with convergence and comparison studies. Buckling results
are presented for several selected rectangular plates with various combination of mixed edge support
conditions.

Key words: buckling of plates; domain decomposition; Kirchhoff plate; mixed edge support conditions;
Ritz method.

1. Introduction

The load carrying capacity of a plate against buckling is one of the most important design aspects
in civil, mechanical and aerospace engineering. Numerous studies have been reported in open
literature on buckling of plates subjected to various loading and support conditions (Bulson 1970,
Column Research Committee of Japan 1971, Reddy and Phan 1985, Xiang et al. 1995). 

Buckling of plates with mixed boundary conditions has also been investigated by many
researchers. Bartlett (1963) conducted a research on the vibration and buckling of a circular plate
clamped on part of its boundary and simply supported on the remainder. Hamada et al. (1967)
studied buckling of simply supported rectangular plates with partially clamped edges. Keer and
Stahl (1972) used Fredholm integral equations of the second kind to study buckling and vibration of
rectangular plates clamped along the central portion on two opposite edges or clamped partially
along one edge, with consideration of stress singularities at the tips of the clamped segment.
Sakiyama and Matsuda (1987) applied the numerical integral method for buckling of rectangular
Mindlin plates with mixed edge supports. Karamanlidis and Prakash (1989) developed a modified
Ritz approach for analysing the buckling and vibration of thick orthotropic plates subjected to mixed
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boundary conditions. Using the spline element method, Mizusawa and Leonard (1990) obtained
numerical results on buckling and vibration of rectangular and skew plates partially simply
supported and partially clamped along two opposite unloaded edges.

Based on the automated Ritz method (Lim and Liew 1993, Xiang et al. 1996, Liew et al. 1998), a
domain decomposition approach is presented in this paper to study buckling of rectangular plates
with mixed boundary conditions. The plate is decomposed into two rectangular subdomains along
the change of boundary supports. The total potential energy functional of the plate system is derived
by summing the total potential energy functional of the two subdomains. Transverse displacement
field is approximated with the product of a 2-D complete polynomial and basic functions. The basic
functions consist of the product of the boundary equations of a subdomain raised to appropriate
powers to ensure automatic satisfaction of the geometric boundary conditions of the subdomain.
Continuity conditions at the interface of the two subdomains for transverse displacement and slope
are imposed to bridge the two subdomains to form one complete plate. The continuity of the
displacement and slope are guaranteed along the entire interface of the two subdomains by
modifying the Ritz trial functions. The governing eigenvalue equation for the plate system is derived
by minimizing the total potential energy functional of the plate. 

Convergence and comparison studies are carried out to verify the validity and accuracy of the
method. Buckling results for several selected rectangular plates with different mixed boundary
conditions are presented. 

2. Mathematical modelling

Consider an isotropic, thin elastic rectangular plate of thickness t, length a, width b, Young’s
modulus E and Poisson’s ratio ν. The plate is subjected to a uniaxial inplane compressive load N in
the x direction and may be supported with mixed edge conditions on the edge/edges parallel to the
x-axis (see Fig. 1). The objective of the study is to determine the buckling load of the plate. 

2.1 Total potential energy functional

To treat the mixed edge support conditions, the plate is partitioned into two subdomains along the
change of support conditions. The dimension and coordinate system of each subdomain are shown
in Fig. 1. Each subdomain has its own coordinate system with the origin being at the centre of the
subdomain. The bending strain energy U and the potential energy of the inplane load V may be
expressed as:

(1)

(2)

in which the superscripts (1) and (2) refer to subdomains 1 and 2, w is the transverse displacement
at the midsurface of the subdomain, A is the area of the subdomain, and [Dk] and {κ}, the curvature
matrix, are given by
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(3)

(4)

(5)

where D = Et3/12(1− ν 2) is the flexural rigidity of the plate, the symbol { } is used for single
column matrices, and the symbol [ ] is used for rectangular matrices. 

