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Optimal distribution of the cable tensions and 
structural vibration control of the 
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Abstract: In order to trace a target in deep sky, a feed cabin 20 tons in weight used for a large radio
telescope is drawn with six cables. To realize a smooth tracing all the time, optimal distribution of the
cable tensions is explored. A set of cable-clog systems is utilized to control the wind-induced vibration of
the cable-cabin structure. This is an attempt to apply the passive structural control strategy in the area of
radio astronomy. Simulations of wind-induced vibration of the structure in both time and frequency
domains offer a valuable reference for construction of the next generation large radio telescope. 

Key words: large radio telescope; cable-cabin structure; optimization; wind-induced vibration; passive
structural control; nonlinear analysis.

1. Introduction 

The world’s largest radio telescope (LT) is hopefully to be built in KARST area of Guizhou
Province of China in near future (Li 1998). Since the spherical reflector 500 meters in caliber was
too large to rotate, unlike reflectors of traditional radio telescopes, the reflector was set on a natural
limestone depression surrounded by hills over two hundred meters high. On the contrary, the cable
towers were erected on the hills and a line feed 20 tons in weight was drawn with six cables to
trace an object moving across the sky (Duan 1999).

According to scientific object of LT, the receiving frequencies of electromagnetic waves of LT are
demanded to cover a wide bandwidth from 0.3 GHz to 8.8 GHz. However, there is a strict constraint
of the bandwidth if a line feed is utilized. For the sake of this, an active reflector design concept
was proposed (Duan 1999). The line feed was replaced by nine multi-beam point feeds with
different bandwidths. These point feeds were amounted in a cabin drawn with six cables.
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Correspondingly thousands of hexagonal panels were put together forming the spherical reflector
and each hexagonal panel could be adjusted by the hydraulic devices independently. When a
working point feed tracing the selected target, those illuminated hexagonal panels form a local
parabolic reflector with 300 meters in caliber. With the movement of the working point feed, new
local parabolas were generated continually. Fig. 1 presents the improved model of LT with a feed
cabin.

The cable tensions are asked to make sure that the radio source (target) is always aimed and
traced nicely and smoothly. It is necessary to find an optimal distribution of the cable tensions. In
this way, the six servomotors controlled by a central computer will work in a good condition and
the position and orientation of the cabin can be kept stable.

Since the cabin is suspended with six computer-controlled long cables, the stiffness of the cabin-
cable structure is pretty low. In addition, the cabin may move away from its desired position and
orientation under disturbances, for instance, random wind. The most common used control devices
for tall buildings and high-rise structures are active and passive tuned mass dampers (ATMD and
TMD) (Li and Cao 1999). Besides, inclined cables with lower ends fixed on bases are also used for
high-rise structures such as guyed towers and guyed masts. However the cabin has not enough space
to hold a TMD, and unlike stationary high buildings and high-rise structures, the feed cabin has to
move slowly to trace a target which does not allow the inclined cables with fixed ends. So the
traditional structural control methods mentioned above are not appropriate for the situation here. 

On the one hand, the wind-induced vibration of the structure must be reduced. On the other hand,
the passive cables should not hinder the specified movement of the cabin. As a result, three sets of
passive cable-clog systems are added into the structure symmetrically as shown in Fig. 1. Each
cable-clog system consists of a passive cable, a clog and a pulley. Taking account of their stiffness

Fig. 1 Improved model of LT with a feed cabin
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and damps, these cable-clog systems could be considered as three parallel TMD in general.
For a strong nonlinear structure, it is necessary to give an initial static reference posture of the

structure to construct the geometry stiffness matrix before vibration analysis. In fact, this job has
been made at the same time when we determine the optimal cable tensions by executing nonlinear
static analysis of the cable-cabin structure.

2. Nonlinear static analysis of the structure

2.1 Workspace of the cabin

In Fig. 1, radius of curvature of the reflector is R with the center . According to the observing
requirement, the cabin has to be moved on the surface of a spherical part with the radius of 0.533R,
centered at the center . During the observation, the local coordinate axis Z1 of the cabin should
always pass through the center  and axis Y1 should always intersect with axis Z. In this case, axis
X1 always keeps horizontal. α, γ, and ϑ are the orientation angles of the cabin. α is the angle
between vertical planes O1Y1Z1 and OXZ. γ is the angle between axes Z and Z1. ϑ is the angle
around axis Z1. The maximum of γ is Φ/2. 

