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Numerical solving of initial-value problems by 
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Abstract. This paper presents a numerical procedure for solving initial-value problems using the special
functions which belong to a class of Rvachev’s basis functions Rbf based on algebraic and trigonometric
polynomials. Because of infinite derivability of these functions, derivatives of all orders, required by
differential equation of the problem and initial conditions, are used directly in the numerical procedure.
The accuracy and stability of the proposed numerical procedure are proved on an example of a single
degree of freedom system. Critical time step was also determined. An algorithm for solving multiple
degree of freedom systems by the collocation method was developed. Numerical results obtained by Rbf

functions are compared with exact solutions and results obtained by the most commonly used numerical
procedures for solving initial-value problems.

Key words: vibrations; numerical solution; Rvachev’s basis functions; collocation method.

1. Introduction

The selection of the basis functions is of special importance for the numerical procedure and
quality of the approximate solution. Spline functions have an important place in the development of
structural numerical analyses (Prenter 1989). Although splines are a fine approximating tool, it is
clear that they are not universal basis functions for all problems of numerical approximations. In
this paper, a numerical procedure will be presented in which new basis functions, not well known to
engineers, are implemented.

The numerical solving of an initial-value problem is here performed by the procedure of a
continuous approximation in time with smooth finite functions named after the authors Rvachev’s
basis functions or, in short, Rbf (Rvachev and Rvachev 1971), (Gotovac 1986). Rbf functions are
classified between classic polynomials and spline functions. However, in practice, their application
as basis functions is still closer to splines. Therefore, the class of Rbf functions can be regarded as
splines of an infinitely high degree. In the study by Gotovac (1986), the existing knowledge on
functions of Rbf class is systematized and basis functions are transformed into a numerically
applicable form. Procedures for calculation of Rbf functions are given by Gotovac and Kozuli
(1999) together with their distribution for forming numerical solutions and an illustration of basic
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possibilities for their application in practice.
For general solutions of initial-value problems belonging to a class of trigonometric functions, it is

appropriate to select the functions yω, h(t) as basis functions of an approximate solution. Functions
yω, h(t) are infinitely derivable functions, the linear combination of which can be used for an exact
description of trigonometric functions (Gotovac and Kozuli 1999). Using the basis functions
yω, h(t), exact solutions of free undamped vibrations are obtained (Gotovac 1986). In case of forced
vibrations, besides functions yω, h(t), other functions of Rbf class can be selected as an approximate
solution base depending on the character of a disturbing force. Basis functions Fupn(t) are applied
here, the linear combination of which can be used for an exact description of algebraic polynomials
(Rvachev and Rvachev 1979), (Gotovac 1986), (Kozuli 1999). When a disturbing force function is
an algebraic polynomial, time function of load can be described exactly by basis functions Fupn(t).

A concise description of functions yω, h(t), which belong to a class of trigonometric polynomials,
and functions Fup1(t) and Fup2(t), which belong to a space containing algebraic polynomials, is
given in the following Sections. The up(t) function, which is essential in the definition of Fupn(t)
functions, is specially described. It is the simplest function and is studied in the most detail among
Rvachev’s basis functions. The basic properties of up(t) function refer to all other functions of Rbf

class. The procedure of solving of initial-value problem by these basis functions is illustrated in
Section 5 on numerical examples.

2. Function up (t )

Rvachev’s basis functions Rbf are defined as finite solutions of differential-functional equations of
the following type:

(1)

where L is a common linear differential operator with constant coefficients, λ is a scalar different
from zero, Ck are solution coefficients, a > 1 is a parameter of the length of finite function support,
bk are coefficients which determine displacements of finite basis functions.

The type of finite function of Rbf class is determined by the selection of operator L in Eq. (1). The
up(t) function is a solution of differential-functional equation in which the differential operator of
the first order, according to Eq. (1), has the following form:

(2)

Support of the up(t) function is the interval [−1, 1].
Parameter of “compression” i.e., “extension” of the support of function up(t) is a = 2, the

characteristic displacements of the function on the abscissa are b1 = −1 and b2 = 1, and value λ = −2
and coefficients C1 = −1, C2 = 1. Therefore, the basic equation for the function up(t), according to
Eq. (2), is:

(3)

If the length of the up(t) function support is described as an union of lengths 2−k, k = 0, 1, ..., , the
Fourier transform of the up(t) function, using the procedure given in Fig. 1, is obtained as a product of
the Fourier transforms of zero degree splines condensed to a support length 2−k with the ordinates 2k:

