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Abstract. In order to ensure the structural dynamic stability of moving liquid-storage containers, the
flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as
the disc-type elastic baffle. In practice, the design of a suitable baffle requipesri the parametric
dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the
installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to
investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a
cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE
(arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

Key words : baffled fuel-storage container; installation location and inner-hole size; transient dynamic
characteristics; parametric numerical analysis; ALE method.

1. Introduction

The moving fuel-storage container is a considerable research subject in the fluid-structure interaction
community. This is because not only the hydrodynamic force influences crucially the structural and
maneuvering stability of vehicles, but also the interior fuel flow exhibits a variety of dynamic
characteristics to the major design parameters. Naturally, the remarkable research efforts have
focused, according to the development initiation of space vehicles in the period of 1950-1960, for
the dynamic modeling and characteristic analysis of fuel-storage containers aiming at the stable and
safe design of such vehicles. The early research studies are summarized in the works by Abramson
et al. (1961 and 1964). In which, most of early theoretical and experimental research results for
various tank models, together with the damping effects of various baffles, are well addressed.
However, the early theoretical and numerical studies were quite restricted, owing to the insufficient
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Fig. 1 Cylindrical baffled fuel-storage container with geometry parameters

analysis techniques, such that the profound characteristic analysis was not fully possible.

In the studies of the dynamic response and safe structural design, the main purpose has been to
suppress the hydrodynamic force, for which various kinds of mechanical devices have been introduced
(Miyata et al 1988, Modi and Welt 1992). Among them, the disc-type elastic baffle, illustrated in
Fig. 1, has been reported to be most effective for a wide range of applications (Stephens 1966),
because it is more practical and easy to install to the container structure. Hence, the structural
stability of moving fuel containers depends definitely on the suitable baffle design. However,
needless to say, several design parameters, such as the baffle position and inner hole size, the baffle
number and spacing, are inherently associated with the suitable baffle design. As a result, the
dynamic analysis of baffled fuel-storage containers has become a more complicated task, owing to
the geometric complexity, when compared to that for simple containers without baffle.

However, in order for the successful baffle design the reliable parametric investigation on the
structural dynamic characteristics of baffled fuel-storage containers is essential. Fortunately, thanks
to the advances in computational analysis techniques such a task could be sufficiently accomplished.
In particular, the ALE (arbitrary Lagrangian-Eulerian) numerical method can successfully treat the
fluis-structure interaction problems with the moving boundary (Nbhl. 1964, Hirtet al 1974),
while keeping fairly regular meshes. As will be described later in details, this method combines
effectively the Lagrangian and Eulerian methods by introducing the referential domain (or mesh
domain) moving arbitrarily.

This paper, as a series of our recent works (&hal 2001), aims at the parametric transient
analysis of cylindrical baffled fuel-storage tanks, subject to an abrupt vertical acceleration, by utilizing
the ALE numerical approach. In fact, a liquid fuel-storage container experiences the extremely high
hydrodynamic force, at its boosting stage, so that its transient dynamic response is strongly
influenced by the baffle parameters. In this paper, we consider the baffle position and the inner-hole
size allowing the fuel flow as the analysis parameters. Through the parametric experiments, we
intensively examine the parametric effects of these parameters on the transient dynamic response of
the baffled fuel-storage tanks.
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Fig. 2 Relationship between material, referential and spatial domains

2. ALE description for fluid flow

Generally, the numerical analysis of unsteady fluid flow has employed the Eulerian or Lagrangian
descriptions of motion. In the Eulerian formulation, a referential (or mesh) coordinate is fixed in the
space and the fluid moves through elements. By using this method, the analysis of fluid undergoing
great distortions can be accomplished with relatively ease and accuracy. But its major disadvantages
are the lack of the exact identification of interfaces and the difficulty in tracking the moving
boundary. So, it requires any special technique for dealing with the moving interface or boundary,
which is usually complicated and may lead to the numerical inaccuracy.

On the other hand, the mesh coordinate in the Lagrangian formulation moves exactly with the
fluid particles, so that each element contains the same fluid particles along the flow. As a result, it
can precisely identify and track the moving boundary and interface, but it causes the crucial
numerical instability owing to the extreme mesh distortion, unless any suitable mesh regulating
process is accompanied.

In order to achieve the advantages only in both conventional Eulerian and Lagrangian approaches,
the ALE (arbitrary Lagrangian-Eulerian) method, the most effective and robust one for the unsteady
flow analysis, has been introduced. Originally, it was initiated by Noh (1964)etHadt (1974) for
the finite difference scheme. In finite element community, Belytsetkal (1978, 1981 and 1986),
Hugheset al (1981, 1982 and 1992) and Kawahataal (1987) have subsequently adopted the
ALE method for the fluid-structure interaction problems. As well, Benson (1989, 1992) and Donea
(1982) also made remarkable contribution to this area. Since the ALE method precisely identifies
and tracks the moving boundary and interface, while maintaining fairly regular meshes, it can
successfully and effectively simulate fluid flow with the moving boundary, free surface flow, large
deformation problems, and so on. As will be presented later, this formulation is always accompanied
with any kind of remeshing schemes (Winslow 1990, Setudil. 2000) maintaining regular meshes
along the fluid flow, in order to prevent the critical time step from being too small.

