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Abstract.  This paper presents a numerical procedure for solving initial-value problems using the special
functions which belong to a class of Rvachev's basis functnbased on algebraic and trigonometric
polynomials. Because of infinite derivability of these functions, derivatives of all orders, required by
differential equation of the problem and initial conditions, are used directly in the numerical procedure.
The accuracy and stability of the proposed numerical procedure are proved on an example of a single
degree of freedom system. Critical time step was also determined. An algorithm for solving multiple
degree of freedom systems by the collocation method was developed. Numerical results obt&ged by
functions are compared with exact solutions and results obtained by the most commonly used numerical
procedures for solving initial-value problems.
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1. Introduction

The selection of the basis functions is of special importance for the numerical procedure and
guality of the approximate solution. Spline functions have an important place in the development of
structural numerical analyses (Prenter 1989). Although splines are a fine approximating tool, it is
clear that they are not universal basis functions for all problems of numerical approximations. In
this paper, a numerical procedure will be presented in which new basis functions, not well known to
engineers, are implemented.

The numerical solving of an initial-value problem is here performed by the procedure of a
continuous approximation in time with smooth finite functions named after the authors Rvachev’s
basis functions or, in shorRy, (Rvachev and Rvachev 1971), (Gotovac 19&8).functions are
classified between classic polynomials and spline functions. However, in practice, their application
as basis functions is still closer to splines. Therefore, the cla&g fainctions can be regarded as
splines of an infinitely high degree. In the study by Gotovac (1986), the existing knowledge on
functions of Ry class is systematized and basis functions are transformed into a numerically
applicable form. Procedures for calculation R§ functions are given by Gotovac and Koéuli
(1999) together with their distribution for forming numerical solutions and an illustration of basic
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possibilities for their application in practice.

For general solutions of initial-value problems belonging to a class of trigonometric functions, it is
appropriate to select the functiopg n(t) as basis functions of an approximate solution. Functions
Yo, n(t) are infinitely derivable functions, the linear combination of which can be used for an exact
description of trigonometric functions (Gotovac and Kczuli 1999). Using the basis functions
Yo n(t), exact solutions of free undamped vibrations are obtained (Gotovac 1986). In case of forced
vibrations, besides functiong, n(t), other functions oR, class can be selected as an approximate
solution base depending on the character of a disturbing force. Basis fuketm(ts are applied
here, the linear combination of which can be used for an exact description of algebraic polynomials
(Rvachev and Rvachev 1979), (Gotovac 1986), (Kézuli 1999). When a disturbing force function is
an algebraic polynomial, time function of load can be described exactly by basis fuRatig(s

A concise description of functiong, n(t), which belong to a class of trigonometric polynomials,
and functionsFupy(t) and Fup,(t), which belong to a space containing algebraic polynomials, is
given in the following Sections. Thep(t) function, which is essential in the definition Bfip,(t)
functions, is specially described. It is the simplest function and is studied in the most detail among
Rvachev’s basis functions. The basic propertiespi) function refer to all other functions &
class. The procedure of solving of initial-value problem by these basis functions is illustrated in
Section 5 on numerical examples.

2. Function up(t)

Rvachev's basis functiorR,; are defined as finite solutions of differential-functional equations of
the following type:

Ly() = A3 Cuy(at-b) @
k=1

whereL is a common linear differential operator with constant coefficienis, a scalar different
from zero,Cy are solution coefficientsa> 1 is a parameter of the length of finite function support,
b, are coefficients which determine displacements of finite basis functions.

The type of finite function oRy class is determined by the selection of operator Eq. (1). The
up(t) function is a solution of differential-functional equation in which the differential operator of
the first order, according to Eq. (1), has the following form:

y'(t) = A[Cy(at-Dby) + Cyy(at—b)] )

Support of theup(t) function is the interval-1, 1].

Parameter of “compression” i.e., “extension” of the support of functipf) is a=2, the
characteristic displacements of the function on the abscisda arel andb, =1, and valuel = -2
and coefficientsC, = -1, C, = 1. Therefore, the basic equation for the functip(t), according to
Eqg. (2), is:

up'(t) = 2up(2t+1) —2up(2t-1) (3)

If the length of theup(t) function support is described as an union of lengthk2 0, 1, ...,» , the
Fourier transform of thep(t) function, using the procedure given in Fig. 1, is obtained as a product of
the Fourier transforms of zero degree splines condensed to a support Tengh the ordinates2
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R ® sin( 27
up(§) = [ SN2 (4)
jljl 2
o 1
The finite solution of Eq. (3), with the fulfillment of conditio]i up(t)dt = J’up(t)dt =1 , has
the following form: o |
_ 1 . &t "
up(9 = 5= [ e up(¢)ds ®)

Based on Eqg. (5), i.e., the fact that the functip(t) is expressed by its Fourier transform (4),
functionup(t) can be generated using the convolution theorem.
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2.1 Derivatives of the up(t) function