éc

éc
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(4)

The finite solution of Eq. (3), with the fulfillment of condition , has
the following form:

(5)

Based on Eq. (5), i.e., the fact that the function up(t) is expressed by its Fourier transform (4),
function up(t) can be generated using the convolution theorem.

upˆ ξ( ) sin ξ2 j–( )
ξ2 j–

---------------------
j 1=

∞

∏=

up t( )dt up t( )dt 1=
1–

1

∫=
∞–

∞

∫

up t( ) 1
2π
------ ei ξt

∞–

∞

∫ upˆ ξ( )dξ=

Fig. 1 Generating of function up(t) Fig. 2 Function up(t), its first four and the seventh
derivative
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2.1 Derivatives of the up(t) function

As it can be observed in Eq. (3), the first derivative can be expressed as a linear combination of
the displaced and compressed up(t) function. By differentiating the basic Eq. (3) and by replacing
the first derivative of up(t) function with the right side of the initial Eq. (3), the second derivative
can also be expressed as a linear combination of the compressed and displaced function up(t).

If the procedure of differentiating and replacement of the first derivative from the basic Eq. (3)
continues, a general expression for the derivative of the m-th degree is obtained:

(6)

where  are the binomial coefficients and δk are the coefficients of value ±1
which determine the sign of each term. They change according to the following recursive formulas:

(7)

Fig. 2 shows the up(t) function and its derivatives. It can be observed that the derivatives consist
of the function up(t) “compressed” to the interval of length 2−m+1and with ordinates “extended” with
the factor . A high degree derivative of the up(t) function when  becomes a series in
which every single member corresponds to Dirac’s function.

2.2 Moments of function up(t)

Expression (5) is numerically inadequate for the calculation of the up(t) function values.
Reference Gotovac (1986) shows that the up(t) function values can be calculated using the function
up(t) moments.

Function up(t) moments with an even index (odd ones are equal to zero because up(t) is an even
function):

(8)

can be calculated according to formula:

(9)

The scalar product of a polynomial and function up(t) on an even half of the support is:

(10)

Since the up(t) function is even, the comparison of expressions (8) and (10) gives:

(11)

According to Eq. (10) and using Eq. (9), the following is obtained for odd indices:

up m( ) t( ) 2
Cm 1+

2

δk
k 1=

2m

∑ up 2mt 2m 1 2k–+ +( ) m N∈,=

Cm 1+
2 m m 1+( ) 2⁄=

δ2k 1– δk, δ2k δk, k N, δ1∈– 1= = =

2Cm 1+
2

m ∞→

a2k t
2kup t( )dt

1–

1

∫=

a2k
2k( )!

22k 1–
---------------- a2k 2l–

2k 2l–( )! 2l 1+( )!
----------------------------------------------

l 1=

k

∑ , k N∈ ; a0 1==

bn tnup t( )dt, n 1– 0 1 …, , ,=
0

1

∫=

b2k
1
2
---a2k= k 0= 1 …, ,,
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(by definition) (12)

Scalar products of the up(t) function and algebraic polynomials can be easily calculated using
Eqs. (11) and (12).

2.3 Function up(t) value in a characteristic point

Characteristic points  are the points in which the function up(t) values and values of the first n
derivatives are calculated exactly in the form of a rational number. In the other points of the support,
the values are calculated with a computer precision i.e., the accuracy depends on the possibility of
describing a selected point coordinate in the base used by the computer.

A set of characteristic points of the given density on the up(t) function support can be described in
a simpler manner as:

(13)

where n determines the distance between the characteristic points on the up(t) function support:

(14)

The function up(t) value in a characteristic point  can be
expressed in the following form:

(15)

where δj are the coefficients in the role of sign according to Eq. (7),  are binomial coefficients,
a2l are even moments of the up(t) function while square brackets in expression [n/2] denote the
maximum integer of the fraction within the brackets.

