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Comparative dynamic studies of thick laminated
composite shells based on higher-order theories
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Abstract. Here, the dynamic response characteristics of thick cross-ply laminated composite cylindrical
shells are studied using a higher-order displacement model. The formulation accounts for the nonlinear
variation of the in-plane and transverse displacements through the thickness, and abrupt discontinuity in
slope of the in-plane displacements at any interface. The effect of inplane and rotary inertia terms is
included. The analysis is carried out using finite element approach. The influences of various terms in the
higher-order displacement field on the free vibrations, and transient dynamic response characteristics of
cylindrical composite shells subjected to thermal and mechanical loads are analyzed.

Key words: laminated shell; cross-ply; free vibration; transient response; higher-order; finite element;
panels.

1. Introduction

The field of aerospace and civil engineering has brought out the significance of analyzing heat
resisting, light-weighted structures. The increased use of composite materials in high temperature
environment, high strength and stiffness applications have made the mechanical/thermal analysis of
composite structures necessary. Laminated fiber reinforced composites are characterized by low
transverse shear modulus compared to the in-plane Young’s moduli and therefore the classical
theory of non-deformable normals based on neglecting transverse shear strains is not acceptable for
laminated composite structures.

To account for shear deformation effects, various structural theories proposed for the analysis of
composite laminates have been reviewed and assessed in the literature (Noor and Burton 1990, Reddy
1990, Mallikarjuna and Kant 1993). It is brought out that the first-order theory is quite accurate for
the estimation of global behaviors like deflection, fundamental frequency and buckling load of
composite laminates, but is inadequate for the estimation of higher-order frequencies, mode shapes,
large deflections and distribution of stresses. Furthermore, it requires an arbitrary shear correction to
the transverse shear stiffness. This has necessitated the introduction of higher-order function in the
displacement model based on global approach, and layer-wise theory for the study of plates/shells
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(Lo et al 1977, Leeet al 1990, Khdeir and Reddy 1999, Cabal 1991, Chang and Huang 1991,
Tenneti and Chandrashekhara 1994, Xastesl 1993, Di Sciuva and Icardi 1993, He 1994, Shu and

Sun 1994, Icardi 1998, Ossadzetval 1999, Makhechat al 2001). In all the laminated plate work
concerning global approach, the zig-zag theory with/without through thickness variation in transverse
displacement is introduced in the kinematics. It is further noticed from the literature that the
contribution of various terms involved in the higher-order displacement kinematics is studied for the
static and dynamic characteristics of thick laminated plates (Kant and Swaminathan 2001, Carrera
and Krause 1998, Ganapathi and Makhecha 2001, Maklechla2001) whereas such studies for

the shell analysis are rather limited. Also, the application of higher-order formulation for dynamic
analysis of composite shells, in particular, due to different loading environment is scarce in the
literature. Recently, based on exact elasticity analysis of laminated composite plates (Bhakkar
1996), an improved kinematics for higher order theory has been suggested for laminated plates by
combining zig-zag theory along with variable transverse displacement across the thicknesal(Ali

1999) for the accurate results. But the analysis of composite shells has been carried out using higher-
order displacement model having zig-zag function along with constant transverse displacement
(Bhaskar and Varadan 1991, Xavetral 1993, Icardi 1998) while studying the static responses due

to pressure load. However, the use of refined kinematics, including zig-zag theory and variable
transverse displacement across the thickness for higher-order model seems to be scarce in the
literature for the analysis of laminated thick shells.

Here, employing a higher-order theory with zig-zag function along with variable transverse
displacement, the dynamic analysis is carried out by extending the finite element approach of
Makhechaet al (2001) for studying the free vibration characteristics and forced response behavior of
cross-ply cylindrical shells subjected to thermal/mechanical loads. All the inertia terms, due to the parts
resulting from first-order model, the higher order displacement function, and the coupling between the
different order displacement are included in evaluating the kinetic energy. Frequency values are
obtained through eigenvalue analysis and the response characteristics are evaluated using Newmark
integration technique. The numerical results evaluated here illustrate not only the significance of the
present model but also highlight the comparative study of the response characteristics of laminated
composite shell structure, predicted by the different possible higher-order structural models.

