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Abstract. The scaled-boundary finite element method is a novel semi-analytical technique, combining
the advantages of the finite element and the boundary element methods with unique properties of its own.
The method works by weakening the governing differential equations in one coordinate direction through
the introduction of shape functions, then solving the weakened equations analytically in the other (radial)
coordinate direction. These coordinate directions are defined by the geometry of the domain and a scaling
centre. This paper presents a general development of the scaled boundary finite-element method for two-
dimensional problems where two boundaries of the solution domain are similar. Unlike three-dimensional
and axisymmetric problems of the same type, the use of logarithmic solutions of the weakened differential
equations is found to be necessary. The accuracy and efficiency of the procedure is demonstrated through
two examples. The first of these examples uses the standard finite element method to provide a
comparable solution, while the second combines both solution techniques in a single analysis. One
significant application of the new technique is the generation of transition super-elements requiring few
degrees of freedom that can connect two regions of vastly different levels of discretisation.

Key words: scaled boundary finite-element method; similarity; plane stress; plane strain; axisymmetry;
transition element.

1. Introduction

Elastostatic analysis has been dominated by the finite element method (Zienkiewicz and Taylor
1989, Szabó and Babuška 1991) and to a lesser extent by the boundary element method (Brebbia
and Walker 1980, Banerjee and Butterfield 1981) for over four decades. Despite this, alternative
methods such as the finite strip method (Cheung 1976, Cheung, Li and Chidiac 1996) are of
practical interest and are computationally more efficient than the conventional methods for domains
of particular restricted geometry. This paper addresses another alternative method that exhibits
qualitative and quantitative advantages over the conventional finite element and boundary element
methods for particular classes of problems. Here the method is applied to domains with two
geometrically similar boundaries. The new method may be combined with the conventional finite
element method, providing super-elements that can connect regions of vastly different levels of
discretisation.
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The scaled boundary finite-element method is a novel semi-analytical approach to continuum
analysis developed by Wolf and Song. The method was originally derived to compute the dynamic
stiffness of an unbounded domain (Song and Wolf 1996), and was based on a ‘cloning’ technique in
which the analytical limit is taken as the width of the cloned finite-element cell tends to zero. The
method proved to be more general than initially envisaged, with later developments allowing
analysis of incompressible material and bounded domains (Wolf and Song 1996), and the inclusion
of body loads (Song and Wolf 1999). The complexity of the original derivation of the technique led
to the development of a weighted residual formulation (Song and Wolf 1997, Wolf and Song 2001),
and recently a simplified virtual work derivation for elastostatics (Deeks and Wolf 2002a & 2002b).

The scaled boundary finite-element method works by weakening the governing differential
equations in one (circumferential) coordinate direction s through the introduction of shape functions,
then solving the weakened equations analytically in the other (radial) coordinate direction ξ. These
coordinate directions are defined by the geometry of the domain and a scaling centre. In most
previous work unbounded domains not containing the scaling centre (Fig. 1a) and bounded domains
containing the scaling centre (Fig. 1b) have been treated. Domains which are bounded on two sides
by lines radiating from the scaling centre (Figs. 1c and 1d) have also been addressed. Boundaries

Fig. 1 Types of domains addressed in previous work 

Fig. 2 Domains treated in this work-a) without side-faces, b) with side-faces
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falling on such radial lines are termed side-faces.
The dynamic stiffness of domains with two similar boundaries has been derived by Song and Wolf

(1998) using the scaled boundary finite-element method. However, this derivation is restricted to
three-dimensional and axisymmetric problems.

This paper presents a general development of the scaled boundary finite-element method for two-
dimensional elastostatic problems where two boundaries of a domain are similar (Figs. 2a and 2b).
The equations are developed for two-dimensional problems of plane stress and plane strain. The
virtual work derivation presented by Deeks and Wolf (2002a) is extended to the problem with two
similar boundaries. The two similar boundaries are termed internal and external boundaries, as
indicated in Fig. 2. Unbounded domains occur when the external boundary is positioned at infinity,
while bounded domains containing the scaling centre are generated when the internal boundary is
placed at the scaling centre.

2. Scaled boundary finite-element method derivation

In the absence of body loads, with the internal stresses designated as {σ (x, y)}, enforcing internal
equilibrium leads to the differential equation

[L]T { σ (x, y)} = {0} (1)

which must be satisfied at every point within the domain (“volume” V ). [L] is the linear operator
relating the strains {ε (x, y)} and the displacements {u(x, y)}

{ ε (x, y)} = [L] { u(x, y)} (2)

The stresses and strains are related by the elasticity matrix [D]

{ σ (x, y)} = [D] { ε (x, y)} (3)

Definitions of the vector components, the linear operator and the elasticity matrices for problems
of plane stress and plane strain are given in Appendix A.