In a characteristic point , Eq. (15) can be written as:

(16)

Introducing Eq. (16) into a general expression of the up(t) function derivative (6), the following
value of function up(t) derivative in a characteristic point  is obtained:

(17)

2.4 Polynomial as a linear combination of displaced up(t) functions

The polynomial of n-th degree can be expressed as a linear combination of displaced up(t)
functions, for example:

b2k 1+
1

k 1+( )22k 3+
------------------------------ a2l

l 0=

k 1+

∑ C2 k 1+( )
2l ; k 0 1 2 3 …, , , ,==

b 1– 1=
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n( )

tk 1– k2 n–+= n N∈ 1 k 2n 1+≤ ≤, ,

tn∆ 2 n–=

tk 1– k2 n–+= n N∈ 1 k 2n 1+≤ ≤, ,

up tk( ) 2 n n 1+( ) 2⁄–

n!
---------------------- δ j Cn

2l

l 0=

n 2⁄[ ]
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j 1=
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∑=
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t1 1– 2 n–+=

up 1– 2 n–+( )
bn 1–

2n n 1–( ) 2⁄ n 1–( )!
----------------------------------------, n 0 1 …, ,==

t1 1–= 2 n–+
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-----------------------------bn l– 1–=
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(18)

Fig. 3 shows the distribution of the basis functions obtained by displacement of function up(t) by
. According to Eq. (18), polynomials of n = 0, 1 and 2 degrees can be expressed exactly

as a linear combination of those basis functions on the interval . Coefficient k measures the
displacement of the function up(t) with reference to the origin of a global coordinate system with a
step 2−n, which gives a basis function. Therefore, k is a global index of the basis function.

2n+1 basis functions, which form the vector space UPn, are required for an exact description of the
monomial tn on the interval of length 2−n. For an exact description of the monomial tn+1, 2n+2 basis
functions, which form the vector space UPn+1, are required. As it can be observed in Fig. 3, linear
vector space of functions UPn+1 contains the space UPn. Therefore, the space of up(t) basis
functions is universal, i.e., .

2.5 Function up(t) value in an arbitrary point

Based on the fact that the development of the up(t) function in a Taylor series, in characteristic points
tk, is a polynomial of n-th degree, a special series for the calculation of function up(t) values in an
arbitrary point  is proposed by Rvachev & Rvachev (1979), and Gotovac & Kozuli  (1999):

n 0 1→ up t k–( ) ; n 1 t→ 2 2– k up t k 2⁄–( )
k ∞–=

∞

∑= =
k ∞–=

∞

∑= =

n 2 t2→ 2 6–

9
------- 9k2 16–( )up t k 4⁄–( )

k ∞–=

∞

∑= =

k 2 n– k Z∈,⋅
tn∆ 2 n–=

UP0 UP1 … UPn UPn 1+ … UP∞⊂ ⊂ ⊂ ⊂ ⊂ ⊂

t 0 1,[ ]∈ éc

Fig. 3 Distribution of basis functions for an exact description of 0,1 and 2 degree polynomials
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(19)

where coefficients Cjk are rational numbers determined according to the following expression:

(20)

Expression (t − 0, p1 ... pk) in Eq. (19) is the difference between the real value of coordinate t and
its binary form with k bits, where p1 ... pk are the digits 0 or 1 of the binary development of the
coordinate t value. Therefore, the accuracy of coordinate t computation, and, thus, the accuracy of
the up(t) function in an arbitrary point, depend upon the accuracy of a computer. For n, an error of the
calculated function up(t) value in an arbitrary point t, i.e., the residue of a series given in Eq. (19)

up t( ) 1 1–( )
1 p1 … pk+ + +

pk Cjk t 0 p1…pk,–( )j

j 0=

k

∑
k 1=

∞

∑–=

Cjk
1
j !
----2j j 1+( ) 2⁄ up 1– 2 k j–( )–+( ) ; j 0 1 … k, , ,= ; k 1 2 … ∞, , ,==
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when k = 1, ... ,n, does not exceed the function up(−1 + 2−n) value obtained from Eq. (16). Using the
given functional subprogram, the function up(t) value for  is calculated with an error
smaller than 10−21 using only ten terms in the series.

3. Basis functions Fupn(t )

A family of Fupn(t) functions was developed according to the up(t) function. Fupn(t) functions and
their derivations retain the properties of up(t) function, but they are more suitable for numerical
analyses. Index n denotes the greatest degree of a polynomial which can be expressed accurately in
the form of a linear combination of basis functions obtained by the displacement of function Fupn(t)
by a characteristic interval 2−n. When n = 0:

(21)

Function Fupn(t) values are calculated using a linear combination of displaced up(t) functions:

(22)

where coefficient C0(n) is:

(23)

and other coefficients of the linear combination are determined as , where a
recursive formula is used for the calculation of auxiliary coefficients :

(24)

Function Fupn(t) support is determined according to:

(25)

Practically, it is enough to include only (n + 2) functions up(t) in the linear combination according
to Eq. (22) to determine function Fupn(t) values in the points of support defined by Eq. (25).

