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Free vibrations of inclined arches using finite elements
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Abstract. This paper presents a finite element approach for determining the natural frequencies for
planar inclined arches of various shapes vibrating in three-dimensional space. The profile of inclined
arches, represented by undeformed centriodal axis of cross-section, is defined by the equation of plane
curves expressed in the rectangular coordinates which are : circular, parabolic, sine, elliptic, and catenary
shapes. In free vibration state, the arch is slightly displaced from its undeformed position. The linear
relationship between curvature-torsion and axial strain is expressed in terms of the displacements in three-
dimensional space. The finite element discretization along the span length is used rather than the total arc
length. Numerical results for arches of various shapes are given and they are in good agreement with
those reported in literature. The natural frequency parameters and mode shapes are reported as functions
of two nondimensional parameters: the span to cord length ratio (e) and the rise to cord length ratio (f ).

Key words: finite elements; free vibrations; inclined elastic arches; mode shapes.

1. Introduction

A considerable amount of research work has been done on the problem of free vibrations of
arches and curved beams over the past several decades. In the literature, most of the research work
is limited to arches supported at same level, and the analyses have been done only in a single plane:
either in-plane or out-of-plane motion. Analytical solution for free vibrations can be found in cases
where arches have simple geometry. For more complex configurations, a numerical method such as
finite element method may be used. In-plane vibration analysis of circular arches were reported by
Den Hartog (1928), Wolf (1971), Veletsos et al. (1972), Austin and Veletsos (1973), Irie et al.
(1983) and Wilson et al. (1994). Arches with variable curvature (non-circular geometries) had been
studied by many researchers, including, Volterra and Morell (1960, 1961a), Wang (1972), Romanelli
and Laura (1972), Lee and Wilson (1989) and Oh et al. (1999). Free vibration of planar catenary
arch with unsymmetric axes was reported by Wilson and Lee (1995). Circular arches and curved
beams vibrating out-of-plane were reported by Culver (1967), Shore and Chaudhuri (1972), Volterra
and Morell (1961b), and Irie et al. (1980, 1982a, 1982b). 

Although the analysis of arches and curved structures using the finite element method has been
well established, it does not take advantage of arch geometry. In many practical cases, arch
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geometry can be defined by the equation of plane curves in rectangular coordinates. With this
information, it is more convenient to use the present procedure to solve the problem of planar
inclined arch vibrating in three-dimensional space. In the procedure, geometry of the arch is
represented by the undeformed centroidal axis of cross section and defined by equation of plane
curves expressed in rectangular coordinates. In the vibration state, where the arch is slightly
displaced from its undeformed position, the linear relationship between curvature-torsion and axial
strain is expressed in terms of displacements in three-dimensional space. In the finite element
formulation, the displacements causing bending, torsion and axial deformations along its curved axis
are approximated by cubic polynomials in terms of the arc length parameters. The effects of shear
deformation, rotatory inertia and warping are not considered in the present paper. In the discretizing
process, the span length of the arch rather than total arc length is subdivided into a number of
elements since, from the architectural point of view, span length is usually known or given, but the
total arc length may not. Together with the arch geometry information, input data can be reduced
and alleviated. The stiffness and mass matrices are formulated to obtain the natural frequencies and
corresponding mode shapes of free vibrations. Numerical results of the test problems are presented
and compared favorably with those found in the literature. The natural frequency parameters and the
corresponding in-plane and out-of-plane modes are demonstrated as functions of two geometrical
parameters: the span to cord length ratio (e) and the rise to cord length ratio (f ).

2. Method of analysis

The geometry of an inclined arch with a uniform cross-section is shown in Fig. 1(a). It can be
represented by the equation of plane curves expressed in rectangular coordinates. For a given shape
of the plane curve, span length, cord length and arch rise, every location along the curve can be
determined. The equations of plane curves for various shapes of arches are as follows

Fig. 1 (a) Arch geometry and geometric parameters; (b) coordinates at centroidal axis
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2.1 Circular arch

(1a)

where

 (1b, c)

2.2 Parabolic arch

  (2a)

where

 (2b)

2.3 Sinusoidal arch

(3a)

where

 (3b, c)

 (3d)

2.4 Elliptic arch

(4a)

where

 (4b, c)

 (4d)

2.5 Catenary arch

 (5a)

where

 (5b)
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The geometric parameters in Eqs. (1)-(5) are defined as follows, l is the span length; L is the cord
length; h is the different distance of both ends supported; H is the arch rise; R is the radius of the
curvature of the circular arch; α is the parameter used for identifying sinusoidal and elliptic arches
only; and ρ0 is the radius of curvature at the crown of the catenary arch which is determined by
normalizing Eq. 5(a) by the catenary cord length. The non-dimensional equation of the catenary
arch is defined by the shape parameters (f ) and (g) as

  (6)

where

 (7a, b)

 (shape factors)  (8a, b)

Substituting  and  into Eq. (6) leads to

 (9)

For a given catenary shape factor f, the corresponding g value can be obtained from Eq. (9) using
the Newton-Raphson method.