The domain is bounded by an external boundary, which is denoted by Se, and an internal
boundary, denoted by Si. If Se and Si are similar, each point on Se corresponds to a point on Si, and
all lines passing through pairs of such point intersect at a single point (as illustrated in Fig. 2a). This
point is designated (x0, y0), and will be referred to as the scaling centre. The internal and external
boundaries may be treated as scaled versions of a single curve, S, which, together with the scaling
centre, defines the geometry of the domain. If the curve S is not closed, the boundary of the domain
also contains two distinct side-faces, as illustrated in Fig. 2b, otherwise the internal and external
boundaries are disjoint, as indicated in Fig. 2a. In such cases the domain can be considered to
contain two coincident side-faces across which equilibrium and compatibility are maintained.

The curve S can be represented by a set of points (x0 + xs(s), y0 + ys(s)), where s is a coordinate
measuring the distance around the curve from a selected origin. Introducing a normalised radial
coordinate ξ which is chosen to have unit value on S, the external boundary is defined by ξ = ξe

while the internal boundary is defined by ξ = ξ i. Any point (x, y) within the domain can be
identified in terms of s and ξ, which are referred to as the scaled boundary coordinates. The scaled
boundary and Cartesian coordinate systems are related by the scaling equations
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x = x0 + ξ xs(s) (4a)

y = y0 + ξ ys(s) (4b)

Domains defined with open and closed curves are shown in Fig. 3, along with the scaled boundary
coordinate systems. The solution domain V in each case is the region defined by ξ i ≤ ξ ≤ ξe and
sl ≤ s ≤ sr. A limitation on the geometry of the domains is that the derivative of the circumferential
angle θ with respect to s remains positive over the entire curve S.

In the development which follows, displacement and stress components are retained in the original
Cartesian coordinate directions, while position is specified in terms of the scaled boundary
coordinates. Boundary conditions are specified at all boundary points on either displacements or
surface tractions. 

The scaled boundary finite-element method seeks an approximate solution for the displacement
field {u(ξ, s)} in the form

{uh(ξ, s)} = = [N(s)] { uh(ξ )} (5)

The subscript h is used to indicate approximate quantities that are determined in the course of the
analysis and depend on the n predefined shape functions Ni(s) selected to represent the variation of
the displacement field in the s direction. Conventionally the curve S is broken into two- or three-
noded isoparametric line elements, and polynomial shape functions defined over each element in the
standard finite element manner. Each line element then represents an elemental ‘volume’ of the
domain, bounded by two radial node lines and the boundaries Si and Se. Fig. 3 illustrates a typical
two-noded scaled boundary finite element and the region of the domain modelled by this element.
The shape functions interpolate in the circumferential direction between analytical functions that
describe the variation of the displacement along radial lines passing through each node point on S
(the node lines). The vector {uh(ξ )} is therefore a set of n functions analytical in ξ. Each node point
on the curve S scales to a node on the external boundary and a node on the internal boundary. The
displacements at the external boundary nodes are {uh(ξe)}, while the displacements at the internal
boundary nodes are {uh(ξi)}. 

Mapping the linear operator to the scaled boundary coordinate system using standard methods
(see Appendix B)

Ni s( )uhi ξ( )
i 1=

n

∑

Fig. 3 Scaled boundary coordinate definition: left, with a closed defining curve; right, with an open defining
curve
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(6)

where [b1(s)] and [b2(s)] are dependent only on the definition of the curve S (see Eqs. (B9) and
(B10)).

Combining Eqs. (2) and (3) and substituting Eq. (6), the approximate stresses are

{ σh(ξ, s)} = [D] { εh(ξ, s)} = [D] [B1(s)] { uh(ξ )}‚ ξ + [D] [B2(s)]{ uh(ξ )} (7)

where, for convenience 

[B1(s)] = [b1(s)][N(s)] (8)

  [B2(s)] = [b2(s)][N(s)]‚ s (9)

An alternative formulation of the equilibrium requirement is the virtual work statement. Using
{ δu(x, y)} to represent a virtual displacement field, and 

{ δε (ξ, s)} = [L]{ δu(ξ, s)} (10)

to represent the corresponding virtual strains, and designating the distance around the external
boundary as se and the distance around the internal boundary as si, the virtual work equation states
that

(11)

The first term in this equation is the internal virtual work. The remaining terms represent the
external virtual work done by the tractions acting on the boundaries. The second term results from
the tractions on the internal boundary, {t(ξi, s)}, the third term from tractions {t(ξe, s)} on the
external boundary, the fourth term from the tractions {t(ξ, sl)} on the left side face and the final
term from the tractions {t(ξ, sr)} on the right side-face. If the defining curve of the domain is
closed, {t(ξ, sl)} = −{ t(ξ, sl)}, and the last two terms cancel. If the defining curve is open, but there
are no tractions on the side-faces, the last two terms are both zero. 