As it can be observed in Eqg. (3), the first derivative can be expressed as a linear combination of
the displaced and compressgot) function. By differentiating the basic Eq. (3) and by replacing
the first derivative ofup(t) function with the right side of the initial Eq. (3), the second derivative
can also be expressed as a linear combination of the compressed and displacedufif)ction

If the procedure of differentiating and replacement of the first derivative from the basic Eq. (3)
continues, a general expression for the derivative ofrttie degree is obtained:

2 2"
up™(t) = 25 S up(2"t+2"+1-2), mON (6)
k=1
where C2,,, = m(m+1)/2 are the binomial coefficients afidare the coefficients of valuel
which determine the sign of each term. They change according to the following recursive formulas:

Op_1 = O, O = =0, KON, 0, =1 @)

Fig. 2 shows thaup(t) function and its derivatives. It can be observed that the derivatives consist
of the functig)nup(t) “compressed” to the interval of lengti™and with ordinates “extended” with
the factor2™: . A high degree derivative of thp(t) function whenm — « becomes a series in
which every single member corresponds to Dirac’s function.

2.2 Moments of function up(t)

Expression (5) is numerically inadequate for the calculation of uf® function values.
Reference Gotovac (1986) shows that tpé) function values can be calculated using the function
up(t) moments.

Functionup(t) moments with an even index (odd ones are equal to zero beg#t)ss an even
function):

Ay = J’t2ku p(t)dt (8)

can be calculated according to formula:

a. = (2K)! & Aok -2l
2T ok _q L (2k=21)1(21 + 1)V

KON; ap=1 )

The scalar product of a polynomial and functigft) on an even half of the support is:
1

b, = It"up(t)dt, n=-1,01 ... (10)
0
Since theup(t) function is even, the comparison of expressions (8) and (10) gives:
by = %aZK, k=01, .. (11)

According to Eg. (10) and using Eq. (9), the following is obtained for odd indices:
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b :;Macz' - k=012 3
2k+1 (k+1)22k+3lzo 21 ~2(k+ 1) y 4
b, = 1 (by definition) (12)

Scalar products of thep(t) function and algebraic polynomials can be easily calculated using
Egs. (11) and (12).

2.3 Function up(t) value in a characteristic point

Characteristic point$f;" are the points in which the funatioft) values and values of the finst
derivatives are calculated exactly in the form of a rational number. In the other points of the support,
the values are calculated with a computer precision i.e., the accuracy depends on the possibility of
describing a selected point coordinate in the base used by the computer.

A set of characteristic points of the given density onuii{e function support can be described in
a simpler manner as:

ty=—-1+k2™" nON, 1<k<2"? (13)

wheren determines the distance between the characteristic points ap(th&inction support:
At, = 27" (14)

The functionup(t) value in a characteristic poirtf =—1+k2" nON,1<k<2""" can be
expressed in the following form:

up(t) =

2—n(n+ 1)/2 [n/2] ’l ] N_ol

20 Zan (2(k=])+1)" " [ay (15)
=1 IS

where g are the coefficients in the role of sign according to Eq.(fz'), are binomial coefficients,

ay are even moments of thg(t) function while square brackets in expressiof?][ denote the

maximum integer of the fraction within the brackets.

In a characteristic poirt, = —1+2™" , Eq. (15) can be written as:
b1
2n(n—l)/2(n _ 1)!

Introducing Eg. (16) into a general expression of up@) function derivative (6), the following
value of functionup(t) derivative in a characteristic poitt=—-1+2" is obtained:

up(-1+2") =

, N=0,1, ... (16)

2—n(n—2l -1)/2
(n—1-1)!

2.4 Polynomial as a linear combination of displaced up(t) functions

up(-=1+2™") = Br_i1-1 (17)

The polynomial ofn-th degree can be expressed as a linear combination of displpted
functions, for example:
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Fig. 3 Distribution of basis functions for an exact description of 0,1 and 2 degree polynomials

N=0.1-= iup(t—k) : n=1_>t=2_2§kup(t—k/2)

k == Kk ==

6 o
n=2_= % Y (9K —16)up(t-k/4) (18)
k = =00

Fig. 3 shows the distribution of the basis functions obtained by displacement of furg(tjohy
k2™, kO Z. According to Eq. (18), polynomials af=0, 1 and 2 degrees can be expressed exactly
as a linear combination of those basis functions on the int&tyat 2™ . Coefficiegdisures the
displacement of the functiomp(t) with reference to the origin of a global coordinate system with a
step 2", which gives a basis function. Therefdkés a global index of the basis function.

2™1 pasis functions, which form the vector spai, are required for an exact description of the
monomialt" on the interval of length™ For an exact description of the mononti&l, 2™2 basis
functions, which form the vector spatk,.;, are required. As it can be observed in Fig. 3, linear
vector space of function8P,.; contains the spac&P,. Therefore, the space afp(t) basis
functions isuniversal, i.e., UP, 0 UP, O... OUP,OUP,,.,O...OUP, .