2. Formulation

A laminated composite shell of revolution is considered with the co-ordinatgleng the
meridional directiony along the circumferential direction amdlong the thickness direction having
origin at the mid-plane of the shell. Based on Taylor's series expansion method for deducing the
two-dimensional formulation of a three-dimensional elasticity problem, the in-plane displacements
uk and vk, and the transverse displacemaerftfor the kth layer, are assumed as (Adfi al 1999,
Ganapathi and Makhecha 2001)

U, Y, 2, ) = Uo(X, Vi t) + 26,(X, Y, 1) + Z2By(X, Y, ) + Z3@ (X, ¥, 1) + S (X, Vi, 1)

VG Y 2 1) =Vo(x, ¥ ) + Z8)(x, ¥ 1) + Z2By(x, Y 1) + 2@ (% ¥ 1) + SYy(x, Y, 1)

WX, ¥ Z 1) = wo(X, ¥ 1) + ZWi(X, i t) + 22T (X, i 1) 1)
wheret is the time.
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The terms with even power inin the in-plane displacements and those odzldncurring in the
expansion forw® correspond to stretching problems. But, the terms with oddimthe in-plane
displacements and those everriim the expression for* represent the flexure problems, vo, Wo
are the displacements of a generic point on the reference suifadg;are the rotations of normal
to the reference surface about thandx axes, respectivelyws, By, By, I, @ @, are the higher
order terms in the Taylor's series expansions, defined at the reference.sysfacel ¢, are
generalized variables associated with the zig-zag funfon,

The zig-zag functionS¥, as given in the work of Murukami (1986), is defined by

S¢=21)* z /hy 2)

wherez, is the local transverse coordinate with its origin at the centre d¢thiihayer andh, is the
corresponding layer thickness. Thus, the zig-zag function is piecewise linear with vatdesnof 1
alternately at the different interfaces. The ‘zig-zag’ function, as defined above, takes care of
inclusion of the slope discontinuity afandv at the interfaces of the laminate as observed in exact
three-dimensional elasticity solutions of thick laminated composite structures. The use of such
function is more economical than a discrete layer approach of approximating the displacement
variations over the thickness of each layer separately. Although both these approaches account for
slope discontinuity at the interfaces, in the discrete layer approach the number of unknowns
increases with the increase in the number of layers, whereas it remains constant in the present
approach.

The strains in terms of mid-plane deformation, rotations of normal, and higher order terms
associated with displacements ktin layer are as,

(&) = 0°"F-{2} 3)
O0¢& O

The vector §,,4 includes the bending and membrane terms of the strain components and vector
{&s} contains the transverse shear strain terms. These strain vectors can be defined as (Kraus 1967)

ngxg E (uﬁkx +wW/R)/(1+2/R) E

Og,,0 OVSy+(U/r)cosp+ (wW/r)sing)/(1+2/R) O

0”0 O ’ 0
g - B | S

060 ByO OUy—(V/r)cosy)/(1+2/ R)+VS/(1+2/R)

0.0 O O

w0 O uS+(Ws-u/R)/(1+2/R) 0

0. 0 O ; ) _ 0

vz[1 [ v,+ (W, —(v/r)sing)/(1+2/R) u

whereR;, R, are the principal radii of curvature in meridional and hoop directions, respeatigly;
the radius of the parallel circle; agds the angle between normal and axis of revolution.

The subscript comma denotes the partial derivative with respect to the spatial coordinate
succeeding it.

Using the kinematics given in Eq. (1), Eq. (4) can be rewritten as
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[Epm] =
ad mD: [Z{&1 & & € & & & & & €9 €11 €1p €13 E1a}' (59)
O& 0O
where
(Z] = |:Zl Z, Z3 Z, Zs 0,0, 0,0, O; O; O, O 01} (5b)
02 C)2 03 03 03 ZG Z? ZB ZQ Z10 le ZlZ Zl3 Z14
The various submatrices involved in Eq. (5) are given in Appendix A.
The thermal strain vectdre,}  is represented as
D€ xx] Oa, O
O 0 O O
OeyyO Oa, O
e
— €2z a
{e} =0 "0=4T0 “ O (6)
Oe O Oty O
_ O o O
Oe,,0 Oo O
0 0
Uey,U 0o O

whereAT is the rise in temperature and is generally represented as funcstioy ehdz a,, a,, a,
and a,, are thermal expansion coefficients in the shell coordinates and can be related to to the
thermal expansion coefficientay( a,andas) in the material principal directions.
The constitutive relations for an arbitary layeiin the laminated shelk(y, 2) coordinate system
can be expressed as

{U} = { Oyx Uyy 0z Txy 4% Tyz}T = [Gk]{ Ex— Exx Eyy_ Eyy €7~ Ezz yxy_ T/xy yxz yyz}T (7)

where the terms of Q<]  matrix d&h ply are referred to the laminated shell axes and can be
obtained from thd Q,] corresponding to the fibre directions with the appropriate transformation, as
outlined in the literature (Jones 1975n}{{ &}, { €.} are stress, strain, and thermal strain vectors
due to rise in temperature, respectively. The superscrigters the transpose of a matrix/vector.