When Eq. (11) is satisfied for all virtual displacement fields, equilibrium is satisfied in the strong
sense. If it is satisfied for a subset of virtual displacement fields, equilibrium is only satisfied in a
weak sense. 

A virtual displacement field is formed using the shape functions [N(s)] to interpolate between the
radial node lines in the circumferential direction (the Galerkin approach). This virtual displacement
field is of the form (analogous to Eq. (5))

{ δu(ξ, s)} = [ N(s)]{ δu(ξ)} (12)

where {δu(ξ )} contains n functions describing the variation of the virtual displacements in the
radial direction. {δu(ξe)} contains the virtual nodal displacements on the external boundary, while

L[ ] L1[ ] ∂
∂x
----- L2[ ] ∂

∂y
-----+ b1 s( )[ ] ∂

∂ξ
------ 1

ξ
--- b2 s( )[ ] ∂

∂s
-----+= =

1
ξ
---

δε ξ s,( ){ }T σ ξ s,( ){ } dV δu ξ i s,( ){ }T t ξ i s,( ){ } dsi δu ξe s,( ){ }T

Se

∫ t ξe s,( ){ } dse–
Si

∫–
V
∫

δu ξ sl,( ){ }T t ξ sl,( ){ } J sl( ) dξ
ξi

ξe

∫– δu ξ sr,( ){ }T t ξ sr,( ){ } J sr( ) dξ 0=
ξi

ξe

∫–
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{ δu(ξi)} contains the virtual nodal displacements on the external boundary. The corresponding
virtual strain field is of the form (analogous to Eq. (7))

{ δε(ξ, s)} = [ B1(s)] { δu(ξ )}‚ ξ + [B2(s)] { δu(ξ )} (13)

Eq. (B6) indicates that

dV = |J(s) | ξ dξ ds (14)

where |J(s) | is the Jacobian evaluated at the curve S (i.e., at ξ = 1). 
Substituting Eqs. (7), (13) and (14), integrating the area integrals containing {δu(ξ)}, ξ by parts

with respect to ξ using Green’s Theorem, introducing line integrals evaluated around the boundaries,
the internal virtual work term is expanded to

(15)

For convenience the following coefficient matrices are introduced:

[E0] = (16a)

[E1] = (16b)

[E2] = (16c)

These integrals can be computed element by element over S, and assembled together for the entire
curve. Eq. (15) is then expressed as

1
ξ
---

δε ξ s,( ){ }T σh ξ s,( ){ }dV
V
∫ δu ξ( ){ }T B1 s( )[ ]T

D[ ] B1 s( )[ ]ξ uh ξ( ){ } J s( )ξ ds ξ ξ i=

ξ ξe=
,

S
∫=

δu ξ( ){ }T B
1

s( )[ ]T
D[ ] B

1
s( )[ ] uh ξ( ){ },ξ ξ+ uh ξ( ){ },ξξ{ } J s( ) dξ ds

ξi

ξe

∫
S

∫–

+ δu ξ( ){ }T B
1

s( )[ ]T
D[ ] B

2
s( )[ ] uh ξ( ){ } J s( ) ds ξ ξi=

ξ ξe=

S
∫

δu ξ( ){ }T B1 s( )[ ]T
D[ ] B2 s( )[ ] uh ξ( ){ },ξ J s( ) dξ ds

ξi

ξe

∫
S

∫–

+ δu ξ( ){ }T B2 s( )[ ]T
D[ ] B1 s( )[ ] uh ξ( ){ },ξ J s( ) dξ ds

ξi

ξe

∫
S

∫

+ δu ξ( ){ }T B
2

s( )[ ]T
D[ ] B

2
s( )[ ]1

ξ
--- uh ξ( ){ } J s( ) dξ ds

ξi

ξe

∫
S

∫

B1 s( )[ ]T
D[ ] B1 s( )[ ] J s( ) ds

S
∫

B2 s( )[ ]T
D[ ] B1 s( )[ ] J s( ) ds

S
∫

B2 s( )[ ]T
D[ ] B2 s( )[ ] J s( ) ds

S
∫
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(17)

On substitution of Eq. (12), and noting that the distance around the external boundary se = ξe s and
the distance around the internal boundary si = ξi s, the external virtual work term for the external
boundary in Eq. (11) becomes

(18)

where {Pe} are the equivalent nodal forces due to the boundary tractions acting on the external
boundary determined in the conventional finite element manner as

(19)

and the external virtual work term for the internal boundary becomes

(20)

where {Pi} are the conventional equivalent nodal forces due to the boundary tractions acting on the
internal boundary

(21)

On substitution of Eq. (12) the external virtual work terms for the side-faces may be combined as 