2.5 Function up(t) value in an arbitrary point
Based on the fact that the development ofufi{® function in a Taylor series, in characteristic points

ty, is a polynomial ofn-th degree, a special series for the calculation of funcipt) values in an
arbitrary pointt 1[0, 1] is proposed by Rvachev & Rvachev (1979), and Gotovac & &ozuli (1999):
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l+p,+...+

o k .
up(9) = 1- 5 (-1) "Dy Ci(t=0,ps-..py) (19)
K=1 i=o

where coefficientCy are rational numbers determined according to the following expression:

1 .
(:jk = j'i:?

G+1)/2

up(=1+2% N j=01 .., k; k=12 .., (20)

Expressiont(- 0, p; ... py) in Eqg. (19) is the difference between the real value of coordireatd
its binary form withk bits, wherep; ... p, are the digits 0 or 1 of the binary development of the
coordinatet value. Therefore, the accuracy of coordinat®mputation, and, thus, the accuracy of
the up(t) function in an arbitrary point, depend upon the accuracy of a computex. &orerror of the
calculated functiorup(t) value in an arbitrary poirtt i.e., the residue of a series given in Eq. (19)

FORTRAN Code for the function up(z) values:

L PPN
[of Functional subprogram for the calculation of function up(t) values in an arbitrary point t € ({-oo, o)
L
REAL*8 FUNCTION UPX(X)
IMPLICIT REAL*E (A-H, 0-Z)
DIMENSION UN(0:10),XK(10),FAK(0:10),DIV(0:10),UNN(0:10)
INTEGER*4 PK(10),SPK(10)
DVA(M) = 2.0D0**M
c
DATA DIV/ 1.0D0, 1.0D0, 5.0D0, 1.0D0, 143.0D0, 19.0D0, 1153.0D0, 583.0D0, 1616353.0D0, 132809.0D0, 134926369.0D0/
DATA UNN/ 1.0D0O, 2.0D0, 72.0D0, 288.0D0, 2073600.0D0, 33177600.0D0, 561842749440.0D0, 179789679820800.0D0,
& 704200217922109440000.0D0, 180275255788060016640000.0D0, 1246394851358539387238350848000.0D0/
DATA ZERO/0.0DO/, ONE/1.0D0/
DATA FAK/ 1.0D0, 1.0D0, 2.0D0, 6.0D0, 24.0D0, 120.0D0, 720.0D0, 5040.0D0, 40320.0D0, 362880.0D0, 3628800.0D0/
[of

XX = DABS(X)
IF{XX .GE. ONE ) THEN

UPX = ZERO
ELSE
DO K = 1,10
PK{K) = 0
SPK(K) = 0
XK(K) = ZERC
END DO

DO I = 0,10
UN(I) = DIV(I)/UNN(I}

END DO
XK(1) = XX
IF(XX .GE. 0.5D0) XK{1l) = XX-0.5DC
IF(XX .GE. 0.5D0) PK(1l) = 1

SPK(1) = 1+PK(1)
DO K = 2,10
DVAMK = ONE/DVA(K)
IF{XK(K-1) .GE. DVAMK) THEN
XK (R) = XK(K-1)-DVAMK
PK(K) =1
SPK(K)= 1+S5PK(K-1)

ELSE
XK(K) = XK(K-1)
SPK(K)= SPK(K-1)
END IF
END DO

SUMAK = ZERO
DO K = 1,10
PRED = (-ONE) **SPK(K}
SUMA = ZERQ
IF(PK(K) .EQ. 1) THEN
DO J = 0,K
PR = DVA(J*(J+1)/2) /FAK(J) *UN(K-J) * XK(K)**J
SUMA = SUMA + PR

END DO
ELSE
CYCLE
END IF
SUMAK = SUMAK + PRED * SUMA
END DO
UPX = ONE - SUMAK

END IF
END
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whenk =1, ... ,n, does not exceed the functiop(-1 + 2") value obtained from Eq. (16). Using the
given functional subprogram, the functiop(t) value fort O [0, 1] is calculated with an error
smaller than 13" using only ten terms in the series.

3. Basis functions  Fup,(t)

A family of Fup,(t) functions was developed according to tipé) function. Fup,(t) functions and
their derivations retain the properties ui(t) function, but they are more suitable for numerical
analyses. Indexr denotes the greatest degree of a polynomial which can be expressed accurately in
the form of a linear combination of basis functions obtained by the displacement of furugi¢in
by a characteristic interval2 Whenn = 0:

Fupo(t) = up(t) (21)

FunctionFup,(t) values are calculated using a linear combination of displagédfunctions:

Fupy(t) = kick(n)upgt— 1—2—kn ¥ ';%fg (22)
where coefficienCy(n) is:
Co(n) = 2Cﬁ+1 _ onin+1)/2 (23)
and other coefficients of the linear combination are determinégj @y = Cy(n) BC;(n) , Where a

recursive formula is used for the calculation of auxiliary coefficienitén)

Co(n) = 1, when k = 0; when k>0:

’ ok min{k;2" "' -1}
C(n = (1)Craa= Ce—j(n) DBy +1 (24)

=1

FunctionFup,(t) support is determined according to:
sup p Fup(t) = [-(n+2)2" %(n+2)2"7] (25)

Practically, it is enough to include onlg £ 2) functionsup(t) in the linear combination according
to Eqg. (22) to determine functidfup,(t) values in the points of support defined by Eq. (25).