Finite functions Fupn(t) are not analytical in any point of their support, similarly as the up(t)
function (see Fig. 2).

Derivatives of the function Fupn(t) are also obtained by a linear combination of derivatives of
displaced up(t) functions according to Eq. (22).

Polynomial of the m-th degree tm is developed over the functions Fupn(t) base in the following
form:

t 0 1,[ ]∈

Fup0 t( ) up t( )=

Fupn t( ) Ck n( )up t 1–
k

2n
-----–

n 2+

2n 1+
------------+ 

 
k 0=

∞

∑=

C0 n( ) 2
Cn 1+

2

2n n 1+( ) 2⁄= =

Ck n( ) C0 n( ) Ck′ n( )⋅=
Ck′ n( )

C0′ n( ) 1 when k 0= when k 0:>;,=

Ck′ n( ) 1–( )kCn 1+
k C′k j– n( ) δj 1+⋅

j 1=

min k;2n 1+ 1–{ }

∑–=

sup p Fupn t( ) n 2+( )2 n 1–– ; n 2+( )2 n 1–––[ ]=
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(26)

where ∆t is a characteristic interval which determines mutual displacement of basis functions (time
step); k is the counter of basis functions, k* = k for even n, k* = (2k + 1)/2 for odd n; Dk(m, n) are
the coefficients of a linear combination of basis functions Fupn(t) for an exact development of an
algebraic polynomial of the m-th degree. When n = 1, coefficients Dk(m, n) are:

(27)

3.1 Function Fup1(t)

Basis function Fup1(t) has a support with the length . Calculations of function Fup1(t)

values and its derivatives are given by Gotovac (1986). Fig. 4 shows the function Fup1(t) and its
first two derivatives for ∆t = 1/2. Their values are given in Table 1.

3.2 Function Fup2(t)

According to Eq. (22), function Fup2(t) can be written as linear combination of displaced up(t)
functions:

tm Dk m n,( )Fupn
t

2n t∆
----------

k*

2n
-----– 

 
k ∞–=

∞

∑=

Dk 0 1,( ) 2 1– t0∆ k*
0⋅ ⋅ 1 2⁄= =

Dk 1 1,( ) 2 1– t1∆ k*⋅ ⋅ t∆
2
----- 2k 1+

2
---------------⋅ 2k 1+

4
--------------- t∆= = =

3
2
---– t∆ 3

2
--- t∆,

Fig. 4 Function Fup1(t) and its first two derivatives
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(28)

where coefficients Ck are given by Eqs. (23) and (24). The function support is . By a
linear combination of basis functions obtained by mutual displacement of only one Fup2(t) function,
a polynomial of the 2nd degree can be expressed exactly on a characteristic interval with the length ∆t.
Fig. 5 shows the function Fup2(t) and its first two derivatives with the normed characteristic interval
∆t = 1/4. The values of the basis function and its derivatives are given in Table 2.

4. Basis functions  yω , h (t )

For approximate solutions belonging to a class of trigonometric functions or containing
trigonometric functions, finite basis functions yω, h(t) are developed. They are determined as a

Fup2 t( ) Ck up t 1–
k
4
---–

1
2
---+ 

 
k 0=

∞

∑=

2 t∆– 2 t∆,[ ]

Table 1 Function Fup1(tk) values and its first two derivatives

−.7500 .000000000 .000000000   .000000000
−.6875 .000137924 .013888889 1.111111111
−.6250 .006944444 .277777778 8.000000000
−.5625 .045000965 1.013888889 14.888888889
−.5000 .138888889 2.000000000 16.000000000
−.4375 .295000965 2.986111111 14.888888889
−.3750 .506944444 3.722222222 8.000000000
−.3125 .750137924 3.986111111 1.111111111
−.2500 1.000000000 4.000000000 .000000000
−.1875 1.249724151 3.972222222 −2.222222222
−.1250 1.486111111 3.444444444 −16.000000000
−.0625 1.659998071 1.972222222 −29.777777778
.0000 1.722222222 .000000000 −32.000000000
.0625 1.659998071 −1.972222222 −29.777777778
.1250 1.486111111 −3.444444444 −16.000000000
.1875 1.249724151 −3.972222222 −2.222222222
.2500 1.000000000 −4.000000000 .000000000
.3125 .750137924 −3.986111111 1.111111111
.3750 .506944444 −3.722222222 8.000000000
.4375 .295000965 −2.986111111 14.888888889
.5000 .138888889 −2.000000000 16.000000000
.5625 .045000965 −1.013888889 14.888888889
.6250 .006944444 −.277777778 8.000000000
.6875 .000137924 −.013888889 1.111111111
.7500 .000000000 .000000000 .000000000