(22)

where

(23)

The complete virtual work equation becomes

(24)

δε ξ s,( ){ }T σh ξ s,( ){ } dV
V
∫ δu ξe( ){ }T ξ{ e E0[ ] uh ξe( ){ },ξ E1[ ]T

uh ξe( ){ } }+=

δu ξi( ){ }T ξ{ i E
0[ ] uh ξ i( ){ },ξ E

1[ ]T
uh ξi( ){ } }+–

δu ξ( ){ }T E
0[ ]ξ uh ξ( ){ },ξξ E

0[ ] E
1[ ]T

E
1[ ]–+[ ] uh ξ( ){ },ξ E

2[ ]1
ξ
--- uh ξ( ){ }–+

 
 
 

dξ
ξi

ξe

∫–

δu ξe s,( ){ }T t ξe s,( ){ } dse
Se

∫ δu ξe( ){ }T N s( )[ ]T t ξe s,( ){ } ξe ds δu ξe( ){ }T Pe{ }=
S
∫=

Pe{ } N s( )[ ]T t ξe s,( ){ } ξe ds
S
∫=

δu ξ i s,( ){ }T t ξ i s,( ){ } dsi
Si

∫ δu ξi( ){ }T N s( )[ ]T t ξi s,( ){ } ξ i ds δu ξ i( ){ }T Pi{ }=
S
∫=

Pi{ } N s( )[ ]T t ξ i s,( ){ } ξi ds
S
∫=

δu ξ( ){ } Ft ξ( ){ } dξ
ξi

ξe

∫

Ft ξ( ){ } N sl( )[ ]T t ξ sl,( ){ } J sl( ) N sr( )[ ]T t ξ sr,( ){ } J sr( )+=

δu ξe( ){ }T ξe E0[ ] uh ξe( ){ },ξ E1[ ]T
uh ξe( ){ }+{ } δu ξe( ){ }T Pe{ }–

δu ξi( ){ }T ξi E
0[ ] uh ξ i( ){ },ξ E

1[ ]T
uh ξ i( ){ }+{ } δu ξ i( ){ }T Pi{ }––

δu ξ( ){ }T E0[ ]ξ uh ξ( ){ },ξξ E0[ ] E1[ ]T
E1[ ]–+[ ] uh ξ( ){ },ξ E2[ ]1ξ--- uh ξ( ){ }– Ft ξ( ){ }++

 
 
 

dξ 0{ }=
ξi

ξe

∫–
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In order for Eq. (24) to be satisfied for all {δu(ξ)} the following conditions must be satisfied:

(25)

(26)

(27)

Eqs. (25)-(27) is a collection of n × n equations of similar type, whose solution is given in the next
section. Eq. (27) is the scaled boundary finite-element equation in displacement, which is independent
of the radial extent of the domain. Eqs. (25) and (26) enforce the boundary conditions at the external
and internal boundaries respectively. For bounded domains containing the scaling centre the internal
boundary is located at the scaling centre (ξi = 0) and the curve S may be placed at the external
boundary (ξe = 1). For unbounded domains the external boundary is located at infinity (ξe = ∞) and S
may be placed at the internal boundary (ξi = 1). These cases have been treated in most previous work.
Although it is often convenient to place S at one of the boundaries, it is not essential, and the
technique described here will give the same results irrespective of the positioning of S.

3. Solution procedure

When there is no contribution from side-face loads (the defining curve is closed or the side-face
tractions are zero) Eq. (27) becomes a homogeneous set of Euler-Cauchy differential equations, the
solution of which may be found in the form

 (28)

where the exponents −λ i and corresponding vectors {φi} may be interpreted as independent modes
of deformation which closely satisfy internal equilibrium in the ξ direction. (The negative sign is
adopted for consistency with earlier work (Wolf and Song 1996), in which the method is derived for
unbounded domains.) The integration constants ci represent the contribution of each mode to the
solution, and are dependent on the boundary conditions. 

The displacements for each mode take the form (omitting the subscript)

{u(ξ )} = ξ −λ{ φ } (29)

The vector {φ } can be identified as the modal displacements at the node points on curve S, while
λ can be identified as a modal scaling factor for the ‘radial’ direction. The displacements at the
internal and external boundary nodes are determined by scaling the displacements at the node points as 

(30)

and

(31)

respectively.