The total potential energy functional of the plate is the sum of the bending strain energy U and
the potential energy of the inplane load V

Π = U + V (6)

2.2 Governing eigenvalue equation

For simplicity and convenience, the nondimensionalised coordinate systems in the two subdomains,
as shown in Fig. 2, are introduced. The origins of the coordinate systems are set at the centres of
the subdomains. The following coordinate transformation equations are employed:

(7, 8, 9)

where a1 and a2 are the lengths of subdomains 1 and 2 (see Fig. 1), respectively.
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Fig. 1 Geometry and coordinate systems of a rectangular plate with two subdomains
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Using the automated Ritz method (Lim and Liew 1993, Xiang et al. 1996, Liew et al. 1998), the
transverse displacements for subdomains 1 and 2 can be parameterized as:

(10)

(11)

where the subscript associated with a matrix denotes the matrix dimension (number of rows and
number of columns),  and  are column matrices containing 2-D
complete polynomial of m and n terms for subdomains 1 and 2, respectively,  and 
are column matrices of the unknown Ritz coefficients,  and  are basic functions for
subdomain 1, and  and  are basic functions for subdomain 2. The number of terms,
m and n, of the 2-D complete polynomials are governed by the degrees of the polynomial p(1) and
p(2) as follows

(12)

(13)

The basic functions for subdomains 1 and 2 are the key components in the Ritz trial functions to
ensure that the trial functions satisfy the geometric boundary conditions of the two subdomains
automatically (Xiang et al. 1996). The basic functions consist of the products of the subdomain
edge equations raised to appropriate powers: 

(14)
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Fig. 2 Geometry and non-dimensionalised coordinate systems of a rectangular plate with two subdomains
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(15)

(16)

(17)

where Ωi, i = 1, 2, …, 6, takes the following values:

Ωi = 0, if the i-th edge is free (18)

Ωi = 1, if the i-th edge is simply supported (19)

Ωi = 2, if the i-th edge is clamped (20)

Note that the Ritz trial functions (Eqs. 10 and 11) satisfy the geometric boundary conditions of
the two subdomains through the basic functions. The compatibility conditions along the interface of
the two subdomains, however, have not been considered. 

For buckling analysis of plates, the C1 continuity (deflection and slope) needs to be enforced
along the interface of the two subdomains, i.e.,

(21)

(22)

in which ξ0 = 1 and r0 = −1 are the coordinates of the interface on the two subdomains. Note that ξ0

and r0 are substituted into Eq. (22) after the differentiation is carried out. 
The Ritz trial function for subdomain 1, w(1), can be incorporated into the trial function for

subdomain 2, w(2), through the compatibility conditions (Eqs. 21 and 22). While the expression for
the trial function w(1) remains unchanged, the trial function for subdomain 2, w(2), can be modified
by manipulating the compatibility conditions at the interface of the subdomains as follows
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(26)

(27)

(28)

The Ritz trial function for subdomain 2 (Eq. 23) has the following characteristics: (1) terms
associated with b1 and b2 in w(2) have been replaced with terms from the trial function for
subdomain 1, w(1). The compatibility conditions along the entire interface of the two subdomains are
enforced to have C1 continuity; (2) the form of polynomial is retained in w(2). Functions f1 and f2 in
Eqs. (27) and (28) seem to be fraction. Nevertheless, the denominators in f1 and f2 are constants;
and (3) matrix  in Eq. (23), which associated with the unknown coefficients

, has considerable number of zero entries. This damages the completeness of the
polynomial, in turn, has adverse effect on the convergence of buckling load. 

It is necessary to overcome the defect in matrix  in which a large amount of zero
entries exists. Since this term needs to vanish at the interface of the two subdomains to satisfy the
compatibility conditions, the following expression, which contains a 2-D complete polynomial but
vanish itself at the interface, is adopted as a replacement for the original matrix  in
Eq. (23):

(29)

Accordingly the trial function for w(2) is changed as:

(30)
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The trial function for subdomain 1 can also be expressed as
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where

(34)

(35)

It should be noted that the trial functions defined in Eqs. (30) and (33) only satisfy the geometric
interface conditions between subdomains, i.e., it ensures the continuity of the transverse displacement
w and the slope  along the interface of the subdomains.

Substituting Eqs. (33) and (30) into Eq. (6) and minimising the total potential energy functional
with respect to the unknown Ritz coefficients leads to the following governing eigenvalue equation
for buckling of the plate system:

(36)

where  and  are the stiffness and geometric matrices of the plate
which are derived as follows
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(44)

The buckling load N is obtained by solving the generalised eigenvalue equation defined by Eq. (36).

3. Results and discussions

The validity and accuracy of the proposed method are first verified through convergence and
comparison studies. Buckling solutions are then presented for several selected rectangular plates of
various aspect ratios and different combination of mixed edge support conditions.