tk
3
4
---–

k
16
------+ 

  2 t∆=

k 0 1 … 24, , ,=
Fup1 tk( )

Fup1′ tk( )
2 t∆

----------------------
Fup″1 tk( )

2 t∆( )2
-----------------------
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solution of differential-functional Eq. (1) written in the following form:

(29)″yω h, t( ) ω2
yω h, t( )+ a yω h, 3t 2h+( ) b yω h, 3t( )– a yω h, 3t 2h–( )+=

Fig. 5 Function Fup2(t) and its first two derivatives

Table 2  Function Fup2(tk) values and its first two derivatives when ∆t = 1/4

−.5000 .00000000 .00000000 .00000000
−.4375 .00055169 .05555555 4.44444444
−.3750 .02777777 1.11111111 32.00000000
−.3125 .18000385 4.05555555 59.55555555
−.2500 .55555555 8.00000000 64.00000000
−.1875 1.17890046 11.83333333 50.66666666
−.1250 1.97222222 12.66666666 −32.00000000
−.0625 2.64054398 7.83333333 −114.66666666
.0000 2.88888888 .00000000 −128.00000000
.0625 2.64054398 −7.83333333 −114.66666666
.1250 1.97222222 −12.66666666 −32.00000000
.1875 1.17890046 −11.83333333 50.66666666
.2500 .55555555 −8.00000000 64.00000000
.3125 .18000385 −4.05555555 59.55555555
.3750 .02777777 −1.11111111 32.00000000
.4375 .00055169 −.05555556 4.44444444
.5000 .00000000 .00000000 .00000000

tk
1
2
---–

k
16
------+ 

  4 t∆=

k 0 1 … 16, , ,=
Fup2 tk( )

Fup2′ tk( )
4 t∆

----------------------
Fup″2 tk( )

4 t∆( )2
-----------------------
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where ω is the circular frequency, h is the length of the half of function yω, h(t) support, while
coefficients a and b are:

(29a)

Function yω, h(t) support is selected in dependence of the value of circular frequency ω :

(30)

Finite solution of Eq. (29) must satisfy the normed condition:

(31)

and in that case has the following form:

(32)

a
3
2
--- ω2

1 2ωh 3⁄( )cos–
---------------------------------------- b 2a 2ωh 3⁄( )cos=,⋅=

suppyω h, t( ) h– h,[ ]=

yω h, t( )dt
∞–

∞

∫ yω h, t( )dt
h–

h

∫ 1= =

yω h, t( ) 1
2π
------ ei ξt ŷω h, ξ( )dξ

∞–

∞

∫=

Table 3 Function yπ , 1(tk) values and its first two derivatives

−1.0000000 .000000000 .000000000 .000000000
−.8888889 .000529392 .030931029 1.419777536
−.7777778 .026498778 .569906388 8.183069521
−.6666667 .144382932 1.551917694 8.444601979
−.5555556 .364408349 2.346744822 4.848035737
−.4444444 .635591651 2.346744822 −4.848035737
−.3333333 .855617068 1.551917694 −8.444601979
−.2222222 .973501222 .569906388 −8.183069521
−.1111111 .999470608 .030931029 −1.419777536
.0000000 1.000000000 .000000000 .000000000
.1111111 .999470608 −.030931029 −1.419777536
.2222222 .973501222 −.569906388 −8.183069521
.3333333 .855617068 −1.551917694 −8.444601979
.4444444 .635591651 −2.346744822 −4.848035737
.5555556 .364408349 −2.346744822 4.848035737
.6666667 .144382932 −1.551917694 8.444601979
.7777778 .026498778 −.569906388 8.183069521
.8888889 .000529392 −.030931029 1.419777536

1.0000000 .000000000 .000000000 .000000000

tk 1– k 9⁄+=

k 0 1 … 2 9⋅, , ,=
yπ 1, tk( ) y′π 1, tk( ) y″π 1, tk( )
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where  is the Fourier transform of function yω, h(t):

(33)

Depending on the support length 2h, frequency ω and the required accuracy (SP or DP), between 10
and 20 first factors are used in the product (33) since the remaining ones are practically equal to 1.