Referring to Fig. 2, the ALE method is characterized by the arbitrary movement of a reference
domain, which is introduced as a third domain additionally to the common material and spatial
domains. The material or Lagrangian coordinéatelentifies a material particle in the undeformed
configurationR, at timet=0. In the deformed configuratid®,, at timet, the particle originated at
P moves to the current poirg with the position vectoix. Here, x is the spatial coordinate
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describing the current position of the material particle identifiedXbin the material domain.
Differing from the spatial and material coordinates, a referential coordixate refers to the
computational mesh domain in most cases. Of course, the motion of a continuum can also be
described by the referential coordinate.

Naturally, a functionf describing any physical quantity associated with the fluid flow, which is
continuous in space and time, can be defined as a function of xeitkepr X . A s a result, three
types of time derivatives could also be defined as follows:

Material time derivative Spatial time derivative Referential time derivative
(o A o _ d(x.t) ¢ Ot
ot |y ot ot « ot 4

When we denotex and x be the current spatial position vectors of a material particle and the
moving reference coordinate, respectively, measured from the fixed Cartesian coordinate system.
Then, the material velocity and the referential velocity  are defined respectively by

v=x =X )| inzai—zxé’ﬂ )
dt X X

For the purpose of ALE representation, one can easily derive the fundamental relationship (Souli
et al. 2000) between material and referential time derivatives given by

HX Y| _ HXt of
T i PR~ @)

in which c is the relative or convective velocity between the material velgcityd the referential
velocity v :

cC=v-V (3)

The last term in the right hand side means the convective effect due to the relative motion
between the material and referential coordinates.
In the ALE description, the velocity field of referential domain can be arbitrarily chosen, so that
the conventional Eulerian or Lagrangian formulations can also be identified:
(@) v = 0 : the referential domain is fixed in space, and which corresponds to the Eulerian
viewpoint described in terms of spatial coordinate,
(b) v = v : the referential domain moves in space with the same velocity as the particles, and
which corresponds to the Lagrangian viewpoint,
(c) v£v#0 : the referential domain moves in space at an arbitrary velocity, and which is general
arbitrary Lagrangian-Eulerian viewpoint.

3. Incompressible Newtonian flow within the elastic container

The dynamic motion of a structural container occupying the spatial ddaiim the Cartesian
coordinate system, is governed by
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g;(u), j—cuy = p(u; —f;), in Qx[0,T] (4)
with initial and boundary conditions:
ui(x, 0) = 0;(x,0) =0 in Q (5)
u = u, on dQyx[0,T] (6)
o;n = t, on 9Q,x[0,T] (7)

In which ¢, p andf;, are the damping coefficient, the structure density and gravity acceleration
components, respectively. The boundary with the outward unit normal ve@octomposed of the
displacement boundary regi@Q and the fluid-structure inted&xe

Furthermore, strain-displacement relations and constitutive relations between Cauchy strains and
stresses are defined by

g = (U +u;;)/2 (8)
O = 2U&; + A&y, %)

whereu andA are Lame constants of linear elastic isotropic materials.

On the other hand, the governing equations for the incompressible Newtonian fluid flow, in the
ALE description, are obtained by substituting the convection velocity in the Eulerian formulation
with the relative convective velocity = v—v  defined in Section 2. Then, the resulting governing
equations, composed of the momentum and continuity equations, are as follows:

g; +f

ov; 1 .
—'+cjvi,j=p i tf in Qe x[0,T] (10)

ot Pr
Vii=0, in Qgx[0,T] (11)

wherepe denotes the fluid density. The total stress tegga@re given by
Oj = —pg; + u(vij +Vvi;) (12)

wherep is the pressure, andis the viscosity coefficient.

The boundarydQr consists of two kinds of boundary regions, the free surface bodafary
and the fluid-structure interfacéQ, . And the corresponding conditions for velp@tyd surface
tractiont; are

vV, =V,, on dQ,x[0,T] (13)
{=pd; + u(vi;+ v, )t =T, on dQFx[0,T] (14)

The surface traction, due mostly to the surface tension, is usually negligible. The initial conditions
for velocity and pressure are specified as follows:

1
o

vi(X;, 0)
p(%, 0)

(15)
(16)

1
o
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4. Numerical implementation of the ALE flow equations

One of the major difficulties in the time integration of the ALE Navier-Stokes equations is caused
by the presence of the relative convective term that stems from the relative motion between the
material and referential frames. Basically, there exist two ways to implement the ALE equations
according to conventional two approaches taken in the Eulerian fluid mechanics. The first approach
is to solve the fully coupled equations. Hugleesl (1981) and Belytschket al (1981) adopted
this approach for the fluid-structure interaction problem.