Pe{ } ξe= E
0[ ] uh ξe( ){ },ξ E

1[ ]T
uh ξe( ){ }+

Pi{ } ξ– i= E
0[ ] uh ξ i( ){ },ξ E

1[ ]T
– uh ξ i( ){ }

E
0[ ]ξ2

uh ξ( ){ },ξξ E
0[ ] E

1[ ]T
E

1[ ]–+[ ]ξ uh ξ( ){ },ξ E
2[ ] uh ξ( ){ }– ξ Ft ξ( ){ } 0{ }=++

uh ξ( ){ } c1ξ λ1– φ1{ } c2ξ λ2– φ2{ } …++=

φi{ } ξ i
λ– φ{ }=

φe{ } ξe
λ– φ{ }=



Semi-analytical elastostatic analysis of two-dimensional domains with similar boundaries107

Substituting Eq. (29) into Eq. (27) yields the quadratic eigenproblem

(32)

Solution of this eigenproblem yields 2n modes. The eigenvectors contain n modal displacements
{ φ}. Any particular solution is a linear combination of these modes. The modal displacements at all
boundary nodes are obtained by applying Eqs. (30) and (31), generating 2n displacements for each
mode. The equivalent nodal forces required at the boundaries to equilibrate each displacement mode
are obtained by substituting Eq. (29) into Eqs. (25) and (26) as

(33)

and

(34)

In two-dimensional situations where neither side-face is restrained, two orthogonal rigid body
translation modes appear twice on solution of the quadratic eigenproblem. If restraint is applied to
either side-face in one direction, the rigid body translation mode in the unrestrained direction
appears twice. Using d to represent the number of directions in which restraint is provided to a side-
face (0, 1 or 2), and letting r = 2 − d, the number of independent displacement modes is 2n − r.
However, a total of 2n independent modes is required to allow the stiffness matrix relative to the 2n
boundary degrees of freedom to be generated. The additional r modes can be found in the form

{u(ξ )} = { ψ ln}  ln ξ + {φ ln} (35)

The coefficient matrices {ψln} and {φ ln} are constructed to ensure Eq. (35) satisfies Eq. (27). Full
details of this procedure are described by Deeks and Wolf (2002c), who determine the stiffness of
an unbounded two-dimensional domain. The displacements at the internal and external boundary
nodes are determined as 

{ φi} = { ψln}  ln ξi + {φ ln} (36)

and

{ φe} = { ψln}  ln ξe + {φln} (37)

respectively. Corresponding nodal forces at the internal and external boundaries are determined as 

{qi} = −[E0] { ψln} − [E1]T{ φln} (38)

and

{qe} = [E0]{ ψln} + [E1]T{ φln} (39)

A matrix [Φ] with 2n rows and 2n columns is constructed by placing the boundary node
displacements for the 2n − r independent modes and the r logarithmic modes in the columns, where
each column corresponds to one mode. A corresponding square nodal force matrix [Q] of dimension
2n is constructed by placing the boundary nodal forces for each mode in the columns.

λ2
E

0[ ] λ E
1[ ]T

E
1[ ]–[ ]– E

2[ ]–[ ] φ{ } 0{ }=

qi{ } ξi
λ–– E1[ ]T λ E0[ ]–[ ] φ{ }=

qe{ } ξe
λ– E1[ ]T λ E0[ ]–[ ] φ{ }=
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For any set of boundary node displacements  the integration constants required to
satisfy Eq. (28) at both ξ = ξi and ξ = ξe are

(40)

The equivalent nodal forces required to cause these displacements are

(41)

The stiffness matrix of the domain is therefore

[K] = [Q] [Φ]−1 (42)

and the equilibrium requirement becomes

(43)

Boundary conditions place constraints on subsets of the boundary nodal displacements and
equivalent nodal forces, and the solution proceeds in the same manner as in standard finite element
analysis. 

The integration constants are then obtained using Eq. (40), and the displacement field recovered as

(44)

The stress field is obtained by substituting Eq. (44) into (7) as

   (45)

If the domain is unbounded (ξe = ∞), the boundary condition on the displacement at the external
boundary is zero. This determines n of the integration constants {c}, and only the remaining n
modes are used to construct the stiffness matrix (which is now of dimension n and includes only the
nodal degrees of freedom on the internal boundary). Similarly, if the domain is bounded and
contains the scaling centre (ξi = 0), the displacements at all nodes on the internal boundary are
identical, again determining n of the integration constants, and the resulting n by n stiffness matrix
includes only the degrees of freedom on the external boundary.

uh ξi( ){ }

uh ξe( ){ } 
 
 

c{ } Φ[ ] 1– uh ξ i( ){ }

uh ξe( ){ } 
 
 

=

Pi{ }

Pe{ } 
 
 

Q[ ] c{ } Q[ ] Φ[ ] 1– uh ξ i( ){ }

uh ξe( ){ } 
 
 

= =

K[ ]
uh ξi( ){ }

uh ξe( ){ } 
 
  Pi{ }

Pe{ } 
 
 

–
0

0 
 
 