Similar to Eq. (15) for the computation of the up(t) function values in characteristic points
tk = −1 + k2−n, numerically more adequate expressions (Gotovac and Kozuli 1999) for the calculation
of function yω, h(t) values and its derivatives in characteristic points tk = (−1 + k3−n) · h, n = 1, 2, 3, ... ;

, are developed. For conciseness, those expressions are not given here; although, using
a computer they are helpful for an easy calculation of the values for any density of characteristic
points.

For example, values of the function yω, h(t) and its derivatives for the frequency ω = π, h = 1 and
n = 2 are given in Table 3. Basis function yπ, 1(τ) and its first two derivatives are shown in Fig. 6.

The distance between characteristic points of the function yω, h(t) support is:

(34)

The distance between characteristic points determines a displacement of a basis function in order
to obtain a suitable base. In such a base, an arbitrary function ϕ (t) can be developed as:

(35)

Trigonometric functions of the given frequency ω, can be described exactly in a base of displaced
yω, h(t) functions according to Eq. (35):

ŷω h, ξ( )

ŷω h, ξ( ) 2
3
---a

2ξh 3j⁄( )cos 2ωh 3⁄( )cos–

ω2 ξ 2– 9 j 1–⁄
---------------------------------------------------------------------

 
 
 

j 1=

∞

∏=

éc

1 k 2 3n⋅≤ ≤

tn∆ h 3 n–⋅= n 1 2 3 …, , ,=,

ϕ t( ) Ck yω h, t
2hk
3

---------– 
 

k ∞–=

∞

∑=

Fig. 6 Function yπ , 1(τ) and its first two derivatives
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(36)

where:

(36a)

5. Application

5.1 Forced vibrations of a particle

Forced vibrations of a particle of unit mass without damping are described by the following
differential equation:

(37)

and initial conditions:

(38)

As an example, observed are the oscillations of a material point with the circular frequency of
vibration ω = π , homogeneous initial conditions , and time function of a disturbing
force f (t) given in Fig. 7.

Numerical solution of the given problem will be determined by the collocation method with finite
basis functions, described in Sections 4 and 3.1., in the following form:

(39)

Selected time step is ∆t = 2/3. An approximate solution base is formed by a mutual displacement of
functions yπ, 1(t) and Fup1(t) by the value which corresponds to the time step ∆t, as shown in Fig. 8.
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2ωh

3
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 cos yω h, t
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Fig. 7 Disturbing force f (t)
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The particular part  of the solution is determined from the condition that the second sum
from Eq. (39) satisfies the equation of the problem (37) from the moment t = m∆t to the moment
t = (m+ 1)∆t. Using the collocation method, for tm = m∆t, tm+1/2 = (m+ 1/2)∆t, tm+1= (m+ 1)∆t,
appurtenant coefficients Dl, l = m− 1, m, m+ 1, can be calculated:

(40)

It is obvious that at any time t, only three terms of the sum participate in the second sum of
Eq. (39).

The homogeneous part of an approximate solution  must satisfy the homogeneous form of
the Eq. (37):

(41)

According to Eq. (36), there are coefficients Ck in the first sum of Eq. (39) that satisfy the
equation of free oscillations in an accurate manner. In the time interval ∆t, only four coefficients Ck

are not equal to zero. They are determined from the condition that a homogenous Eq. (41) is
satisfied at time m∆t and (m+1)∆t and that conditions at the beginning of the interval m∆t are
satisfied i.e., position xm and velocity .