The alternative approach is the operator split method, adopted in this paper, in which the time
integration at each time step is divided into two phases. First, the Lagrangian phase is performed, in
which the mesh moves exactly with the material. Next, through the Eulerian phase, the solutions
obtained at the first phase are corrected by taking into account the relative mesh velocity. This
method breaks a complex problem into simpler one, and any kind of existing algorithms can be
applied, so that it is less expensive and more robust than the fully coupled method. Donea (1982),
Kawaharaet al (1987), and Benson (1989, 1992) adopted this method.

On the other hand, the mesh (referential domain) velocity field should be specified. Regardless of
the term arbitrary, it should satisfy the no penetration/slip condition along the fluid-structure
interface and the no change in the total fluid volume. In fact, the mesh velocity is determined in the
remeshing and smoothing process because the final mesh configuration at the end of each time stage
is completed after this process. Needless to say, the smoothing process, a major feather of the ALE
method, is to prevent the critical time-step size from being too small.

4.1 Two-phase Lagrangian-Eulerian time integration

In the Lagrangian phase, the relative convective term is dropped out from the ALE Navier-Stokes
Eg. (10), so that the mesh domain moves exactly with the material. And, the momentum and
continuity Egs. (10) and (11) are discretized according to the purely explicit Euler time integration
method (Zienkiewicz and Taylor 1991). We now summarize the Lagrangian phase.

First, the intermediate velocitiliL is computed from the discretized momentum equation without
the pressure and convection terms,

vi=v'
At

= E(Virjj + erji) i + fi (17)
Pe ’

Vi =V, on 99, (18)

We note here that” does not satisfy the continuity constraint.

After that, the final Lagrangian velocity~  satisfying the continuity condition can be computed
by taking into account the pressyse satisfying the incompressibility equation, together with the
boundary condition (18)

Vi—vi _ 1,
At - pr’i (19)
where the pressuge is determined using
ph = 2it (20)

At
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This pressure equation is obtained by taking divergence on Eq. (19), together with the
incompressibility requiremer(tvﬁi =0) . For which the next boundary conditions are specified (see
Appendix A for Eq. (22)):

pt =0, on dQ7F (21)
pin; = 0, on 9Q (22)
Once the pressure is determined, the final Lagrangian velagity is determined from Eq. (19),

and this process is repeated until the final velogjty meets sufficiently the continuity constraint.
After this iteration is completed, the current mesh coordinates are updated through

Xt = x"+ At Ov- (23)

where superscriph refers to the previous time stage. If only a Lagrangian calculation is decided to
be sufficient the time integration at time stagés terminated, otherwise the next Eulerian phase,
together with the mesh smoothing, should be followed.

Before we proceed the Eulerian phase, we smooth the distorted mesh caused by the Lagrangian
mesh movement, then we have the final mesh coordindtes . Then, the mesh w8locity is
automatically determined through

v = v+ (xE=xb)/At (24)

Next, the previous Lagrangian-phase velogity and pregsuere corrected by reflecting the
relative convective term. Similar to the Lagrangian phase, the intermediate ve{oCity is first
calculated according to

{‘/_n+1_ L

\V Y
MMy =0, on o= (v-¥) 29

v'*t=v, on 99 (26)
Of course this intermediate velocity does not satisfy the continuity condition, therefore the
correction iteration is employed, as in the Lagrangian phase. The iterative correction is accomplished
according to

v1 _ Pesns
pitt = S 27)
V,n+1_{’/.n+l 1 a1
£ L = _=ph+ 2
At pr,I ( 8)

in which, the previous essential and natural boundary conditions (18), (21) and (22) are enforced.
4.2 Remeshing and smoothing process

As can be inferred from the previous section, the remeshing process is performed in the
Lagrangian phase, while the smoothing process in the Eulerian phase. Therefore, the remeshing
process can not be omitted in the two-phase Lagrangian-Eulerian method. But, reminding that the
smoothing is to prevent the critical time-step size from being too small, the necessity of the Eulerian
phase is of course judged based on the mesh distortion intensity against the allowable critical time-
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Fig. 3 Remeshing and smoothing process in the two-phase Lagrangian-Eulerian approach

step size. As a result, the decision policy of the smoothing process is naturally problem- and
analyst-dependent (Sowt al. 2000).