The governing equations are obtained by applying Lagrangian equations of motion given by

d/d{o(T-U;)/38] —[d(T-U;)/d5] = 0, i=1ton (8)

where T is the kinetic energyU; is the total potential energy consisting of strain energy
contributions due to the in-plane and transverse stresses, and work done by the externally applied
mechanical loads, respectivelyd}e { &, &, -, &, -, &}'is the vector of the degree of
freedoms/generalized coordinates. A dot over the variables represents the partial derivative with
respect to time.

The kinetic energy of the plate is given by

n k+1
Z

h
T(3) = %HLZ\ B[ p U VWV wk}T%HRil + Rz%jz dxdy 9)
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where p, is the mass density of thkth layer. h,, h, are the z coordinates of laminate
corresponding to the bottom and top surfaces okithdayer.
Using the kinematics given in Eq. (1), Eqg. (9) can be rewritten as

e o .
T(d) = %HL; hI pd} 121" [Z){d T A+ R%EI%H Rlzadz dxdy (10)

where {d%}" = {Uo Vo WWo 6« 6, W, B B [ & @& U ¢} and

100z00220 02050
[Z1 =l0100z00220 02205
00100z0020000

The total potential energy functional: consisting of strain energy contributions due to the in-

plane and transverse stresses, and work done by the externally applied mechanical loads, is given
by,

n "k+1

Ur(8) = ZJ’I{Z IRERCESE }dxdw JJ awdxdy (12)

whereq is the distributed pressure load acting on the middle surface of the shell.
For obtaining the element level governing equations, the kinetic and the total potential energies
may be conveniently written as

T(8) = 553 IMI57 (12)

Ur(8) = 308YKI8Y -1} (F3) ~ {83 (R
n )

Zﬁh [{edTQd{ &} %l + —E%l + —Hd }dxdy (13)

The elemental mass and stiffness matrices, and thermal/mechanical load vectors involved in Egs.
(12) and (13) can be defined as

n Niss
[M? = Ub [ pdHYTZIIZI{HY L+ S+ 2 }dxdy (14a)
K= 2
B n hk+1 T — o
[K = 13, ez [QIIZIBIH+ R+ éﬁdz}dxdy (14b)

n k 1

[FT"]=UZJ[B] [Z]'[Qd{ &} + %L Rﬁd}dxdy (14c)
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[Fil = [f{H.}Tqdxdy (14d)

Here {5°% is the vector of the elemental degrees of freedoms/generalized coordinated] and [
[B] are the interpolation and strain matrices pertaining to the element, respectively.
Substituting Egs. (12) and (13) in Eqg. (8), one obtains the governing equation for the element as,

[M{ 8% +[KTI{ 3% = {Fq} +{Fu} (15)

The coefficients of mass and stiffness matrices, and the load vectors involved in governing Eq. (15)
can be rewritten as the product of term having thickness co-ordiniiee and the term containing
x andy. In the present study, while performing the integration, terms having thickness co-ordinate z
are explicitly integrated whereas the terms contaixiramd y are evaluated using full integration
with 3 x 3 points Gauss integration rule.

Following the usual finite element assembly procedure (Zienkiewicz 1971), the governing equation
for the forced response of the laminated shell are obtained as

[MI{S} +[KI{8} ={Fq} +{Fy} (16)

where M] and K] are the global mass and stiffness matric&€s},{{ F\} are the global thermal
and mechanical load vectors, repectively.

The solutions of Eq. (16) can be obtained using either standard eigenvalue algorithm for free
vibration study or employing Newmark’s direct integration method for dynamic response analysis.

3. Element description

In the present work, a simple® continous, eight-noded serendipity quadrilateral shear flexible
shell element (HSDT13) with thirteen nodal degrees of freedgnvy( wo, 6, 6y, Wi, By, By, I, @

@, Yandyy : 13-DOF) developed based on field consistency approach (Prathap 1985) is employed.