Plates considered in this study are isotropic, elastic thin rectangular plates with Poisson’s ratio
ν = 0.3. The buckling load N is expressed in terms of a non-dimensional buckling factor λ = Nb2/
(π 2D). Symbols f, s and c are used to denote free, simply supported and clamped edge conditions,
respectively.

3.1 Convergence and comparison studies

A square plate subjected to uniaxial in-plane load N and with mixed edge support conditions is
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Fig. 3 A square plate subjected to uniaxial in-plane load and having mixed edge support conditions 
(sss-sff plate)
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considered (see Fig. 3). The plate is partitioned into two subdomains along a line across the
interface of the mix supports. It results in the plate with three simply supported edges on subdomain
1 and two free edges and one simply supported edge on subdomain 2, namely sss-sff plate. 

Tables 1-3 presents buckling factors for the sss-sff square plate with the interface location of the
two subdomains situating at a1/a = 0.25, 0.5 and 0.75, respectively. To examine the convergence of
the buckling results, the degrees of the 2-D complete polynomial p(1) and p(2) are increased from 1
to 28. It is observed that the buckling factor λ decreases monotonically as the degrees of polynomial
increases. When the polynomial degree on subdomain 2, p(2), is taken larger value than that on
subdomain 1, p(1), the convergence rate of the buckling load factor λ is accelerated. For a fixed p(1),
λ decreases as p(2) increases. This decrease is quite significant when p(1) is less than 10, and then the
decrease rate tends to slow down. It is found that when p(2) = p(1) + 3, a lower value of λ can be
achieved at a lower value of p(1). It is observed that the rate of convergence is greater when a1/a
takes a larger value.

The computation can continue for high value of p(1) before ill-matrix condition occurs. The
buckling factor λ converges to an acceptable level as p(1) reaches to 15. Therefore all calculation in
this paper is based on p(1) =15 and p(2) = p(1) + 3 = 18.

Table 1 Convergence study of buckling factor, λ = Nb2/π2D, for sss-sff square plate (a1/a = 0.25)

Degree 

p(1)

Polynomial degree on sub-domain 2: p(2)

p(2) = p(1) p(2) = p(1) + 1 p(2) = p(1) + 2 p(2) = p(1) + 3 p(2) = p(1) + 4 p(2) = p(1) + 5

1 3.1026 2.6222 2.4656 2.3940 2.3727 2.3648

2 2.5590 2.4154 2.3890 2.3716 2.3612 2.3557
3 2.4154 2.3824 2.3508 2.3301 2.3193 2.3151
4 2.3808 2.3453 2.3213 2.3088 2.3034 2.3003
5 2.3446 2.3201 2.3066 2.2997 2.2948 2.2909
6 2.3196 2.3052 2.2968 2.2903 2.2851 2.2818
7 2.3045 2.2955 2.2882 2.2825 2.2787 2.2763
8 2.2951 2.2876 2.2816 2.2774 2.2745 2.2724
9 2.2873 2.2810 2.2765 2.2732 2.2706 2.2686
10 2.2807 2.2760 2.2725 2.2697 2.2675 2.2659
11 2.2758 2.2722 2.2693 2.2670 2.2652 2.2637
12 2.2720 2.2690 2.2666 2.2646 2.2631 2.2618
13 2.2688 2.2663 2.2643 2.2627 2.2613 2.2603
14 2.2662 2.2641 2.2624 2.2610 2.2599 2.2589
15 2.2640 2.2623 2.2608 2.2596 2.2586 2.2578
16 2.2622 2.2607 2.2595 2.2584 2.2575 2.2568
17 2.2606 2.2594 2.2583 2.2574 2.2566 2.2559
18 2.2593 2.2582 2.2572 2.2564 2.2557 ***
19 2.2581 2.2572 2.2563 2.2556 *** ***
20 2.2571 2.2563 2.2555 *** *** ***
21 2.2562 2.2555 *** *** *** ***
22 *** *** *** *** *** ***

***results can not be obtained due to ill-matrix condition
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Validity and accuracy of the present method can also be tested on a ssc-sss square plate. The plate
is simply supported except part of an edge is clamped as shown in Fig. 4. The buckling factors λ
are presented in Table 4 for the ssc-sss square plate with the interface of the two subdomains being
placed at various locations. The buckling results obtained by Mizusawa and Leonard (1990) and
Keer and Stahl (1972) are also shown in Table 4. It is observed that the buckling factors calculated
using the proposed numerical model are in close agreement with the results from Mizusawa and
Leonard (1990) and Keer and Stahl (1972).