Using the values of yπ, 1(τ) basis function and its derivatives given in Fig. 6, the previously

x̃p t( )

Dm 1–
1

4π2
-------- 3f m t∆( ) f m 1+( ) t∆( )–[ ]=

Dm
1

4π2
-------- f m t∆( ) f m 1+( ) t∆( )+[ ]=

Dm 1+
1

4π2
-------- f– m t∆( ) 3f m 1+( ) t∆( )+[ ]=

x̃h t( )

x··h t( ) π2xh t( )+ 0=

x·m

Fig. 8 Distribution of basis functions
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calculated coefficients Dl and conditions at the beginning of each interval ∆t, yields:

(42)

For an initial time interval m= 0 ; , coefficients Dl have the following values:

(43)

The position and velocity of a particle at the time t = ∆t = 2/3 according to Eq. (39), are:

(44)

Substituting the coefficients given in (43) into expressions (44), the values are obtained:

Cm 1–
1

2y1 y·1⋅
----------------- xmy·1– x·my1– Dm 1– 3y1 y·1–( )⋅– Dm 3y1 y·1+( )⋅+[ ]⋅=
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1
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---- xm Dm 1–– Dm–[ ]⋅=

Cm 1+
1
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Cm 2+
1
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0 t t∆≤ ≤

D 1– 1– 24⁄ D0 1 24⁄= , D1 3 24⁄=,=
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·
1 0.37500000000000=,

Fig. 9 Forced vibrations of the one degree of freedom system: a) Displacements, b) Velocities
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that coincide with the values of the known exact solution:

Introducing the coefficients from Eqs. (40) and (42) into general numerical solution, Eq. (39), an
approximate solution is obtained, which corresponds to an exact solution in every moment. Fig. 9
shows the response of a system.

Efficiency of the proposed procedure consists in the following:
· The procedure is adaptive, which means that ∆t can change from step by step;
· Given load is approximated with the chosen accuracy (basis functions and length of the time step

are selected);
· For the system with frequency ω, basis functions yω, h(τ) are calculated and used for obtaining an

exact dynamic response for accurately approximated load;
· Accuracy of the procedure does not depend on the time increment ∆t (only an approximation of

the given load can depend on ∆t);
· The homogeneous part of the solution for system frequency ω is obtained in an accurate manner

because sin(ωt) and cos(ωt) can be accurately developed using yω, h(τ) finite functions. Functions
yω, h(τ) are the only ones to have that property.

· The number of calculations of the proposed procedure is significantly lower than in e.g., Runge-
Kutta method for a continuous approximation of high accuracy. 

5.2 Free vibrations of a particle

Free vibrations of a particle are described by the following differential equation:

(45)

and initial conditions:

(46)

From the given initial conditions (46) and Eq. (45), an initial acceleration can be calculated as:

(47)

An approximate solution base is formed by a mutual displacement of function Fup2(t) by the value
which corresponds to the time increment ∆t. Distribution of basis functions is shown in Fig. 10.

Applying the collocation method in a point, numerical solution of the problem (45)-(46) at time
t = k∆t is sought in the form of a linear combination:

(48)

x t( ) t
4
--- πt( )sin

4π
------------------–= x1 0.097750554738942=→

x· t( ) 1
4
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where Fj (t) is the basis function Fup2(t) with the vertex in collocation point of index j. Satisfying
the initial conditions (46) and differential equation of a problem at time t = 0 according to Eq. (47),
the following system of collocation equations is obtained:

(49)

Solving a system of Eq. (49), unknown coefficients of linear combination Cj, j = −1, 0, 1 are
obtained expressed by known values in an initial moment t = 0:

(50)

From a collocation equation which satisfies the differential equation of a problem (45) at time
t = ∆t, a coefficient of the basis function for j = 2 is obtained:

(51)

The response of the one degree of freedom system for  is defined by the coefficients in
Eqs. (50) and (51). By analogy, the values of coefficients of any two arbitrary moments, which are
mutually displaced by ∆t on a time axis, can be written as:
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Fig. 10 Distribution of basis functions
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(52)

From the second and third equations in expressions (52), the displacement and velocity in the
moment t = (k +1)∆t are expressed by the displacement and velocity in the moment t = k∆t in the
following form:

(53)

The eigenvalues of the matrix in Eq. (53) are:

(54)

In case when  a spectral radius has the following value:

(55)

Therefore, the time increment must be , where T is the period of observed
oscillations of a one degree of freedom system or a period of the mode with the highest frequency
of a multiple degree of freedom system. Thus, in the proposed numerical procedure, the length of
the time increment is 50% greater than in the central difference method (Bathe 1982) when

. In Eq. (55) it can be observed that the accuracy of the procedure is very good when
 because when a spectral radius ρ = 1 there is no numerical damping in an analysis of

dynamic system behavior.
The proposed numerical procedure with basis functions Fup2(t) is conditionally stable. Its different

variants are possible either with regard to an increase in accuracy or providing an unconditional
stability.