If the interpolation functions for an eight-noded element are used directly to interpolate the
thirteen field variablesy, ... ¢, in deriving the membrane and shear strains, the element will lock
and show oscillation in the membrane and shear stresses. Field consistency requires that the
membrane and the transverse shear strains must be interpolated in a consistent mannerwphus, the
and (p, andwg) terms in the expression for membrane straini$ (first two strain components)
given in Eq. (A2) have to be consistent with the field functi;sandvy y, respectively. Similarly,
the terms &, W) and 6,, V) in the expression for transverse shear straieg gnd {£,q}) given in
Eg. (A3) have to be consistent with the field functiags, andw, y, respectively, as outlined in the
work of Prathap (1985). This is achieved by using a field-redistributed substitute shape function to
interpolate those specific terms that must be consistent. The element thus derived is tested for its
basic properties and is found free from the rank deficiency, shear/membrane locking, and poor
convergence syndrome (Ganapathi and Makhecha 2001, Makétegh@001).

The finite element represented as per the kinematics given in Eqg. (1), is referred as HSDT13 with
cubic variation. Five more alternate standard discrete models are proposed, to study the influence of
higher order terms in the displacement functions, whose displacement fields are deduced from the
original element by deleting the appropriate degrees of freedpgn [=0; or=0; oryy w & I =0;
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Table 1 Alternate eight-noded finite element models considered for parametric study

Finite element model Degrees of freedom per node
HSDT13 (Present) Uo, Vo, Wo, &, &, Wi, Bx, B Iy @, @ Ui, UK
HSDT1la Uo, Vo, Wo, &, &, B, By @ @B Yk Wy
HSDT11b Uo, Vo, Wo, 6, &, Wi, B By I, @ @
HSDT9 Uo, Vo, Wo, &, &, B, By @ @

HSDT7 Uo, Vo, Wo, &, &, ¢, @
FSDT Uo, Vo, Wo, 6, 6

or Z2terms,y, w; & I = 0; or dropping all the higher-order terms). These alternate models, and the
corresponding degrees of freedom are shown in Table 1.

4. Results and discussion

The study, here, has been focussed on the dynamic behavior of laminated composite shells based
on higher-order model and also bringing out the influences of various terms assumed in the
kinematics on the response characteristics. Although the formulation presented here is general, the
analysis is carried out for the free vibration, and the transient responses of cross-ply simply
supported cylindrical shells subjected to thermal/mechanical loads. Since the higher-order theory, in
general, is required for the accurate analysis of thick composite structures, the emphasis in the
present work is placed on the laminated thick shells for the numerical study.

Based on progressive mesh refinement, a 16 x 8 grid mesh (circumferential and meridional
directions) is found to be adequate to model the one-eighth /one-fourth of the closed/open shells for
the present analysis. Before proceeding for the detailed study, the formulation developed herein is
tested against available three-dimensional elasticity solutions. For the free vibration of laminated
plates, the fundamental frequencies are obtained employing various models given in Table 1 and
using the conditions R{=1/R,=0, and they are compared with three-dimensional elasticity
solution (Noor 1973) in Table 2 for different orthotropicity values. The results evaluated here for
laminated cross-ply cylindrical panels, and circular cylindrical shells are shown in Tables 3 and 4
along with three-dimensional solutions (Bhimaraddi 1991, Ye and Soldatos 1997). It can be seen
from Table 2 that, for higher modular raii/E,, the present model HSDT13 and HSDT11a predict
results very close to those of three-dimensional one. For the cylindrical panel case, the difference in
results predicted among various higher-order models is less in comparison with those of three-
dimensional FEM (Table 3). However, a noticeable difference is seen between the present results
and analytical solutions (Bhimaraddi 1991). This may be attributed to the assumpttt<ef
involved in the work of Bhimaraddi (1991) whereas no such assumption is used in the present work.
The material properties used, unless otherwise mentioned, are

E1/E2= 40, G]_z/Ezz Gj_g/Ezz 0.6, ng/Ezz 0.5, vi=v=v13=0.25, azlal = 0!3/(,712 1125,
E,=E; = 10° N/m?, a,= 10°°/°C, p= 1500 kg/rd

whereE, G andv are Young’s modulus, shear modulus and Poisson’s ratio. The subscripts 1, 2, and
3 refer to the principal material directions.
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Table 2 Non-dimensional fundamental frequen¢i@s= w,/ph?/E, x 10) of simply supported cross-ply
(OO/Q(P)N/Z square plates with/h =5 (GlzlEl =0.6, Gz:JEzZ 0.5,v15= V3= 13 =0.25,E,= E3)