3.2 Buckling factors for rectangular plates with mixed edge support conditions

Tables 5-8 present results for uniaxially loaded rectangular plates with different mixed boundary
conditions. The plate aspect ratio a/b ranges from 0.5 to 3.0 at increment of 0.5. The location of the
subdomain interface to the plate length ratio a1/a is chosen to be 0, 0.25, 0.50, 0.75, and 1.0. The
mixed edge conditions are arranged in such a way that the order of the support condition on the left
portion of the edge is equal to or higher than the order on the right portion of the edge.

Table 2 Convergence study of buckling factor, λ = Nb2/π2D, for sss-sff square plate (a1/a = 0.5)

Degree 

p(1)

Polynomial degree on sub-domain 2: p(2)

p(2) = p(1) p(2) = p(1) + 1 p(2) = p(1) + 2 p(2) = p(1) + 3 p(2) = p(1) + 4 p(2) = p(1) + 5

1 4.3530 4.0694 3.9817 3.8884 3.8445 3.8285
2 3.8125 3.7488 3.7427 3.7351 3.7310 3.7295
3 3.7392 3.7219 3.7012 3.6908 3.6873 3.6860
4 3.7179 3.6911 3.6773 3.6720 3.6694 3.6675
5 3.6886 3.6741 3.6682 3.6647 3.6619 3.6603
6 3.6732 3.6664 3.6616 3.6577 3.6555 3.6544
7 3.6650 3.6590 3.6542 3.6514 3.6499 3.6488
8 3.6575 3.6523 3.6491 3.6472 3.6458 3.6447
9 3.6515 3.6480 3.6457 3.6439 3.6426 3.6418
10 3.6473 3.6447 3.6426 3.6411 3.6401 3.6393
11 3.6440 3.6417 3.6400 3.6388 3.6379 3.6372
12 3.6411 3.6393 3.6379 3.6369 3.6361 3.6355
13 3.6389 3.6374 3.6362 3.6354 3.6347 3.6342
14 3.6370 3.6358 3.6348 3.6340 3.6334 3.6330
15 3.6354 3.6344 3.6335 3.6329 3.6324 3.6320
16 3.6341 3.6332 3.6325 3.6319 3.6315 3.6311
17 3.6330 3.6322 3.6316 3.6311 3.6307 3.6303
18 3.6320 3.6313 3.6308 3.6304 3.6300 ***
19 3.6312 3.6306 3.6301 3.6297 *** ***
20 3.6304 3.6299 3.6295 *** *** ***
21 3.6298 3.6293 *** *** *** ***
22 3.6292 *** *** *** *** ***
23 *** *** *** *** *** ***

***results can not be obtained due to ill-matrix condition
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Table 3 Convergence study of buckling factor, λ = Nb2/π2D, for sss-sff square plate (a1/a = 0.75)

Degree 

p(1)

Polynomial degree on sub-domain 2: p(2)

p(2) = p(1) p(2) = p(1) + 1 p(2) = p(1) + 2 p(2) = p(1) + 3 p(2) = p(1) + 4 p(2) = p(1) + 5

1 4.3847 4.3729 4.3718 4.3671 4.3634 4.3613
2 4.0981 4.0974 4.0919 4.0914 4.0904 4.0898
3 3.9990 3.9987 3.9982 3.9981 3.9981 3.9980
4 3.9973 3.9966 3.9963 3.9961 3.9960 3.9959
5 3.9963 3.9961 3.9960 3.9959 3.9958 3.9958
6 3.9961 3.9959 3.9958 3.9958 3.9957 3.9957
7 3.9959 3.9957 3.9957 3.9956 3.9956 3.9956
8 3.9957 3.9956 3.9956 3.9955 3.9955 3.9955
9 3.9956 3.9955 3.9955 3.9955 3.9955 3.9954
10 3.9955 3.9955 3.9954 3.9954 3.9954 3.9954
11 3.9954 3.9954 3.9954 3.9953 3.9953 3.9953
12 3.9954 3.9953 3.9953 3.9953 3.9953 3.9953
13 3.9953 3.9953 3.9953 3.9953 3.9953 3.9952
14 3.9953 3.9953 3.9952 3.9952 3.9952 3.9952
15 3.9952 3.9952 3.9952 3.9952 3.9952 3.9952
16 3.9952 3.9952 3.9952 3.9952 3.9952 3.9952
17 3.9952 3.9952 3.9952 3.9951 3.9951 3.9951
18 3.9952 3.9951 3.9951 3.9951 3.9951 ***
19 3.9951 3.9951 3.9951 3.9951 *** ***
20 3.9951 3.9951 3.9951 *** *** ***
21 3.9951 3.9951 *** *** *** ***
22 3.9951 *** *** *** *** ***
23 *** *** *** *** *** ***