=

uh ξ s,( ){ } N s( )[ ] ciξ
λ i– φi{ } c2n i– ψ ln i{ } ln ξ φ ln i{ }+{ }

i 1=

r

∑+
i 1=

2n r–

∑=

σh ξ s,( ){ } D[ ] ciξ
λi 1–– λi B

1
s( )[ ]– B

2
s( )[ ]+[ ] φ i{ }

i 1=

2n r–

∑




=

+ c2n i– ξ 1– B2 s( )[ ] φ ln i{ } B1 s( )[ ] ψ ln i{ }+{ }
i 1=

r

∑



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4. Side-face loads

When side-face loads are present, a general solution to the non-homogeneous differential equation
(Eq. (27)) may be sought as a linear combination of the general solution of the homogeneous
version and a particular solution of the same form as the term ξ{Ft(ξ )}. Since the general solution
of the homogeneous equation is interpreted above as the combination of deformation modes, each of
which closely satisfies internal equilibrium in the ξ direction, the additional particular solution can
also be interpreted as a mode of deformation which almost satisfies internal equilibrium with the
side-face loads. The modes representing the general solution of the homogeneous equation are
referred to here as the ‘homogeneous’ modes, allowing differentiation between the mode types.

If the side-face loads can be represented as power functions of ξ such that

{Ft(ξ )} = ξ t{Ft} (46)

the side-face load mode displacements are of the form

{ut(ξ )} = ξ t + 1{ φt} (47)

Substitution of Eq. (47) into Eq. (27) yields

(48)

The displacements at the nodal points on S for the side-face load mode can be obtained by
rearrangement as 

(49)

and the corresponding displacement at the boundary nodes are

{ φti} = ξ i
t+1 { φt} (50)

and

{ φte} = ξe
t+1{ φt} (51)

The equivalent nodal boundary forces in equilibrium with these displacements by substitution of
Eq. (47) into Eqs. (25) and (26) as

{qti} = −ξ i
t+1 [(t + 1)[E0] + [E1]T] { φti} (52)

and

{qte} = ξe
t+1 [(t + 1)[E0] + [E1]T] { φte} (53)

For a given set of integration constants, the displacements at the boundary nodes are

(54)

The equivalent nodal boundary forces in equilibrium with this displacement field are

t 1+( )[ 2
E

0[ ] t 1+( ) E
1[ ]T

E
1[ ] ]– E

2[ ]–[ ]+ φt{ } Ft{ }+ 0{ }=

φt{ } t 1+( )[ 2 E0[ ] t 1+( ) E1[ ]T
E1[ ] ]– E2[ ]–[ ]

1–
+ F– t{ }=

uh ξ i( ){ }

uh ξe( ){ } 
 
  φt i{ }

φte{ } 
 
 

Φ[ ] c{ }+=
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(55)

Rearranging Eq. (54), the integration constants can be found in terms of the nodal displacements

(56)

Substituting this equation into Eq. (55) and rearranging, the equilibrium requirement is reduced to

(57)

or

(58)

where

[K] = [Q] [Φ]−1 (59)

as before. Boundary conditions place constraints on subsets of the displacements and nodal forces
on the internal and external boundaries as before, and solution proceeds in the usual manner.

5. Discussion

 Although the semi-analytical nature of scaled boundary finite element method endows it with
significant advantages, including the ability to model points of stress singularity and discontinuity
accurately at the scaling centre and the ability to analyse unbounded domains, a significant
limitation is the requirement that the derivative of θ with respect to s remain positive over the
defining curve S. A domain for which no single scaling centre exists which satisfies this
requirement is shown in Fig. 4a, in which the curve S is taken as the exterior boundary while the
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Fig. 4 A domain that must be sub-structured. a) Defining curve with sections over which dθ/ds is non-
positive, b) Discretisation with two sub-domains, with heavy lines representing defining curves
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interior boundary is at the scaling centre. Fortunately this limitation can be overcome easily by
using a sub-structuring technique.

Since the scaled boundary finite-element method finds the stiffness of a domain relative to nodes
located along its boundary, such domains can be assembled together as ‘super-elements’ before the
nodal displacements are computed. This is illustrated in Fig. 4b. Once the boundary displacements
have been found, internal displacements and stresses for each domain can be computed. Each
domain has its own scaling centre and (possibly) two side-faces. The super-elements can only be
connected along discretised boundaries, not along side-faces.

The analysis of domains with two similar boundaries, as described in this paper, may at first sight
appear to have limited application (although Example 1 shows it can be used directly in some
situations). However, the range of application is dramatically increased by using such domains as
super-elements. The domains can then be used in combination with bounded domains containing the
scaling centre, or domains modelled by alternative methods (such as the finite element method). 