No. of layers, Model E/E;
N 3 10 20 30 40
HSDT13 2.4935 2.7886 3.0778 3.2940 3.4638
HSDT1l1la 2.5478 2.7830 3.1066 3.2897 3.4598
HSDT11b 2.4937 2.7899 3.0858 3.3113 3.4911
2 HSDT9 2.5480 2.7843 3.1142 3.3069 3.4870
HSDT7 2.5177 2.8156 3.1125 3.3391 3.5203
FSDT5 2.4824 2.7742 3.0802 3.3256 3.5299
Elasticity (Noor 1973) 2.5031 2.7938 3.0698 3.2705 3.4250
HSDT13 2.6029 3.2488 3.7677 4.0841 4.3001
HSDT11la 2.6547 3.2408 3.7796 4.0771 4.2936
HSDT11b 2.6061 3.2595 3.7872 4.1095 4.3290
4 HSDT9 2.6580 3.2514 3.7990 4,1023 4.3225
HSDT7 2.6405 3.3506 3.9521 4.3349 4.6042
FSDT5 2.6004 3.2871 3.8706 4.2415 4.5007
Elasticity (Noor 1973) 2.6182 3.2578 3.7622 4.0660 4.2719
HSDT13 2.6264 3.3478 3.9219 4.2686 4.5035
HSDT11la 2.6780 3.3399 3.9321 4.2621 4.4976
HSDT11b 2.6289 3.3547 3.9342 4.2849 4.5225
6 HSDT9 2.6805 3.3468 3.9445 4.2783 45166
HSDT7 2.6630 3.4443 4.0957 45053 4.7987
FSDT5 2.6215 3.3643 3.9719 4.3462 4.6029
Elasticity (Noor 1973) 2.6440 3.3657 3.9359 4.2783 4.5091
HSDT13 2.6390 3.4018  4.0093 43770  4.6279
HSDT11a 2.6905 3.3941  4.0189  4.3709 = 4.6224
HSDT11b 2.6410 3.4068 4.0177 4.3881 4.6415
10 HSDT9 2.6926 3.3990 4.0274 4.3819 4.6359
HSDT7 2.6747 3.4926 4.1694 4.5924 4.8671
FSDT5 2.6321 3.4022 4.0201 4.3952 4.6508

Elasticity (Noor 1973) 2.6583 3.4250 4.0337 4.4011 4.6498
"Based on higher-order difference scheme

All the layers are of equal thickness and the ply-angle is measured with respectxiaxihe
(meridional axis). The simply supported boundary conditions considered here are:

circular cylindrical shell
Vo=Wo= 6y =wi==B=@=¢,=0atx=0,L
cylindrical shell panet

Vo=Wo= 6, =wi==B=¢g=¢y=0atx=0,L
U=Wo=6=w=I= Bx: o=Y=0 aty = 0,b
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Table 3 Comparison of natural frequency paraméeXér(= wl,/p/E,) of a two-layered cross-ply (90°)
Cylindrical panel EI/EZ = 25; G12/E2 = O.5,Gz3/E2 = 0.2, Vip = 0.25,\/31 = 0.03,\/23: 0.4,R/IL=1;
Longitudinal mode numbem = 1)

Circum. . .
h/L Wave No. HSDT13 3D FEM HSDT1la HSDT1lb HSDT9 HSDT7 FSDTSBh(T;gf)dd'
n
1 0.8067 0.8061 0.8058  0.8068 0.8059 0.8061 0.8057  0.7868
0.05 2 1.2036 11981  1.1997  1.2042 1.2000 1.2027 1.1959 ;
3 23507 23320 2.3413 23526 2.3417 2.3548 2.3246 ;
4 3.8175 37770 37997  3.8226 3.8003 3.8360 3.7585 ;
1 1.0615 1.0581 1.0578  1.0621 1.0584 1.0593 1.0550  1.0409
o1 2 2.0669 2.0431 20544  2.0683 2.0555 2.0701 2.0316  2.0956
3 3.7234 36607 3.6953 37258 3.6966 3.7513 3.6280  3.7949
4 55316 54247 54866 55364 54832 56027 53562  5.6331
1 1.3244 13158 1.3170  1.3255 1.3181 1.3209 1.3073  1.2910
015 2 26395 25958 26182 26416 2.6201 2.6512 2.5684 ;
3 44160 43256 43776  4.4195 43801 4.4430 4.2449 ;