Finite functionsFup,(t) are not analytical in any point of their support, similarly as upg)
function (see Fig. 2).

Derivatives of the functiorFup,(t) are also obtained by a linear combination of derivatives of
displacedup(t) functions according to Eq. (22).

Polynomial of themth degreet™is developed over the functiofp,(t) base in the following
form:
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m > { k*D
t = Dy (m, n)Fuan——— (26)
2.0 Lorar 20

whereAt is a characteristic interval which determines mutual displacement of basis functions (time
step);k is the counter of basis functiorks,= k for evenn, k = (2k + 1)/2 for oddn; D(m, n) are

the coefficients of a linear combination of basis functibag,(t) for an exact development of an
algebraic polynomial of then-th degree. When = 1, coefficientsDy(m, n) are:

D(0,1) = 27 A’ K’ = 1/2

D(1, 1) = 27 At ke = %tuzk; ! - Zk: Iat 27)

3.1 Function Fup;(t)

Basis functionFup,(t) has a support with the Iengﬁhgm, gAtJ . Calculations of funciam(t)

values and its derivatives are given by Gotovac (1986). Fig. 4 shows the fuRgpdt) and its
first two derivatives fodt = 1/2. Their values are given in Table 1.

3.2 Function Fupx(t)

According to Eq. (22), functiofrup,(t) can be written as linear combination of displacg(t)
functions:

Fup:(t)

~Y

~Y

Fig. 4 FunctionFupy(t) and its first two derivatives
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Table 1 FunctiorFupy(t,) values and its first two derivatives

3.k
te= g3 TPt Fupi(t) Fupl (t)
Fup,(t) 2At 2
k=01..,24 (241)
~.7500 .000000000 .000000000 .000000000
-.6875 000137924 013888889 1111111
~.6250 006944444 277777778 8.000000000
5625 .045000965 1013888889 14.888888889
~.5000 138888889 2.000000000 16.000000000
-.4375 295000965 2.9861111 14338888889
~.3750 506944444 3.722222222 8.000000000
-3125 750137924 3.9861111 1111111111
~.2500 1000000000 4.000000000 .000000000
-.1875 1.249724151 3.972222222  -2.222222222
1250 1.486111111 3.444444444  —16.000000000
-.0625 1.659998071 1972222222  -29.777777778
.0000 1.722222222 .000000000  —32.000000000
0625 1650998071  -1.972222222  —-29.777777778
1250 1.486111111 ~3.444444444  —-16.000000000
1875 1249724151  -3.972222222 —2.222222222
2500 1.000000000  -4.000000000 .000000000
3125 750137924  -3.98611111 1111111111
3750 506944444 —3.722222222 8.000000000
4375 295000965  -2.98611111 14888888889
5000 138888889 —2.000000000 16.000000000
5625 045000965  —1.013888889 14.888888889
6250 006944444 — 277777778 8.000000000
6875 000137924 ~.013888889 1.1Mm111111
7500 .000000000 .000000000 .000000000
_ - k., 10
Fupy(t) = kZOCk up% 1 2750 (28)

where coefficientC, are given by Eqgs. (23) and (24). The function suppoft-&t, 2At] . By a
linear combination of basis functions obtained by mutual displacement of onfups(® function,

a polynomial of the ? degree can be expressed exactly on a characteristic interval with theNiength

Fig. 5 shows the functioRup,(t) and its first two derivatives with the normed characteristic interval
At =1/4. The values of the basis function and its derivatives are given in Table 2.

4. Basis functions Y, n(t)

For approximate solutions belonging to a class of trigonometric functions or containing
trigonometric functions, finite basis functiong, ,(t) are developed. They are determined as a
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Fupa(t)