Perhaps the most significant application of the method is to provide transition super-elements
between regions of coarse discretisation and regions of very fine discretisation. The boundaries of
many structural mechanics problems contain ‘sharp’ corners. However, on close inspection these
corners are actually curved or filleted. The detail of a corner dramatically effects the concentration
of stress in the region. The length scale of the corner geometry is generally very much smaller than
the length scale of the structure itself (for example a 5 mm radius on a 1 m square penetration
through a wall). Should the standard finite element method be used to model such a problem, a very
large number of elements is needed to provide the transition between the two geometric scales.
Example 2 indicates how simply such problems can be handled using a domain with similar
boundaries.

No special treatment is require to assemble transition super-elements (the stiffness matrix of which
is determined by Eq. (42)) with traditional finite elements. Providing the shape functions used in the
finite elements are of the same type and order as those used in the adjoining scaled boundary finite-
elements, C0 continuity of the displacement field will be preserved, and the model will be well
behaved. Multiple transition super-elements with distinct scaling centres can be used in the same
model, providing the super-elements are connected along discretised boundaries.

6. Examples

6.1 Example 1-compression of a thick-walled flattened tube

The structure in the first example contains two similar boundaries, and can consequently be solved
using a single domain. The structure is a long thick-walled tube that lies horizontally on a flat rigid
support. The tube is flattened top and bottom. The flattened bottom section is in contact with the
support, while the flattened top section is subjected to a unit pressure loading. The cross-section of
the tube is illustrated in Fig. 5a. The symmetry of the problem is taken into account, and only half
of the problem modelled. Due to the length of the tube, plane strain conditions are assumed, and
Poisson’s ratio is taken as 0.25. The interface between the tube and the support is taken to be
frictional with no slip occurring. The initial scaled boundary finite-element mesh is illustrated in
Fig. 5b. To verify the accuracy and efficiency of the proposed approach, the problem is also
analysed using the standard finite element method. The initial finite element mesh is shown in Fig. 5c.
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The accuracy of the analysis results is determined using a recovery-based error estimator of the
Zienkiewicz-Zhu type (1987). The computation of this error estimator for the scaled boundary finite
element method is described by Deeks and Wolf (2002b). Extension to domains with similar
boundaries is achieved by a simple modification of the integration bounds. Computational time is
measured on a 450 MHz Pentium III PC using similar programs for both the scaled boundary finite-
element method and the standard finite element method. The rate convergence of each method is
evaluated by using a series of meshes of increasing fineness constructed by binary subdivision of the
meshes shown in Fig. 5. The rate of convergence of the error estimator with mesh size and
computational time is shown in Fig. 6. The numbers against the data points indicate the number of
subdivisions of the initial mesh required to achieve the recorded level of accuracy. The efficiency of
the scaled boundary finite-element method is seen to exceed that of the standard finite element
method, and the computational savings at small error targets are seen to be considerable.

The vertical stresses computed with both the scaled boundary finite-element method and the finite
element method are contoured in Fig. 7, normalised by the vertical stress on the top of the pipe, σ0.
Close agreement between the two is evident. The other stress components (which are not presented)
show similar agreement. Overall this example demonstrates the accuracy and efficiency of the
method presented in this paper for the analysis of domains with two similar boundaries.

Fig. 5 Example 1-a) geometry and loading, b) initial scaled boundary finite-element mesh, c) initial finite
element mesh

Fig. 6 Relationship between the error estimator and computational time for Example 1
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6.2 Example 2-plate containing a square hole with rounded corners under uniaxial tension

The final example illustrates perhaps the most effective use of the scaled boundary finite-element
domains with similar boundaries. The problem is a square plate containing a square hole under
uniaxial tension. If the corner of the hole is sharp, the stress at the corner is singular. However, in
most situations the corner is actually rounded or filleted on a scale much smaller than the scale of
the structure. Here the plate is taken to measure 4a by 4a and the hole is taken to measure 2a by 2a.
The corners of the hole have a radius of a/75. The geometry of the problem is shown in Fig. 8. Due
to symmetry only one quarter of the problem is modelled. The radius is not shown to scale.
Poisson’s ratio is taken as 0.25.

Since the boundary varies smoothly in the vicinity of the corner, the stress variation in this region
will also be smooth, but will occur on a scale similar to the radius of the curve. Consequently the
finite elements required to model this area accurately are very small. If the problem is modelled
completely with finite elements, a very large number of elements is required to transition from the
outer region (where the stress gradients are quite small) to the region near the corner. Here the

Fig. 7 Contours of vertical stress computed for Example 1 by the second mesh of the scaled boundary finite-
element method (left) and the third mesh of the finite element method (right) 

Fig. 8 Example 2-a square hole with rounded corners in a plate subjected to uniaxial tension
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Fig. 9 Initial combined scaled boundary finite-element mesh/finite element mesh for Example 2

Fig. 10 Relationship between error estimator and computational time for Example 2

Fig. 11 Contours of horizontal stress for Example 2 in terms of σ0 computed with the third mesh
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scaled boundary finite-element domain with similar boundaries is used to provide that transition
analytically. The region near the corner is modelled with finite elements. The initial combined
scaled boundary finite-element mesh/finite element mesh is illustrated in Fig. 9. The radius and the
finite elements are shown to scale in the diagram to the left, but cannot be distinguished clearly at
this scale. The inset diagram magnifies the mesh present at the corner. Quadratic scaled boundary
finite-elements with six boundary nodes (three on the interior boundary and three on the external
boundary) are used away from the corner, while eight-noded quadratic isoparametric finite elements
are used in the region near the corner.