***results can not be obtained due to ill-matrix condition

  Fig. 4 A square plate subjected to uniaxial in-plane load and having mixed edge support conditions (ssc-sss plate)
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Table 4 Comparison study of buckling factor, λ = Nb2/π2D, for ssc-sss square plate

a1/a Present method Mizusawa & Leonard (1990) Keer & Stahl (1972)

0 4.0000 4.000 4.000
1/6 4.1813 4.209 4.149
1/5 4.2473 4.641 4.545
1/2 5.1252 5.198 5.090
2/3 5.5869 5.628 5.570
5/6 5.7313 5.736 5.731
1 5.7402 5.740 5.741

Table 5 Buckling factor, λ = Nb2/π2D, for rectangular plates with different mixed boundary conditions

Boundary Conditions a/b
a1/a

0 0.25 0.50 0.75 1.0

Case 1: ssc-sss plate 0.5 6.2500 6.4381 6.7201 6.8433 6.8531

1.0 4.0000 4.3611 5.1252 5.6925 5.7402

1.5 4.3403 4.4525 4.5948 5.2662 5.4312

2.0 4.0000 4.2920 4.3713 5.1245 5.6056

2.5 4.1344 4.1758 4.3627 4.7922 5.4232

3.0 4.0000 4.1361 4.3025 4.5824 5.4312

Case 2: ssc-sfs plate 0.5 4.3558 6.0736 6.6755 6.8427 6.8531

1.0 1.4016 2.8593 4.6339 5.6872 5.7402

1.5 0.8578 1.7257 2.9722 5.1807 5.4312

2.0 0.6681 1.1984 2.0119 4.6115 5.6056

2.5 0.5806 0.9342 1.4971 3.7170 5.4232

3.0 0.5331 0.7853 1.1947 2.9692 5.4312

Case 3: ssc-sfc plate 0.5 4.4633 6.3853 6.8035 6.8523 6.8531

1.0 1.6525 3.2585 5.1253 5.7351 5.7402

1.5 1.2912 2.0709 3.2923 5.3546 5.4312

2.0 1.3360 1.6171 2.3279 5.0137 5.6056

2.5 1.3852 1.4700 1.8525 4.0864 5.4232

3.0 1.2912 1.4468 1.6125 3.2970 5.4312

Case 4: sss-sff plate 0.5 3.8926 5.6762 6.1828 6.2489 6.2500

1.0 0.9523 2.2596 3.6329 3.9952 4.0000

1.5 0.4168 1.2026 2.4025 4.2576 4.3403

2.0 0.2322 0.7163 1.4893 3.7327 4.0000

2.5 0.1477 0.4708 1.0005 3.0736 4.1344

3.0 0.1022 0.3323 0.7152 2.3890 4.0000

: Simple support, : Clamped support, : Free
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It is observed that the buckling factor λ increases as the subdomain length ratio a1/a increases for
all considered cases. It is because the constraints on the mixed edges become stronger while the
subdomain interface moves from the left to the right side. The rate of increase in buckling factors is
significant when a1/a is less than 0.75.

4. Conclusions

This paper presents a new numerical model for buckling of rectangular plates with mixed
boundary conditions. A plate is decomposed into two subdomains and the C1 continuity conditions
on the entire interface of the two subdomains are enforced. The automated Ritz method has been

Table 6 Buckling factor, λ = Nb2/π2D, for rectangular plates with different mixed boundary conditions