3

Fig. 5 FunctionFup,(t) and its first two derivatives

Table 2 Functiofrup,(t,) values and its first two derivatives what= 1/4

1 kK
WEETIE R Lo Fupy(t,) Fups (6
k=01..,16 aat (40)°
—-.5000 .00000000 .00000000 .00000000
—-.4375 .00055169 .05555555 4.44444444
-.3750 02777777 1.111111 32.0000000
-.3125 .18000385 4.05555555 59.55555555
—-.2500 .55555555 8.00000000 64.00000000
-.1875 1.17890046 11.83333333 50.66666666
-.1250 1.97222222 12.66666666 —32.00000000
-.0625 2.64054398 7.83333333 -114.66666666
.0000 2.88888888 .00000000 —-128.00000000
.0625 2.64054398 —7.83333333 —-114.66666666
.1250 1.97222222 -12.66666666 —32.00000000
.1875 1.17890046 -11.83333333 50.66666666
.2500 .55555555 —8.00000000 64.00000000
3125 .18000385 —4.05555555 59.55555555
.3750 02777777 -1.11111111 32.00000000
4375 .00055169 —.05555556 4.44444444
.5000 .00000000 .00000000 .00000000

solution of differential-functional Eq. (1) written in the following form:
Yorn(t) + @Yiun(t) = @ Yiun(3t+2h) —b ¥, 4(3t) + 2y, n(3t—2h)

273

(29)
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where w is the circular frequencyh is the length of the half of function, n(t) support, while
coefficientsa andb are:

3 W’

= 2 T cos2ah/3)”

Functiony,, 1(t) support is selected in dependence of the value of circular frequency

a b = 2acos(2wh/ 3) (29a)

SUPPYe,n(t) = [-h, h] (30)

Finite solution of Eq. (29) must satisfy the normed condition:

o0 h
J’yaJ,h(t)dt = Iymh(t)dt =1 (31)
—0 —h

and in that case has the following form:

Yarl®) = 5= [ €“Fan(E)dE (32)

Table 3 Functiory, 4(t) values and its first two derivatives

= —1+k9 Vra(t) yia(t) Yt
k=01..2[10
-1.0000000 .000000000 .000000000 .000000000
-.8888889 .000529392 .030931029 1.419777536
=7777778 .026498778 569906388 8.183069521
—.6666667 .144382932 1.551917694 8.444601979
—.5555556 .364408349 2.346744822 4.848035737
—4444444 .635591651 2.346744822 —-4.848035737
-.3333333 .855617068 1.551917694 -8.444601979
—.2222222 973501222 569906388 —8.183069521
-1111111 999470608 .030931029 -1.419777536
.0000000 1.000000000 .000000000 .000000000
1111111 999470608 —-.030931029 -1.419777536
2222222 973501222 -.569906388 -8.183069521
.3333333 .855617068 -1.551917694 -8.444601979
4444444 .635591651 —-2.346744822 -4.848035737
5555556 .364408349 —-2.346744822 4.848035737
.6666667 .144382932 -1.551917694 8.444601979
T777778 .026498778 -.569906388 8.183069521
.8888889 .000529392 —-.030931029 1.419777536
1.0000000 .000000000 .000000000 .000000000
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Ay (1)
- _\1\\
o - ¥1 -
| T T bl
-1.0 -2/3 -1/3 0.0 T
Y'z,1(T)
12
r T 2
-1.0 -2/3 1/3 T
Yo 1.0
=0.85561706794833

y| 1.55191769387262
¥y = 8.44460197946999" ¥'m.1(7)
Vi
-1/3
r t t

Fig. 6 Functiony, ,(7) and its first two derivatives

N

wherey,, (&) is the Fourier transform of functigg n(t):

9(‘; h(f) =

o j
A 2, cos(2én/3) - cos 2wn/3) [ (33)

P=h o —E/9 7 0

Depending on the support lengti,Zrequencyw and the required accuracy (SP or DP), between 10
and 20 first factors are used in the product (33) since the remaining ones are practically equal to 1.

Similar to Eq. (15) for the computation of the(t) function values in characteristic points
ty= -1 + k2™, numerically more adequate expressions (Gotovac and &ozuli 1999) for the calculation
of functiony, n(t) values and its derivatives in characteristic pdipts(-1 +k3™) -h, n=1, 2, 3, ...;
1<k< 2@, are developed. For conciseness, those expressions are not given here; although, using
a computer they are helpful for an easy calculation of the values for any density of characteristic
points.

For example, values of the functigp (t) and its derivatives for the frequenay= 7 h=1 and
n=2 are given in Table 3. Basis functigp,(7) and its first two derivatives are shown in Fig. 6.

The distance between characteristic points of the funggjg(t) support is:

At,=hB"'n=1,23.. (34)
The distance between characteristic points determines a displacement of a basis function in order

to obtain a suitable base. In such a base, an arbitrary fugdtipnan be developed as:

() = 3 C¥und-250 (35)

Kk = =00

Trigonometric functions of the given frequenmy can be described exactly in a base of displaced
Yo, n(t) functions according to Eq. (35):
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2h
sin(wt) = CDZ smELkEEywh —gkg
cos(at) = CDZ co ELthEywh -g (36)
3
where:
C = Yun(h/3) =2y, n(2h/ 3) Ccos(wh/ 2) (362)
Yw, h(h/3)(yw, h(o)_zyw, h(2h/3))
5. Application

5.1 Forced vibrations of a particle

Forced vibrations of a particle of unit mass without damping are described by the following
differential equation:

X(t) + wW’x(1) = f(t) (37)

and initial conditions:
X(t) = X(0) = Xo ; X(to) =X(0) =X%o (38)

As an example, observed are the oscillations of a material point with the circular frequency of
vibration w= 11, homogeneous initial conditiong = X, = 0 , and time function of a disturbing
force f(t) given in Fig. 7.