2.2 Equivalent equations on the cabin

In Fig. 1, towers A1~ A6 are distributed evenly on a circle with the diameter of D1. The cables
A1B1, A2B2, and A3B3 are connected from the top of the cabin to the towers A1, A2, and A3

respectively. The other three cables A4B4, A5B5, and A6B6 are connected from the towers A4, A5, and
A6 to the points B4, B5 and B6 of the cabin. In Fig. 2, B1, B2, and B3 are overlapped at the top point
O2 of the cabin, and B4, B5, and B6 are three even distributed points of the cabin.

Angle θ (Fig. 2) between O1B4 and O1X1 is the orientation angle of the cabin indicating the
rotation of the cabin around its axis Z1. Upon the global coordinates of the origin O1 are known the
orientation angles α and γ can be known too. However the orientation angle θ has to be found. It
can be noted from Fig. 2 that the coordinates of B4, B5, and B6 have relationships with θ , and the
global coordinates of Bi can be obtained as follows,

O′

O′
O′

Fig. 2 Connection between the cables and the cabin
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(1)

where rO1 is the absolute vector of the origin O1 in global coordinate system OXYZ, and ri1 is the
relative vector of end Bi in local coordinate system O1X1Y1Z1. Q is the orientation matrix of the
cabin related to α and γ . From definition on α and γ in section 2.1, Q can be found from,

(2)

where the expressions cα and sα stand for cosα and sinα respectively.
Each cable is located in a vertical. Supposing β i is an angle between cable AiBi and the vertical

plane OXZ, then β i can be described by the coordinates of Ai and Bi. A cable tension Fi with respect
to the cabin can be written in terms of , in which Hi and Vi are the
horizontal and vertical components of Fi separately as shown in Fig. 3.

Up to now, the equivalent equations on the feed cabin can be written as follows,

(3)
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Fig. 3 Components of a cable tension with respect to the cabin
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In which, W is the weight of the cabin. xd and yd are the coordinates of cabin’s center of gravity in
global coordinate system OXYZ. 

2.3 Nonlinear equivalent equation on a cable
 
Each cable can be described in its local coordinate system Ai xi zi . 
From Fig. 4(a), the equivalent equation of moment of each active cable with respect to its upper

suspension point Ai is 

(4)

Meanwhile, the equivalent equation of moment of each passive cable with respect to its lower end
Ai (Fig. 4(b)) becomes,

(5)

where q is the density of cable material. li and hi are the vertical and horizontal projected lengths of
the cable related to θ .  is a differentiation of zi with respect to xi, which can be obtained from the
following equation (Wang 1999)

(6)

In which, integral constants c1i and c2i can be obtained from boundary conditions Ai(0, 0) and Bi(li, hi).
In addition, the equivalent equations for three passive cables in the directions of the local axes xi

and zi can be known respectively as follows,
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Fig. 4 A cable in its local coordinate system
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(7)

Assuming that each clog has the same weight P, the tension at lower end Ai of each passive cable
will satisfy the following equations,

(8)

Combining Eqs. (5), (7) and (8), gives the following formulae, 

(9)

2.4 Nonlinear equivalent equations on the cable-cabin structure

At any point within the workspace of the cabin, all six parameters Xo1, Yo1, Zo1, α, γ, and θ of the
cabin are known except for θ. If θ is assumed suitably, the coordinates of each end Bi can be
obtained correspondingly. Consequently, hi and li can be found too. As a result, H7, H8, and H9 can
be obtained by least square method. 

From Eqs. (4) and (5), the vertical component Vi of each cable tension at the cabin end can be
expressed with Hi . Substituting this expression and H7, H8, and H9 into Eq. (3) yields the following
equation

     (10)

where  is a Jacobin matrix. H =  is the vector describing the
horizontal components of the active cable tensions.  is the load vector acting on the
structure. 