4 6.2359 6.1038  6.1945  6.2457 6.1994 6.3567 5.9860 -
Using ANSYS 5.6, 1997

Table 4 Comparision of natural frequency param@ie(= wR,/p/E,) of a three-layered symmetric cross-ply
(0°/9Cr/0°) circular cylindrical shellEy/E, = 25;L/R = 5; Longitudinal mode numben = 1)

Circum. Wave e and Soldatos
R/h Number.n HSDT13 HSDT1la HSDT11lb HSDT9 HSDT? FSDTg (1997)
1 0.339297 0.339277 0.339298 0.339279 0.339302 0.339317 0.339

5 2 0.306985 0.307353 0.307330 0.307703 0.307718 0.308509 0.306
3 0.594289 0.594269 0.596914 0.596907 0.596956 0.602658 0.591
1 0.331522 0.331517 0.331522 0.331517 0.331524 0.331525 0.332
10 2 0.224928 0.225046 0.224962 0.225080 0.225088 0.225164 0.225
3 0.330063 0.330193 0.330461 0.330591 0.330595 0.331413 0.329
1 0.329408 0.329406 0.329408 0.329406 0.329408 0.329408 0.329
20 2 0.197009 0.197041 0.197012 0.197044 0.197046 0.197052 0.197
3 0.194639 0.194711 0.194685 0.194756 0.194758 0.194850 0.194

Next, the free vibration characteristics obtained for two- and eight-layered cross-ply cylindrical
panels of same meridional and circumferential lengths b with different length-to-radius and
radius-to-thickness ratio& /R = 0.5 & 4;R/h=5, 10) are presented in Tables 5-8. It is observed from
Table 5 that the higher-order model HSDT7 predicts the frequency \Q|€s wanz/ h./p/E,)
close to those of first-order one and both models are overestimating the frequency values in
comparison with those of complete model HSDT13. It is further noticed from Tables 5-7 that, with
the increase in number of layers, HSDT7 highly over predicts the results compared to FSDT5. It is
also seen from these Tables that the performances of the models HSDT9 and HSDT11b are nearly
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Table 5Non dimensional frequencies of two- and eight-layered cross-ply cylindrical
panel withR/h = 5 andL/R = 0.5

Non dimensional frequend®
Qp Qi Q1 Qy
HSDT13 5.6423 10.2463 10.4274 13.6080

HSDT1la 5.6505 10.2917 10.4186 13.5673
HSDT11b 5.7224 10.3239 10.4877 13.6865

Lamination Theory

0,
(0790 HSDT9 5.7304 10.3881 10.4846 13.6435
HSDT7 5.8216 10.6642 10.7745 14.0310
FSDT5 5.8748 10.6312 10.7675 13.8938
HSDT13 6.7472 11.5403 11.6198 14.9291
HSDT1la 6.7534 11.5766 11.6148 14.9392
(0°/90°), HSDT11b 6.7701 11.5596 11.6412 14.9531
HSDT9 6.7763 11.5987 11.6362 14.9630
HSDT7 7.2914 12.3698 12.3966 15.9163
FSDT5 6.7972 12.0035 12.1675 15.8423

Table 6 Non dimensional frequencies of two- and eight-layered cross-ply cylindrical
panel withR/h= 10 andL/R = 0.5

Non dimensional frequend®
Qpn Qi, Q1 Qy
HSDT13 8.3888 17.0826 17.5530 23.2283

HSDT11a 8.4078 17.1077 17.5183 23.2100
HSDT11b 8.4626 17.3266 17.7681 23.5057

Lamination Theory

0
(0790) HSDT9 8.4818 17.3644 17.7372 23.4848
HSDT7 8.5501 17.6350 18.0113 23.9015
FSDTS5 8.5862 17.8598 18.2886 24.0531
HSDT13 11.2675 20.8572 21.0695 27.4157
HSDT1la  11.2746 20.8836 21.0485 27.4023
(0790°), HSDT1lb  11.3019 20.9255 21.1408 27.5120

HSDT9 11.3092 20.9549 21.1196 27.4987
HSDT7 11.9330 22.5078 22.6440 29.6018
FSDT5 11.4058 21.0366 21.2188 27.5707

comparable but the frequency values are higher than that of present model HSDT13. However, the
model HSDT11a, in general, appears to yield accurate results against that of the present complete
model for short and thick laminated cylindrical panels. With increagghrand L/R, it is depicted
from Tables 5 and 8 that the difference in the results predicted among various models is decreased
as expected.