5.3 Dynamic system with multiple degrees of freedom

The linear dynamic response of a multiple degree of freedom system is described by the
governing equation:

(56)

and initial conditions:

(57)

where M, C, and K are the mass, damping, and stiffness matrices; F is the external load vector;
 and  are the displacement, velocity, and acceleration vectors.
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Applying the procedure of a continuous approximation in time with basis functions Fup2(t), a
numerical solution of the problem (56)-(57) is sought in the following form:

(58)

Fig. 10 shows the arrangement of basis functions for a single component of a solution xi(t). An
algorithm for time integration, formed according to the procedure described in Section 5.2, is given
in Table 4.
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4
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Table 4 The time integration scheme using continuous approximation in time with basis functions Fup2(t)

A. INITIAL CALCULATIONS

 1. Form stiffness matrix K, mass matrix M, and damping matrix C
 2. Initialize  and  
 3. Select time step ∆t and calculate coefficients:

4. Calculate effective stiffness matrix :

5. Triangularize 

B. FOR EACH TIME STEP

1. Calculate effective loads at time 

2. Calculate coefficients of the solution:

3. Evaluate displacements, velocities and accelerations at time :
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Example

The two degree of freedom system without damping for which the governing equations of motion
are:

(59)

is considered. Homogeneous initial conditions  are selected, thus the vector of initial
acceleration can be calculated from Eq. (59):

(60)

Using the numerical procedure described in Table 4, the response of a dynamic system is obtained
for 12 time steps ∆t = 0.28(s). Results of analyses are given in Table 5 complete with the exact
solution.

Fig. 11 shows the response of a system obtained by basis functions Fup2(t), and responses of the
system obtained analytically and by the most commonly used numerical procedures of time
integration (Bathe 1982).

6. Conclusions

The procedure in which a continuous approximation in time is performed by the collocation
method with Rvachev’s basis functions Rbf is presented in this paper. From the class of Rbf, finite
functions yω, h(t) and Fupn(t) are implemented. Based on the presented numerical studies, the
following concluding remarks can be made.

First, an approximate solution of free undamped vibrations of a particle obtained by the yω, h(t)
functions corresponds to an exact solution. Such a result is a consequence of the fact that the yω, h(t)
functions belong to a vector space which contains trigonometric functions of the given frequency ω.
Simultaneously, an approximate solution base is formed by a mutual displacement of functions
yω, h(t) by the value ∆t (characteristic interval).

Second, an exact dynamic response can be obtained by the proposed numerical procedure for the
case of forced vibrations. For the base of a particular part of the solution, the functions of Rbf class
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Table 5 Comparison of the solution obtained by the Fup2(t) basis functions with the exact solution

t ∆t 2∆t 3∆t 4∆t 5∆t 6∆t 7∆t 8∆t 9∆t 10∆t 11∆t 12∆t

Numerical
solution

x1(t) 0.004 0.042 0.180 0.485 0.984 1.631 2.302 2.828 3.037 2.824 2.185 1.239

x2(t) 0.376 1.391 2.748 4.061 4.982 5.308 5.036 4.344 3.517 2.831 2.462 2.426

Exact
solution

x1(t) 0.003 0.038 0.176 0.486 0.996 1.657 2.338 2.861 3.052 2.806 2.131 1.157

x2(t) 0.382 1.412 2.781 4.094 4.996 5.291 4.986 4.277 3.457 2.806 2.484 2.489
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are selected by which a disturbing force can be described exactly. Basis functions Fupn(t) are
applied, the linear combination of which can be used for the exact description of algebraic
polynomials. Therefore, when a disturbing force function is an algebraic polynomial, the load
function is described exactly by basis functions Fupn(t).

Third, it is shown that a high quality response of a dynamic system can be attained when only
basis functions Fupn(t) are applied. The numerical stability and accuracy of a proposed procedure
are tested on an example of a one degree of freedom model of free vibrations of a material point by

Fig. 11 a) The first component of the response of a two degree of freedom system, b) The second component
of the response of a two degree of freedom system
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Fup2(t) basis functions. It is shown that it is possible to use 50% longer time step than the central
difference method. This knowledge can also be applied to multiple degree of freedom dynamic
systems. For an illustration of the numerical procedure, a two degree of freedom dynamic system
has been analyzed. Based on a comparison with the results obtained by other the most commonly
used numerical methods (Fig. 11), it can be concluded that the proposed procedure gives excellent
dynamic response.
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