Numerical solution of the given problem will be determined by the collocation method with finite
basis functions, described in Sections 4 and 3.1., in the following form:

2k t 21+1
X(1) = %05 = 3 Cil¥mad -0 zD Fupy e~ =51

Wy oAt~ 4 O (39)

Selected time step &t =2/3. An approximate solution base is formed by a mutual displacement of
functionsy;; 4(t) andFup(t) by the value which corresponds to the time Atejas shown in Fig. 8.

2
rm:“‘Tt c0<t<4

fit)=0; 4=t

A

I
T T

2 4 8 B-
Fig. 7 Disturbing forcé (t)
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At
‘—
k=2 k=3 k=m k=m+1
C [ Con
K=m-1 ]\ /k=m+2
15 »
* ’ »
2 At 3 At k At (k+1) At t

Fig. 8 Distribution of basis functions

The particular pari,(t) of the solution is determined from the condition that the second sum
from Eq. (39) satisfies the equation of the problem (37) from the morwamiAt to the moment
t=(m+ 1)At. Using the collocation method, fap,=mAt, tn,= M+ L/2At tw=(m+ DAL,
appurtenant coefficien®, | =m-1, m, m+ 1, can be calculated:

1
D1 = R[3f(mAt)—f((m+ 1)At)]
1
D, = —[f(mAt) + f((m+ 1)At
m= g nz[ (mAt) +f(( )At)]
Doz = —S5[-H(mAD + 3f(m+ 1)A1)] (40)
47
It is obvious that at any timg only three terms of the sum participate in the second sum of
Eqg. (39).
The homogeneous part of an approximate solugig) must satisfy the homogeneous form of
the Eq. (37):

%n(t) + 1Px,(t) = 0 (41)

According to Eqg. (36), there are coefficier@ in the first sum of Eq. (39) that satisfy the
equation of free oscillations in an accurate manner. In the time infgnvahly four coefficientsCy
are not equal to zero. They are determined from the condition that a homogenous Eq. (41) is
satisfied at timemAt and (m+1)At and that conditions at the beginning of the intervat are
satisfied i.e., positiow;,, and velocityX,, .

Using the values ofy,; (1) basis function and its derivatives given in Fig. 6, the previously
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calculated coefficient®, and conditions at the beginning of each inteAtalyields:

Cros = 2y11zy'1 = Xn¥1~ ¥nYs— Dpr_s ({3y1 =¥1) + Dy [(3y; + Y1)
Cn = 3 (DXp=Diy- =Dy
Cones = 2y11cy-1 (=X Y2+ XYz + D_s [(3Ys + Y1) ~ D ((3y; —¥1)]
Coni = ﬁ XY+ %Y1 * Dy [(3y2 Y1) — D [{3y; +Y1)] (42)

For an initial time intervain=0 ; 0 <t < At , coefficientd, have the following values:

D, = -1/24, D,=1/24, D,=3/24
C., = 1/(8y)) = 0.080545508626864,
C,=0, C,=-1/(8y1) =-C_;, C,=-1/(8y,) =—C_, (43)

The position and velocity of a particle at the titmeAt = 2/3 according to Eq. (39), are:

X,(2/3) = Cy(1-y,) +Cy+Cy(1-Y,) +Dy +D;
X1(2/3) = —=Cyy1+ C,¥1—3D, + 3D, (44)

Substituting the coefficients given in (43) into expressions (44), the values are obtained:

X; = 0.097750554738942 x1 = 0.37500000000000
(a) dxo (b) X

-a.0

_,5J 40

Exact solution
e o 0o 0 0 o Numerical solution in collocation points

Fig. 9 Forced vibrations of the one degree of freedom system: a) Displacements, b) Velocities
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that coincide with the values of the known exact solution:

x(t) = i— S'Z :t %, = 0.097750554738942

X(t) = %1 1 - cos(mt)] — % = 0.37500000000000

Introducing the coefficients from Eqgs. (40) and (42) into general numerical solution, Eg. (39), an
approximate solution is obtained, which corresponds to an exact solution in every moment. Fig. 9
shows the response of a system.

Efficiency of the proposed procedure consists in the following:

- The procedure is adaptive, which means Mtatan change from step by step;

- Given load is approximated with the chosen accuracy (basis functions and length of the time step

are selected);

- For the system with frequenay, basis functiony,, (1) are calculated and used for obtaining an

exact dynamic response for accurately approximated load;

- Accuracy of the procedure does not depend on the time incré&mgnily an approximation of

the given load can depend Ap);
- The homogeneous part of the solution for system frequerisyobtained in an accurate manner

because sinft) and cosqt) can be accurately developed usipg (1) finite functions. Functions
Y n(7) are the only ones to have that property.