The problem is analysed for the initial mesh and two finer meshes generated by binary
subdivision of the initial mesh. The monotonic convergence of the error estimator with
computational time is illustrated in Fig. 10, which indicates the procedure is well behaved.

The horizontal stresses computed by the third mesh are plotted in Fig. 11 in terms of σ0. These
stress contours are seen to pass smoothly between the regions modelled in different ways. Overall
the procedure is seen to allow the stress concentrations near corners to be determined efficiently
with few degrees of freedom. 

7. Conclusions

This paper extends the semi-analytical scaled boundary finite-element method to the elastostatic
analysis of domains containing two similar boundaries. The scaled boundary finite-element equation
in displacement is not changed, but use is made of all the independent displacement ‘modes’
computed from the resulting quadratic eigenproblem. Depending on the side-face restraints up to
two additional logarithmic modes may also be required. Unbounded domains may be considered as
the special case where the external boundary is taken at infinity, and bounded domains containing
the scaling centre as the special case where the internal boundary is taken at the scaling centre.

The equations are developed using a virtual work approach, and side-face loads are addressed.
The solution process is described in full, and the role of sub-structuring in allowing efficient use of
the technique is discussed.

Two examples are provided illustrating the use of the new technique to solve problems containing
similar boundaries, and to provide a transition super-element between regions of vastly different
scale. This last application is potentially the most useful ability of the method, as it allows stress
concentrations at corners of extremely small radius to be computed efficiently. Results for the first
example are compared with finite element solutions to establish the accuracy and efficiency of the
technique. The new method is seen to work well and to increase the range of application of the
scaled boundary finite-element method.
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Appendix A: Vector and matrix definitions for plane stress and strain

In the case of plane stress and plane strain, the displacement field has two components, displacement in the
x-direction (ux) and displacement in the y-direction (uy).

(A1)

Stress and strain have three independent components.

(A2)

(A3)

The linear operator relating strain and displacement is

(A4)
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The elasticity matrix for plane stress is

(A5)

and for plane strain

(A6)

where E and ν are Young’s modulus and Poisson’s ratio respectively.

Appendix B: Transformation to the scaled boundary coordinate system

The scaling equations relating the Cartesian coordinate system to the scaled boundary coordinate system are

x = x0 + ξ xs(s) (B1a)

y = y0 + ξ ys(s) (B1b)

Derivatives in the scaled boundary coordinate system can be related to derivatives in the Cartesian coordi-
nate system using the Jacobian matrix.

(B2)

Taking derivatives of Eqs. (B1) with respect to ξ and s and rearranging

(B3)

Inverting yields

(B4)

where the Jacobian at the curve S(ξ = 1) is

|J(s)| = xs(s) ys(s)‚ s − ys(s) xs(s)‚ s (B5)

For plane stress and plane strain problems the incremental ‘volume’ is

dV = |J(s)| ξ dξ ds (B6)

D[ ] E
1 ν 2–
--------------

1 ν 0
ν 1 0

0 0 1 ν–
2

------------
=

D[ ] E
1 ν+( ) 1 2ν–( )

--------------------------------------

1 ν– ν 0
ν 1 ν– 0

0 0 1 2ν–( )
2

--------------------
=

∂
∂ξ------

∂
∂s
-----

 
 
 
 
  ∂x

∂ξ------ ∂y
∂ξ------

∂x
∂s
----- ∂y

∂s
-----

∂
∂x
-----

∂
∂y
-----

 
 
 
 
 

=

∂
∂ξ------

1
ξ---

∂
∂s
-----

 
 
 
 
 

xs s( ) ys s( )
xs s( ),s ys s( ),s

∂
∂x
-----

∂
∂y
-----

 
 
 
 
 

=

∂
∂x
-----

∂
∂y
-----

 
 
 
 
 

1
J s( )------------- ys s( ),s y– s s( )

x– s s( ),s xs s( )

∂
∂ξ------

1
ξ---

∂
∂s
-----

 
 
 
 
 

=



118 Andrew J. Deeks

If the linear operator is decomposed as

[L] = [L1] + [L2]  (B7)

using Eq. (B4) yields

 (B8)

where

(B9)

(B10)
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