In this study it is assumed that the undeformed centroidal axis of cross-section has a shape
resembling that of plane curves. Finite element discretization along the arch length, which is not yet
known, may be inconvenient for the input data process, therefore, it is preferable to discretize along
the span length. In the vibration state, the undeformed centroidal axis is assumed to be slightly
displaced from its initial position. The ξ, η, and ζ axes form a right-handed coordinate system in
normal, binomial and tangential directions, and the displacements u, v, and w at the centroidal axis
corresponding to the coordinate system are shown in Fig. 1(b). The relations between curvature-
torsion, strain and displacements at the deformed state for any section s along the curved centroidal
axis, are obtained and given here as follows (Chucheepsakul 1989):
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where κξ, κη, and τζ are the final curvatures and torsion about the ξ, η, ζ axes, respectively. θ is the
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 (11)

2.6 Element strain energy and kinetic energy

Considering the eth element along the curved axis, the element strain energy, Ue, and the element
kinetic energy, Te, can be expressed as

 (12)

(13)

where EIξ and EIη are the bending rigidities about ξ and η axes, GJ and EA are the torsional and
axial rigidities, ρ is the mass density of arch per unit length, Iρ is the mass polar of inertia per unit
length about ζ and l is an element length measured along the curve. Eqs. (12) and (13) can be
written in the following form as

 (14)

 (15)

where
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3. Finite element formulation

The displacement components u, v, w and θ of the eth element can be expressed by cubic
polynomials in term of the arc length parameter s. Hence, the displacement vector {u} can be simply
expressed in terms of a nodal displacement vector {d} through the matrix of shape functions [F]  as:
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in which

(22)

The elements of 4 × 16 matrix [F ] are

 (23)

where the components f1, f2, f3, and f4 are the standard shape functions for a beam element (Cook
1981), and

 (24)

Substitution of Eq. (21) into Eqs. (14) and (15), the strain energy and kinetic energy can be
written as:

(25)

(26)

in which  is the nodal velocity vector, and [ke] and [me] are the element stiffness and element
mass matrices, written respectively as:
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(30)

(31)

Here ‘prime’ denotes the derivative with respect to s.
Because of discretizing along the x coordinate, before the element matrices are evaluated, the

variables in term of s are required to be expressed in term of x by the following relation:

(32)

Therefore, the derivative terms with respect to s can be changed to x by the relation:

(33)

After the element stiffness and mass matrices are evaluated they are assembled to the global
system. Hence, the global equations of motion for free vibration are:

 (34)

where [K] and [M] are global stiffness and mass matrices, {D} is a mode shape vector, and ω is the
natural frequencies of vibrations. The boundary conditions are as follows: 

(a) hinged-hinged arches:

, at the left end (x = 0) and the right end (x = l ) (35)

(b) hinged-fixed arches:

, at the left end (x = 0)  (36a)

, at the right end (x = l )  (36b)

(c) fixed-hinged arches: 

, at the left end (x = 0)  (37a)

, at the right end (x = l )   (37b)

(d) fixed-fixed arches: 

, at the left end (x = 0) and the right end (x = l ) (38)

Gaussian quadrature numerical integration with four points is used to calculate the stiffness and mass
matrices, and a standard inverse vector iteration (Bathe and Wilson 1976) is used to solve Eq. (34).
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4. Numerical results and comments 

A Fortran computer program based on the procedure described above was developed for
determining the natural frequencies and the corresponding mode shapes. Test examples of arch
problems are used to demonstrate the validity of the model formulation. The total number of span
elements used throughout this analysis is twenty elements. For ease of calculation, the arches having
uniform prismatic cross section and two axes of symmetry are used. The material properties of
arches are as follows: cross-section area A = 1.2 × 10−3 m2, mass per unit length ρ = 9.42 kg/m,
moment of inertia Iξ = Iη = 1.2 × 10−7 m4, torsional constant J = 2.02464 × 10−7 m4, elastic modulus
E = 210 × 109 N/m2, shear modulus G = 81 × 109 N/m2. Table 1 shows the numerical comparison of
frequency parameter Cni for the in-plane mode of various arch shapes whereas Table 2 shows the

Table 1 Comparison of frequency parameter Cni for in-plane mode

Geometry of arch  (ni)
Frequency parameter, Cni

Mode 
shape#This study Veletsos et al. 