- The number of calculations of the proposed procedure is significantly lower than in e.g., Runge-
Kutta method for a continuous approximation of high accuracy.

5.2 Free vibrations of a particle
Free vibrations of a particle are described by the following differential equation:
X(t) + w’x(t) = 0 (45)
and initial conditions:
X(0) = Xo ; X(0) =Xo (46)
From the given initial conditions (46) and Eq. (45), an initial acceleration can be calculated as:
Xo = —0'Xo (47)
An approximate solution base is formed by a mutual displacement of fuRctpft) by the value

which corresponds to the time incremAntDistribution of basis functions is shown in Fig. 10.

Applying the collocation method in a point, numerical solution of the problem (45)-(46) at time
t = kAt is sought in the form of a linear combination:

k+1
x(t) = z C; [F(t) (48)

j=Kk-1
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j=k-1 Lick+2

1=0.0 t=At t=2At  t=3At t=kAt  t=(k+1)At ¢
Fig. 10 Distribution of basis functions

whereF(t) is the basis functioffup,(t) with the vertex in collocation point of indgx Satisfying
the initial conditions (46) and differential equation of a problem at tim@ according to Eq. (47),
the following system of collocation equations is obtained:
(5C_1 +26C,+5C;)/9 = X
2(_ C—l + Cl)/At = )‘(O
4(C_;—2Cy+ C))/ At = % (49)

Solving a system of Eq. (49), unknown coefficients of linear combinafipn=-1,0,1 are
obtained expressed by known values in an initial mornrex

_ 36— 130'AC At

Ca 144 07 2%
_ 36+ 50AL
Co="14g o
36— 13°A° At
C, = TXO + ZXO (50)

From a collocation equation which satisfies the differential equation of a problem (45) at time
t = At, a coefficient of the basis function for 2 is obtained:

36— 13t o’
C, = -Cp+t2——— 51
? ° 736+ st G
The response of the one degree of freedom systetiF¢0, At] is defined by the coefficients in

Egs. (50) and (51). By analogy, the values of coefficients of any two arbitrary moments, which are
mutually displaced byt on a time axis, can be written as:

Ce1 = X/ 4— At/ 4— 130 At°x,/ 144

Cy. = X/ 4+ 50 MK/ 144 = X, 1/ 4= MR, 1/ 4 — 130" DX, , 1/ 144
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Cir1 = X/ 4+ AR/ 4 — 130 DX,/ 144 = Xy, 1/ 4+ 56 M X, 1/ 144
Ciso = Xes1/ 4+ My, 1/4—130°AX, , /144 (52)

From the second and third equations in expressions (52), the displacement and velocity in the
momentt = (k+1)At are expressed by the displacement and velocity in the mamédt in the

following form:
{xm} _ 1 36— 13t°w’ 36At X (53)
X1 36+ 8AtW’|—4(9- AW Ate? 36— 1AW X

The eigenvalues of the matrix in Eq. (53) are:

_ (36— 13 A)+12wAt i /9 — A
Ayg = (54)
b 36+ 50AL

In case wherw’At><9  a spectral radius has the following value:

_ /36" + 10 B’ A + 250'At* _
36+ 5w°At°

0 1.0 (55)

Therefore, the time increment must &  <3T/2m , whérds the period of observed
oscillations of a one degree of freedom system or a period of the mode with the highest frequency
of a multiple degree of freedom system. Thus, in the proposed numerical procedure, the length of
the time increment is 50% greater than in the central difference method (Bathe 1982) when
At,, = T/ m. In Eg. (55) it can be observed that the accuracy of the procedure is very good when
At < At,, because when a spectral radus 1 there is no numerical damping in an analysis of
dynamic system behavior.

The proposed numerical procedure with basis functiaups(t) is conditionally stable. Its different
variants are possible either with regard to an increase in accuracy or providing an unconditional
stability.

5.3 Dynamic system with multiple degrees of freedom

The linear dynamic response of a multiple degree of freedom system is described by the
governing equation:

MX + Cx+ Kx = F(t) (56)

and initial conditions:

Xi=o0 = Xg 5 Xt=0= Xp (57)

whereM, C, andK are the mass, damping, and stiffness matriees the external load vector;
X, X andx are the displacement, velocity, and acceleration vectors.
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Table 4 The time integration scheme using continuous approximation in time with basis flrgitins

A. INITIAL CALCULATIONS

1. Form stiffness matriK, mass matriM, and damping matri
2. Initialize x, x andx
3. Select time stefit and calculate coefficients:

1. At, 1348

= Sx, — =X, +
Ca = X0 7%+ T %o

1 5At%

Co= ZXO - mxo

1 At 13At
C; = ZXgt = Xo+ =
L7470 470 144
4. Calculate effective stiffness matrik
LN s
K= gK+ M+ 5C
5. TriangularizeK:K = LDL'

B. FOR EACH TIME STEP

2
Xo

1. Calculate effective loads at tinte= kAt, k O N
~ 4 5 2
Far = FkAt—'A—tzM HCy_1—2Cy) - §K(Ck—1 +5.2C,) + -A—tc C_1
2. Calculate coefficients of the solution:
k |IC:k+1 = 'EkAt
3. Evaluate displacements, velocities and accelerations at timkAt

5
Xyat = §(Ck—l+5-20k+ck+1)
_ 2
Xkat = Kt(—ck—l"'cku)

4
Xt = —(C_1—2C, +C,.
kAt Atz(kl K k+1)

Applying the procedure of a continuous approximation in time with basis fundtiopgt), a
numerical solution of the problem (56)-(57) is sought in the following form:

K1) = S ot _ko
x(t) k=Z_1Ck EFUpZD.mt 20 (58)
Fig. 10 shows the arrangement of basis functions for a single component of a sq)tidn
algorithm for time integration, formed according to the procedure described in Section 5.2, is given
in Table 4.
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Table 5 Comparison of the solution obtained byRhp,(t) basis functions with the exact solution
t At 2At 3At 4Nt S5At 6At TAt 8At 9At 10At 11At  12At
Numerical () 0.004 0.042 0.180 0.485 0.984 1.631 2.302 2.828 3.037 2.824 2.185 1.239
solution () 0.376 1.391 2.748 4.061 4.982 5.308 5.036 4.344 3517 2.831 2.462 2.426
Exact Xi(t) 0.003 0.038 0.176 0.486 0.996 1.657 2.338 2.861 3.052 2.806 2.131 1.157
solution y,t) 0.382 1.412 2.781 4.094 4.996 5.291 4.986 4.277 3.457 2.806 2.484 2.489

Example
The two degree of freedom system without damping for which the governing equations of motion
are:
20 10 |6 =2 10 000
{ }EB(,D{ }EgD:DD (59)
01 OO [2 4] D0 OO0
is considered. Homogeneous initial conditiogs= 0, Xo = 0 are selected, thus the vector of initial

acceleration can be calculated from Eq. (59):

T
Mmono

Using the numerical procedure described in Table 4, the response of a dynamic system is obtained
for 12 time stepait = 0.28(s). Results of analyses are given in Table 5 complete with the exact
solution.

Fig. 11 shows the response of a system obtained by basis furetipiis, and responses of the
system obtained analytically and by the most commonly used numerical procedures of time
integration (Bathe 1982).

Xo (60)

6. Conclusions

The procedure in which a continuous approximation in time is performed by the collocation
method with Rvachev’s basis functioRg is presented in this paper. From the clas®Rkgffinite
functions y,, n(t) and Fup,(t) are implemented. Based on the presented numerical studies, the
following concluding remarks can be made.

First, an approximate solution of free undamped vibrations of a particle obtained fy e
functions corresponds to an exact solution. Such a result is a consequence of the facyhé) the
functions belong to a vector space which contains trigonometric functions of the given freguency
Simultaneously, an approximate solution base is formed by a mutual displacement of functions
Yo h(t) by the valueht (characteristic interval).

Second, an exact dynamic response can be obtained by the proposed numerical procedure for the
case of forced vibrations. For the base of a particular part of the solution, the functiynslads
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— — — — Central difference method

,,,,,,,, Houbolt methed

iiiii Wilson 8 method

_— e — - Newmark method
Fup, {t) basis functions

Exact

a)

T
5At

//,

SN

4

b)

Centrai difference methed
Houbolt method

Wilson B method
Newmark method

Fup,f{t) basis functions

Exact

0
0

T
5At

T T
10At t

Fig. 11 a) The first component of the response of a two degree of freedom system, b) The secondtcomponen

of the response of a two degree of freedom system

are selected by which a disturbing force can be described exactly. Basis fuRctm(ty are
applied, the linear combination of which can be used for the exact description of algebraic
polynomials. Therefore, when a disturbing force function is an algebraic polynomial, the load
function is described exactly by basis functi@ig,(t).
Third, it is shown that a high quality response of a dynamic system can be attained when only
basis functiondup,(t) are applied. The numerical stability and accuracy of a proposed procedure
are tested on an example of a one degree of freedom model of free vibrations of a material point by
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Fup,(t) basis functions. It is shown that it is possible to use 50% longer time step than the central
difference method. This knowledge can also be applied to multiple degree of freedom dynamic
systems. For an illustration of the numerical procedure, a two degree of freedom dynamic system
has been analyzed. Based on a comparison with the results obtained by other the most commonly
used numerical methods (Fig. 11), it can be concluded that the proposed procedure gives excellent
dynamic response.
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