2.5 Optimal distribution of the cable tensions 

The six active cables are controlled with six computer-controlled servomotors. Since a cable can
be subjected to tension only, the posture adjusting of the cabin will be constrained to a certain
extent. In order to have a uniform tension distribution among the active cables, the following
mathematical model is proposed,

min f (θ ) = maxFi − minFi (i = 1, 2, ..., 6)
s.t. AH(θ ) = B(θ )

Hi > 0 (11)

where constraint Hi > 0 ensures the cables state under tension. It should be noted that .
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2.6 Numerical simulation results

Suppose that the diameter of distribution circle of the towers Dt = 500 m, the heights of the active
and passive cable’s towers Ta= 250 m and Tp= 73 m respectively, the caliber of the spherical
reflector D = 400 m, the taper angle Φ = 80o, the orientation angles α = 0o and γ = 15o (Fig. 1 and
Fig. 5). The weights of the cabin and each clog Q = 20 t and P = 1 t respectively. The radius of
curvature of the reflector will be,

  

 (12)

The coordinates of a point p within workspace of the cabin will be,

xP = 0.533Rsinγ cosα, yP = 0.533Rsinγ sinα and zP = R(1 − 0.533cosγ ) (13)

It should be noted that the weight of each clog should be large enough to balance the weight of
the corresponding passive cable. On the other hand, considering powers of the servomotors, the

R
D 2⁄

Φ 2⁄( )sin
------------------------=

Fig. 5 Sketch map for numerical simulation
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weight of the clog should not be too large. Under these conditions, the optimal results of the active
cable tensions are drawn in Fig. 6, and the corresponding object function is described in Fig. 7.

In Fig. 6 and Fig. 7, the horizontal axes describe parameter θ whilst the vertical axes show the
active cable tension Fi and the object function given by formula (11) respectively. From Fig. 6, it
can be noted that the cable tensions are varying with θ, particularly within . For
instance, F1max is seven times as large as F1min. In order to have a smooth movement of the cabin, it
is necessary to optimize the distribution of cable tensions. In Fig. 7, object function reaches its
minimum when θ = 180.38o. Obviously, we should select it as the final selection of the cable
tensions.

Further supposing that the orientation angles  and α varies within  whilst the
other parameters have the same values as above, the horizontal component Hi of the cable tensions
are shown in Fig. 8. In which, the horizontal axis describes α, and the vertical axis describes
H1~ H9. The smooth optimal tensions are suitable for servomotor control. 

180.28o 180.52o[ ]

γ 15o≡ 20o 20o–[ ]

Fig. 6 Variations of the active cable tensions with the orientation angle θ

Fig. 7 Object function
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3. Wind-induced vibration of the cable-cabin structure

3.1 Simulation of the wind velocity 

Aerodynamic forces acting on structures arise from the superposition of static loads due to mean
wind and fluctuating loads due to gusts. Thus a wind velocity may be decomposed into 

(14)

where  is a fluctuating velocity and  is a mean velocity at height z satisfying the
exponential law:

V x y z t, , ,( ) V z( ) v x y z t, , ,( )+=

v x y z t, , ,( ) V z( )

Fig. 8 Horizontal tensions of the cables for the specified orbit
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(15)

in which  indicates the mean velocity at 10 meters high; α is a coefficient related to the ground
roughness.

Davenport spectrum of a horizontal fluctuating velocity is:

(16)

where K is a roughness coefficient and  is the integral scale of turbulence. From formula (16),
mean square value of a fluctuating velocity can be deduced

(17)

Usually a fluctuating velocity is considered as a Gaussian process with a zero mean, so its
standard deviation may be obtained as follows:

(18)

The cable-cabin structure is likely to be a high-rise structure, and Davenport spectrum does not
vary with height, so Maier spectrum related to height z is introduced as,

(19)

The cross-power spectrum of a fluctuating velocity could be written as follows (Wang 1994):

(20)

in which CZ is an exponential decay coefficient and ∆ z is the height difference between two points.
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Further the matrix of power spectral density can be given as (Wang 1994)

(21)

in which ω = 2π f and H(ω) is a triangle matrix gotten from Cholesky decomposition of matrix
.

Up to now, the along-wind velocity is simulated as follows (Wang 1994):

(22)

in which  is the mean wind velocity at jth height; n and N denote the numbers of divided
segments uniformly along the structural height and in frequency band of the wind velocity spectrum
respectively; ∆ω is a frequency increment; ψjm(ωl) refers to a phase angle related to two points at
different heights; θml is a random variable ranging from 0 to 2π. In this paper, the wind-induced
vibration caused by the along-wind velocity is considered especially.

The wind pressure can be simulated as follows:

 (23)

where ρ is the air density.