(1972)
Lee and Wilson 

(1989)
Wilson and 
Lee (1995)

Circular 1 27.50 27.51 - - A
hinged-hinged, 2 63.79 63.80 - - S
l = L = 1.0606 m, 3 123.07 123.12 - - A
H = 0.2197 m 4 141.56 141.52 - - S
Parabolic 1 36.11 - 36.52 - A
hinged-hinged, 2 64.95 - 64.83 - S
l = L = 1.0 m, 3 88.92 - 89.38 - S
H = 0.1 m 4 148.64 - - - A
Sinusoidal 1 28.52 -  29.35 - N
hinged-fixed, α = 0.5, 2 67.45 -  68.44 - N
l = L = 1.0 m, 3 119.31 - 119.86 - N
H = 0.3 m 4 149.65 - - - N
Elliptic 1 20.77 -  20.88 - A
fixed-fixed, α = 0.5, 2 49.15 -  49.95 - S

l = L = 1.0 m, 3 85.68 -  85.79 - A
H = 0.5 m 4 128.28 - - - S
Catenary 1 45.02 - - 46.32 A*

hinged-hinged, 2 107.44 - - 107.79 S*

l = 0.75 m , L=1.0 m, 3 166.83 - - 166.51 S*

H = 0.3 m 4 203.69 - - 204.21 A*

Catenary 1 73.18 - - 72.21 A*

fixed-fixed, 2 130.99 - - 129.23 S*

l = 0.75 m, L = 1.0 m, 3 182.39 - - 180.57 S*

H = 0.3 m 4 256.94 - - 254.69 A*

#A = antisymmetric; S= symmetric; N = neither antisymmetric nor symmetric; A* = close fit to antisymmetric;
S* = close fit to symmetric. 
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out-of-plane frequency parameter Cno of a circular arch. The values of frequency parameters Cni and
Cno are defined as follows:

 (39)

 (40)
 
It can be seen that the results are in good agreement for all cases. Thus, the authors believe that

the model formulation presented herein can be used for determining the natural frequencies of
arches of various shapes having geometry defined by the equation plane curves expressed in the
rectangular coordinates.

 The results shown in Figs. 2-17 depict the values of the first four frequency parameters (Cni and Cno)

Cni ωniL
2 EIη ρ⁄⁄=

Cno ωnoL
2

EIξ ρ⁄⁄=

Fig. 2 Hinged-hinged arches: effect of e with f = 0.3 on frequency for in-plane vibration; ____, circular; −−−,
parabolic; ------, sinusoidal(α = 0.5); −-−-, elliptic(α = 0.5); −--− , catenary

Table 2 Comparison of frequency parameter Cno for out-of-plane mode

Geometry of arch (no)
Frequency parameter, Cno Mode 

shape#This study Shore and Chaudhuri (1972)

Circular 1 5.10 5.10 S
hinged-hinged, 2 28.63 28.65 A
l = L = 1.0606 m, 3 68.48 68.55 S
H = 0.2197 m 4 124.39 124.51 A

#A = antisymmetric; S = symmetric.
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corresponding to the first four free vibration modes of the five arch shapes. The hinged-hinged,
hinged-fixed, fixed-hinged, and fixed-fixed end constraints were considered for each of the arch
geometry with the given parameters of the span to cord length ratio (e), and the rise to cord length
ratio (f ) and α (it is noted here that α is used for sinusoidal and elliptic geometries only). 

Figs. 2-9 show the variation of Cni and Cno due to effect of the span to cord length ratio e with

Fig. 3 Hinged-fixed arches: effect of e with f = 0.3 on frequency for in-plane vibration. Key as Fig. 2

Fig. 4 Fixed-hinged arches: effect of e with f = 0.3 on frequency for in-plane vibration. Key as Fig. 2
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fixed value of f = 0.3 and α = 0.5. The end constraint of all five arches are varied consecutively from
hinged-hinged, to hinged-fixed, to fixed-hinged, and to fixed-fixed conditions. It can be seen that
each value of frequency parameter increases with the increase of constraint condition, while the
other parameters remain constant. It is also observed that the frequency parameters decrease with
the increase in span to cord length ratio. For in-plane vibration (Figs. 2 and 5), it appears that
frequency crossover as well as modal transition occur between two mode shapes ni = 3 and ni = 4,