Next, the influence of various higher terms or models on the natural frequencies of thick
laminated circular cylindrical shells is studied and presented in Table 9. It is observed from Table 9



Comparative dynamic studies of thick laminated composite shells based on higher-order tff@&ies

Table 7 Non dimensional frequencies of two- and eight-layered cross-ply cylindrical
panel withR/h = 5 andL/R = 4

Non dimensional frequenc®
Qu Q12 Qxn Qa

HSDT13 36.6495 27.7523 74.9204 55.0197
HSDT1la 36.6525 27.9329 74.9734 55.2278
HSDT11b 36.6517 27.7844 74.9471 55.0848

Lamination Theory

(O°19CP)
HSDTO 36.6547  27.9676  74.9996  55.2942
HSDT7 36.6613  27.9958  75.0083  55.3395
FSDT5 36.6638  27.9790 750751  55.4075
HSDT13 383737 343371 80.0384  66.2415
HSDT1la  38.3675  34.7285 80.0245  66.4824

@190), HSDT1lb  38.3744  34.3554 80.0518  66.2815
HSDTO 38.3682  34.7489  80.0379  66.5236
HSDT7 383824  35.1131 80.2669  67.2341
FSDT5 383748  34.7926  80.1113  66.6777

Table 8 Non dimensional frequencies of two- and eight-layered cross-ply cylindrical
panel withR/h= 10 andL/R =4

Non dimensional frequendy

Lamination Theory
Q11 QlZ Q21 QZZ
HSDT13 74.1242 51.7260 149.5746  103.7500
HSDT1la 74.1319 51.8011 149.6293  103.8577
(0%/90) HSDT11b 74.1247 51.7312 149.5797  103.7628
HSDT9 74.1324 51.8067 149.6344  103.8707
HSDT7 74.1366 51.8193 149.6430  103.8973
FSDT5 74.1344 51.7587 149.6520  103.8750
HSDT13 75.5477 57.1457 153.7974  113.2001
HSDT1la 75.5413 57.2942 153.7942  113.3145
(0PI90F), HSDT11b 75.5478 57.1507 153.8001  113.2101
HSDT9 75.5414 57.2995 153.7969  113.3247
HSDT7 75.5434 57.3859 153.8439  113.4952
FSDT5 75.5417 57.2624 153.8136  113.3389

that, irrespective of short or long cylinder, model HSDT7 over predicts the frequency values
whereas FSDT5 under predicts the results for the short and thick case in comparison with those of
complete model HSDT13. The model HSDT9 yields results very close to HSDT1la for long
cylinder whereas for short cylinder case its performance is rather close to HSDT11b. Also, the
difference in the values, in general, increases with the increase in the circumferential wave number.
Furthermore, it is inferred that, for a short cylinder, HSDT11a having zig-zag variation through the
thickness for in-plane displacements predicts frequency values very close to complete model
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Table 9 Frequency paramefer(= wR,/p/ E,) of an eight-layered unsymmetric cross-ply
(0°/90°),4 circular cylindrical shell (Longitudinal mode number= 1)

. L/R
Circum. s 05
Wave i
Number Theory R/h R/h
n
2.5 5 10 2.5 5 10

HSDT13 0.352448 0.336093 0.331732 4.503126 4.325594 3.971877
HSDT1la 0.352408 0.336097 0.331739 4.505317 4.323748 3.970198
HSDT11lb 0.352506 0.336098 0.331733 4.505275 4.332821 3.977382

! HSDT9 0.352466 0.336101 0.331739 4.507904 4.331059 3.975679
HSDT7 0.352681 0.336118 0.331740 4.583386 4.383107 3.997469
FSDT5 0.352982 0.336156 0.331744 4.487248 4.355006 3.996548
HSDT13 0.758660 0.566201 0.371140 4.387114 4.098246 3.568073
HSDT1la 0.780684 0.576207 0.373572 4.385639 4.095270 3.566235