3.2 Simulation of the wind forces acting on a cable

Each cable is divided into a group of cable bars with a length about 8 meters long. Assuming the
vertical projection length of i th cable element is equal to hi ; The diameter of the cable is d and the
incidence angle of wind velocity with respect to ith cable element is ϕi . The horizontal and vertical
components of the wind force acting on the ith cable element can be expressed as (Zhang 1985):

(24)

where the coefficients µHi cable and µVi cable are related to the angle ϕi .

3.3 Simulation of the wind forces acting on the cabin

3.3.1 Decomposition of the wind velocity
Suppose the tilt cabin lies at a point within the workspace and the horizontal wind blows in the

direction of global axis X as shown in Fig. 1. To convenient the simulation, the wind velocity V is
decomposed along local axes X1, Y1, and Z1 of the cabin, i.e.,

VX1 = Vsinα,   VY1 = Vcosα cosγ ,   VZ1 = Vcosαsinγ (25)
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A hemisphere with the radius of 3 meters, centered at O1, and a spherical shell with  meters
in radius, centered at O2, form the cabin as shown in Fig. 9. The shape coefficients of the
hemisphere and the spherical shell are given as (Zhang 1985)

(26) 

3.3.2 Wind forces caused by VY1

Since the rigidity of the cabin is much larger than that of the cables, it is reasonable to consider
the cabin as a rigid to find the resultant wind forces acting on it before making finite element
analysis for the cable-cabin structure. 

Considering Eqs. (23), (25), and (26), the wind forces acting on the hemisphere caused by VY1 can
be replaced by three equivalent forces acting at the center O1 by integrating on the surface of the
hemisphere. Being dF as shown in Fig. 9(a) is a normal force, the equivalent forces are calculated
by:
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Fig. 9 Resultants wind forces acting on the cabin
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(29)

in Eqs. (27)-(29), the subscripts X1hemi, Y1hemi, and Z1hemi of F refer to the directions of the
equivalent forces acting on the hemisphere, and the superscript Y1 means that the force is caused by
VY1. ωY1 denotes the wind pressure caused by VY1.

Since symmetry,  becomes zero. In Eq. (28), the coefficient , it
indicates that the shape of the hemisphere is of benefit for decreasing the wind forces acting on
the cabin.  means that  does not press the cabin down and on the contrary
draws it up. 

Similarly the wind forces acting on the surface of the shell caused by VY1 can also be replaced by
three equivalent forces acting at the center O2 by integrating on the surface of the shell:

(30)

(31)

         (32)

By executing the similar way, we can also have the equivalent forces acting at O1 and O2 caused
by VX1 respectively.

3.3.3 Wind force caused by VZ1

VZ1 has the same direction as local axis Z1 does. Taking the shape coefficient µcabin = 1.3 yields the
following equivalent force caused by VZ1 acting on the whole cabin,
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3.3.4 Resultants of the wind forces
From Eqs. (27)-(35), all the equivalent forces obtained above can be further combined into three

forces and two moments acting at O2, i.e., resultant forces caused by V as shown in Fig. 9(b), 

(36)

(37)

       (38)

 
(39)

 (40)

Since the projection of the origin O1 on horizontal plane OXY may be at any quadrant, sign functions
sgn(sinα) and sgn(cosα) are introduced into the above Eqs. (36)-(38).

Let  represent a vector of the wind
forces acting on the cabin in local coordinate system. The vector can be transformed from local
coordinate system to global coordinate system as,

(41)

where Q is the orientation matrix of the cabin given in Eq. (2).

4. Simulation of wind-induced vibration of the cable-cabin structure

4.1 FEA model of the cable-cabin structure 

Each cable is divided into a group of cable bars about 8 meters long. The frame structure of the
cabin consists of 96 aluminum bar elements and 27 steel beam elements respectively. 

If all six servomotors are braked, the cable-cabin mechanism will become a structure. When the
origin O1 of local coordinate system of the cabin is at point D2(−30.263, 95.268, 191.929) (m) (in
Fig. 5) and the orientation angles α = −107o37', and γ = 39o59', the cabin reaches a boundary point
of its workspace. At such a position and orientation, the structure is unsymmetrical badly, so the
structural stiffness will be quite weakness. Choosing D2 as a typical point, the wind-induced
vibrations of the six-cable structure and the improved nine-cable structure are simulated and
compared. 
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4.2 Dynamic equation of the cable-cabin structure

Dynamic equation of the cable-cabin structure is 

(42)

where δ and F denot the displacement of the structral nodes and the load acting on the structure; M,
C, and K are the concentrated mass matrix, damp matrix and stiffness matrix respectively. 