Boundary Conditions a/b
a1/a

0 0.25 0.50 0.75 1.0

Case 5: sss-sfs plate 0.5 4.3558 5.9250 6.2159 6.2494 6.2500

1.0 1.4016 2.7478 3.8133 3.9976 4.0000

1.5 0.8578 1.7075 2.9093 4.3001 4.3403

2.0 0.6681 1.1951 1.9908 3.8847 4.0000

2.5 0.5806 0.9330 1.4879 3.4955 4.1344

3.0 0.5331 0.7845 1.1900 2.8834 4.0000

Case 6: scc-sss plate 0.5 6.2500 6.6452 7.3243 7.6630 7.6913

1.0 4.0000 4.6759 5.9870 7.4715 7.6913

1.5 4.3403 4.4710 4.7764 6.4312 7.1159

2.0 4.0000 4.3697 4.4679 5.7359 6.9716

2.5 4.1344 4.1921 4.4282 5.1707 6.9989

3.0 4.0000 4.1529 4.3654 4.7951 7.0552

Case 7: scc-sfs plate 0.5 4.3558 6.4351 7.3122 7.6610 7.6913

1.0 1.4016 3.1312 5.3567 7.4632 7.6913

1.5 0.8578 1.7956 3.1711 6.3378 7.1159

2.0 0.6681 1.2277 2.1070 5.2199 6.9716

2.5 0.5806 0.9504 1.5487 4.0632 6.9989

3.0 0.5331 0.7953 1.2260 3.1796 7.0552

Case 8: scc-sff plate 0.5 3.8926 6.2667 7.3015 7.6591 7.6913

1.0 0.9523 2.6475 4.9928 7.4559 7.6913

1.5 0.4168 1.3144 2.6870 6.2522 7.1159

2.0 0.2322 0.7631 1.6222 4.8895 6.9716

2.5 0.1477 0.4964 1.0746 3.6075 6.9989

3.0 0.1022 0.3484 0.7613 2.6934 7.0552

: Simple support, : Clamped support, : Free
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employed to derive the governing eigenvalue equations. The correctness and accuracy of the
proposed method have been verified through convergence and comparison studies. Buckling results
have been presented for rectangular plates of different aspect ratios and having various combination
of mixed support conditions. These results are very useful for engineers to design plates with mixed
boundary conditions and for researchers to check their numerical models. It is noted that the present
method is readily to be applied to deal with buckling of rectangular plates subjected to bi-axial in-
plane load and vibration of rectangular plates. The study for plates with multiple subdomains is
being carried out by the authors.

 

Table 7 Buckling factor, λ = Nb2/π2D, for rectangular plates with different mixed boundary conditions

Boundary Conditions a/b
a1/a

0 0.25 0.50 0.75 1.0

Case 9: fsc-fss plate 0.5 1.5820 1.7117 1.7546 1.8990 2.0337

1.0 2.0429 2.2937 2.3020 2.4731 3.0611

1.5 2.2563 2.3119 2.3451 2.3782 2.9528

2.0 2.2607 2.3089 2.3333 2.3545 3.0629

2.5 2.3041 2.3102 2.3180 2.3521 3.0535

3.0 2.3048 2.3101 2.3112 2.3503 3.0636

Case 10: fsc-ffs plate 0.5 --- 0.8721 1.2645 1.7594 2.0337

1.0 --- 0.6474 0.9249 1.7091 3.0611

1.5 --- 0.5351 0.6829 1.2231 2.9528

2.0 --- 0.4830 0.5722 0.9461 3.0629

2.5 --- 0.4571 0.5158 0.7849 3.0535

3.0 --- 0.4429 0.4838 0.6846 3.0636

Case 11: fsc-ffc plate 0.5 0.4622 1.0399 1.4482 1.8806 2.0337

1.0 0.6125 0.9575 1.1874 1.9857 3.0611

1.5 0.7766 0.9560 0.9985 1.4783 2.9528

2.0 0.8323 0.9429 0.9588 1.2079 3.0629

2.5 0.8169 0.9063 0.9568 1.0688 3.0535

3.0 0.8369 0.8828 0.9432 0.9997 3.0636

Case 12: fss-fff plate 0.5 --- 0.5101 0.9091 1.3822 1.5820

1.0 --- 0.2490 0.5064 1.2174 2.0429

1.5 --- 0.1350 0.2776 0.7904 2.2563

2.0 --- 0.0824 0.1712 0.5297 2.2607

2.5 --- 0.0551 0.1157 0.3763 2.3041

3.0 --- 0.0393 0.0833 0.2801 2.3048

--- results can not be obtained due to the plate being externally unstable
: Simple support, : Clamped support, : Free
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