2 HSDT11b 0.760016 0.567005 0.371324 4.391072 4.108857 3.575911
HSDT9 0.782316 0.577081 0.373762 4.389799 4.105892 3.574049
HSDT7 0.793617 0.580614 0.374374 4.500067 4.179835 3.604629
FSDT5 0.794385 0.581616 0.374551 4.357779 4.139150 3.603539
HSDT13 1.527944 1.244130 0.835968 4.531517 4.165393 3.502635
HSDT1la 1.550800 1.259912 0.841047 4.529267 4.162229 3.501198

3 HSDT11lb 1.530750 1.247065 0.837028 4.536939 4.177905 3.511649
HSDT9 1554175 1.263060 0.842135 4.534688 4.174632 3.510179
HSDT7 1587034 1.277661 0.845840 4.660843 4.257282 3.544421
FSDT5 1575407 1.279348 0.846796 4.501162 4.212103 3.543059
HSDT13 2.307072 1.986646 1.451409 4.829248 4.414821 3.645450
HSDT1la 2.324346 2.003967 1.458411 4.827397 4.412307 3.644882

4 HSDT1lb 2.310461 1.992089 1.454149 4.835591 4.428982 3.655415

HSDT9 2.328520 2.009797 1.461220 4.833681 4.426304 3.654817
HSDT7 2.385855 2.041247 1.471331 4.973065 4.516423 3.691595
FSDT5 2.342163 2.038262 1.473214 4.796745 4.468223 3.690103

HSDT13 whereas HSDT11b with thickness variation in transverse displacement is more close to the
HSDT13 for long cylinder case.

The transient response analysis is carried out considering eight-layered unsymmetric thick cross-
ply shell L/R=0.5,R/h=5; (/90°),] subjected toT= T, (2zh) sin(rx/L) cos@ y/R); To=1] and
internal pressure loadyF go sin(fzv/'l) cos@ y/R); qo=50]. The in-plane displacememtand the
transverse displacementpresented here correspond to they,(2) locations of /2, nR/2, h/2) and
(L/2, 0, h/2), respectively. The variation of the displacements evaluated using different models is
described in Fig. 1 for the thermal loading case. It is noticed from Fig. 1 that the responses
calculated using FSDT5, HSDT7, HSDT9 and even HSDT11a are very low compared to that of
HSDT11b/HSDT13. The amplitudes predicted by HSDT11b/HSDT13 are high and the response
shows high frequency oscillations due to the participation of thickness stretch modes. However, it
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Fig. 1 Transient response of eight-layered unsymmetric cross$80%Q circular cylindrical shell subjected
to thermal loadingl(/R = 0.5,R/h = 5); (a)w - transverse direction; (b}circumferential direction

appears that retaining the thickness stretch tewn& (") in the transverse displacement is more
important than the inclusion of zig-zag terngs) (n in-plane displacement description.

For the internal pressure load, the transverse and in-plane response characteristics obtained
through various models are presented in Fig. 2. It is noticed that the changes in the initial responses
predicted by different models are less. However, with the increase in the response time, the variation
of displacement depends on the type of models employed. It is further seen that, like thermal case,
HSDT9, HSDT7 and FSDT5 predict similar response except the occurrence of peak amplitudes.
Although there is some reduction in the maximum amplitude value predicted by HSDT11a, the
response pattern is very close to actual model HSDT13 whereas the response period calculated
through the model HSDT11b is less in comparison with those of the complete model. In general, it
can be opined that, for the mechanical load, the response predicted by the model having zig-zag

variation in the in-plane displacement (HSDT11a) is, qualitatively, similar as that of complete
model.
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Fig. 2 Transient response of eight-layered unsymmetric cross-pBO{Q circular cylindrical shell subjected to
internal pressure(R= 0.5,R/h=15); (a)w - transverse direction; ()- circumferential direction

5. Conclusions

The performance of the present higher-order model over the first- and other standard higher-order
models deduced from present theory on the free vibration characteristics, and transient response
analyses of thick laminated shells subjected to thermal and mechanical loads has been demonstrated.
The inclusion of zig-zag theory along with variable transverse displacement across the thickness, in
general, have pronounced effects on the results and they depend on shell parameters and the type of
analysis to be carried out in predicting the accurate response characteristics of composite shells.
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Appendix A
The various submatrices involved in Eg. (5) are
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Oy, O, andOs are null matrices of size 4 x 2, 2 x5, and 2 x 4, respectively.