Especialy K = K0 + Kσ . K0 is a line stiffness matrix whileas Kσ is an initial stress matrix or geometry

stiffness matrix. . To reflect the real damp character of the structure, N  should

be large enough. Considering the computer capacity, N is chosen as 165 here. ωi and ξ i are the
natural frequency and damp ratio, and δ0i is a nomal modal vector. 

Since the structure contains long cables, many low natural frequencies exist. Table 1 lists the
lowest five natural frequencies. Table 1 illustrates that the cable-clog systems will increse the
structural stiffness.

4.3 Time history of the structure vibration

Frequency-domain analysis is suit for linear structures. To make a nonlinear analysis precisely,
time-domain analysis has to be made (Wang 1994). Along-wind velocity is considered as an ergodic
stationary random process and samples of the wind velocity related to time are generated by Eq. (22).
Exerting wind forces on the structure with a mean velocity of 17 m/s which is the largest one in the
site. For a sample of the wind velocity persisting 60 seconds, the nonlinear dynamic Eq. (42) is
integrated directly by Newmark-β method using ADINA.

Among all the cabin nodes, the suspension point B4 (in Fig. 2) has the largest vibration
displacement. Fig. 10 shows the time history of displacement of the point B4 and the left and right
parts correspond to the six-cable and nine-cable structures respectively.

From Fig. 10, the cable-clog systems decrease the maximum displacement of the point B4 from 70
centimeters to 7 centimeters. Because the wind velocity blows in the direction of axis X, the
displacement along axis X is the largest one. Corresponding to axes X, Y, and Z, the ratio of
displacement means of B4 between the six-cable and the nine-cable structures is = (243.41,
6.87, 5.46).

Mδ·· Cδ· Kδ+ + F=

C = M 2ω iξ iδ0iδ0i
T

i 1=

N

∑
 
 
 

M

µ 6 µ 9⁄

Table 1 Natural frequencies of the structure (HZ)

Order of the frequencies Six-cable structure Nine-cable structure

1 0.03057 0.04614
2 0.05235 0.07677
3 0.05868 0.08960
4 0.08032 0.1027
5 0.08473 0.1104
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Fig. 11 shows the time history of displacement of the lower ends A7, A8, and A9 of the passive
cables. These displacements are in the directions of tangent at pulley A7, A8, and A9 respectively.
Since the lengths of the three passive cables are l7 = 318.03 m, l8 = 234.18 m, and l9 = 185.03 m
respectively when the cabin is balanced at the point D2, the cable A9B9 is stretched most tightly and
the displacement of the end A9 is the smallest one. In addition, the orientation of the cable A8B8 is
consistent with along-wind direction nearly, the vibration of the end A8 contains the translation in
the along-wind direction and vibration caused by turbulence. 

4.4 Power spectral density of the responses

The response spectrum of displacement at point B4 can be obtained using FFT transformation
from the corresponding time history. The left and right parts in Fig. 12 describe the spectra
corresponding to the six-cable and nine-cable structures respectively. It can be found that the cable-
clog systems not only absorb the vibration energy at lower frequency band considerably but also

Fig. 10 Time history of displacement of the point B4

Fig. 11 Time histories of displacement of the lower ends A7, A8, and A9
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constrain the vibration energy at higher frequency band.

5. Conclusions

From the above discussion, we may come to the following conclusions:
The cable tensions are sensitive to the orientation angle θ of the cabin. Optimization on cable

tension distribution related to θ is necessary to benefit the computer control and ensure smooth
movement.

It is necessary to utilize some measures to control the structural vibration of the cable-cabin
structure. The three cable-clog systems absorb much vibration energy of the cable-cabin structure
and transform the energy into the vibration of clogs massively. Therefore the wind-induced vibration
of the cable-cabin structure is constrained significantly. 

Although the cable-clog system constrains the structural vibration effectively, the maximum
displacement of the feed may not satisfy the precision requirement, i.e., the maximum displacement
of the feed being away from theoretical position may not be able to be less than 4 millimeters. For
the sake of this, a parallel manipulator, Stewart platform, is amounted in the feed cabin as a feed
position-fining platform (Su 2000). The initial fining made by the six active cables and the second
fining made by Stewart platform compose a two-level adjusting system, and by this adjusting system
the precision requirement on position and orientation of the feed may be assured. 
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