Fig. 5 Fixed-fixed arches: effect of e with f = 0.3 on frequency for in-plane vibration. Key as Fig. 2

Fig. 6 Hinged-hinged arches: effect of e with f = 0.3 on frequency for out-of-plane vibration. Key as Fig. 2
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except for hinged-fixed and fixed-hinged conditions in Figs. 3 and 4. The circular arch is nearly fit
to symmetric mode shape at where ni = 2, where as the arches with variable curvature (parabolic,
sinusoidal, elliptic and catenary) are nearly fit to antisymmetric and changed to symmetric mode
shapes when the span to cord length ratio is increased, as shown in Figs. 2 and 5 respectively. For
out-of-plane vibration (Figs. 6-9), the values of Cno for all arch geometries are slightly different and
have the same trend. The lowest torsional frequency parameter C1(T) represented by the torsional

Fig. 7 Hinged-fixed arches: effect of e with f = 0.3 on frequency for out-of-plane vibration. Key as Fig. 2

Fig. 8 Fixed-hinged arches: effect of e with f = 0.3 on frequency for out-of-plane vibration. Key as Fig. 2
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angle is found and at e = 0.5 this value belongs to the fourth mode of vibration.
Figs. 10-17 show the variation of Cni and Cno due to the effect of the rise to cord length ratio f

with fixed value of e= 1.0 and α = 0.5. The end constraint conditions are varied from hinged-hinged
to hinged-fixed (or fixed-hinged) to fixed-fixed conditions for all geometry of arches. It can be seen
that each value of frequency parameter increases, while other parameters remain constant (for
hinged-fixed and fixed-hinged arches, the frequency parameters are equivalent due to the same end

Fig. 9 Fixed-fixed arches: effect of e with f = 0.3 on frequency for out-of-plane vibration. Key as Fig. 2

Fig. 10 Hinged-hinged arches: effect of f with e = 1.0 on frequency for in-plane vibration. Key as Fig. 2
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constraint condition). For in-plane vibration (Figs. 10 and 13), it is observed that frequency
crossover as well as modal transitions can occur between two mode shapes ni = 1 and ni = 2, ni = 3
and ni = 4, however, the frequency crossover does not occur in hinged-fixed and fixed-hinged arches
as found in Figs. 11, 12. For out-of-plane vibration (Figs. 14-17), it is found typically that the
frequency parameters decrease with the increasing value of rise to cord length ratio, and the mode
shapes of arches with same end conditions can be identified. The mode shapes for arches with

Fig. 11 Hinged-fixed arches: effect of f with e= 1.0 on frequency for in-plane vibration. Key as Fig. 2

Fig. 12 Fixed-hinged arches: effect of f with e= 1.0 on frequency for in-plane vibration. Key as Fig. 2
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mixed end conditions can be neither symmetric nor anti-symmetric.

5. Conclusions

A finite element procedure for free vibration analysis of the planar arches with support at the
same or different level, and vibrating in three-dimensional space has been presented. The geometry

Fig. 13 Fixed-fixed arches: effect of f with e= 1.0 on frequency for in-plane vibration. Key as Fig. 2

Fig. 14 Hinged-hinged arches: effect of f with e= 1.0 on frequency for out-of-plane vibration. Key as Fig. 2
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of arches is represented by an equation of a plane curve in rectangular coordinates The model
formulation has been verified by the favorable comparisons the values of the frequency parameters
with those reported in the literature. For a given set of arch parameters (e and f ) and matching end
constrains, numerical results have shown that the frequency parameters for arches with variable
curvature (parabolic, sinusoidal, elliptic and catenary arches) change only slightly in these groups;
but show somewhat larger differences for the circular arch due to its constant curvature. As

Fig. 15 Hinged-fixed arches: effect of f with e= 1.0 on frequency for out-of-plane vibration. Key as Fig. 2

Fig. 16 Fixed-hinged arches: effect of f with e= 1.0 on frequency for out-of-plane vibration. Key as Fig. 2
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expected, the mode shapes for the hinged-fixed and fixed-hinged cases are neither symmetric nor
antisymmetric because of the difference in end conditions. For the hinged-hinged and the fixed-fixed
types of arches supporting at the same level the mode shapes are found to be the alternating pattern
between anti-symmetric and symmetric modes. For the hinged-hinged and the fixed-fixed end
conditions of arches supporting at different levels, the numerical results have shown that neither
pure symmetric nor pure antisymmetric mode shapes exist. 
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