Fig. 3 illustrates the two-dimensional remeshing and smoothing process composed of three steps,
which is used in our study, by employing the simple averaging methods oali 2000).
According to the simple averaging algorithm, any nédéxcept for the fluid-structure interface
nodes) is iteratively smoothed by

XA = xE S X (29)

whereM, is the number of surrounding nodes of ndd® be smoothed. In this process, remeshing

is firstly performed at the end of the Lagrangian phase, after that the smoothing process is followed.
Usually, the smoothing is separately performed such that the free-surface nodes are firstly smoothed,
and next the interior nodes are smoothed.

It is worthy noting that the remeshing and smoothing process satisfies essentially the no penetration/
slip condition along the fluid-structure interface and the no change in total fluid volume. Needless to
say, it is because the velocity fields at both phases are determined while satisfying the boundary and
continuity conditions, as mentioned in the previous section.

5. Coupled fluid-structure finite element analysis

5.1 Finite element approximations

Applying usual variational formulation and the isoparametric finite element approximation to the
structural dynamic Eq. (4), we have

Mu+Cu+Ku = F (30)

In which, F the load vector due to the self weight and the hydrodynamic pressure given by

F = IQCDT(pf)dv+ IdQICDTpds (31)
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where @ indicates the (3 xI8) matrix composed oN basis functions, ang the hydrodynamic
pressure force in Cartesian coordinates. For our undamped storage container, we can rewtrite Eq. (30)
in a time discretized form, together with the mass-matrix diagonalization

u" = M-YF"—Ku") (32)

When we employ the explicit central difference scheme, time-step-wise accelerations are computed
from Eqg. (31), and time-step-wise velocities and displacements are determined through

untl2 = gn-Y2 4 AL+ ALY/ 2 (33)
un+1 = u"+ l_]n+l/2 CAth (34)

In addition, the structure configuration is updated by adding the current displacement to the initial
configuration such that

XN+l = 304 yn+l (35)

On the other hand, the critical time-step siZB.{; for the numerical convergence and stability is
determined by the CFL condition (Coekal 1989):

(At)crit = h/s (36)

whereh is the smallest distance between two adjacent nodes, taedspeed of sound in structure.

Next, for the spatial approximation of the ALE Navier-Stokes equations, we apply the variational
principle to the previous six time-discretized equations, Egs. (17), (19)-(20) in the Lagrangian phase
and Egs. (25), (27)-(28) in the Eulerian phase. After that we approximate the fuel velocity and
pressure such that

vh = ®dv, ch=dc, ph=WYp (37)

with the basis function matrip used in Eq. (31) and the (INy basis function matrix. Introducing
these approximate forms into the variational forms, we have three matrix equations for the
Lagrangian phase

HLWE = H™W"—(At)(SV"—RY) (38a)
G'pt = — pe(A) Q- — R} (38b)
HtvE = HWY - (At) o Qlpt (38c¢)
and three for the Eulerian phase
Hn+iyn+l = Hiyl— (At)A"V" (39a)
Gn+1pn+l — _pF(At)—lQn+1\”/n+1_Rg+1 (39b)
Hn+iyn+l = Hn+1\”/n+1_(At)pE1Qn+1pn+1 (390)

in which superscripts, L andn + 1 of matrices indicate that corresponding matrices are integrated
over the mesh domains and values at time stagés(Lagrangian phase) ana { 1) (Eulerian
phase), respectively. The detailed definition of above matrices is given in Appendix B.

As is well known, the critical time-step sizAt),; for the explicit flow analysis is determined
according to the Courant criterion (Coekal 1989):
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(At)crit = h/(S+ V) (40)

when the flow velocity is near or over Mach number. By comparing with one in Eq. (36) for the
explicit structural dynamic analysis, we realize that the critical time-step size for the coupled fluid-
structure analysis becomes one for the flow analysis, provided both mesh sizes are almost equal.

5.2 Coupled time-incremental FEM analysis

As described earlier, the structure deformation and the hydrodynamic pressure interact along the
common fluid-structure interfac8Q, . In order to solve the coupled time-history responses, we use
the time-incremental numerical scheme. According to this iterative scheme, we first solve the
structure response, after that we perform the two-phase Lagrangian-Eulerian flow analysis. The
overall numerical procedure is summarized as follows.

Step 1: structure analysis ; Wigh", u" and u"~''2 obtained from the previous time stage, we
computeu™ from Eq. (32), and"*¥2  and*?! using Egs. (33) and (34). (For the initial time
stage (i.e.n=0), u® is computed with initial conditions’=u®=0, and furthermorai*’?  with
initial velocity condition u™2 = u® =0 .) With the computed displacemerit !, we update the
structure mesh according to Eqg. (35).

Step 2: Lagrangian-phase flow analysis ; According to Eq. (38a) we first compute the intermediate
velocity v- withv" from the previous time stage and the boundary condifion (u"**—u")/At
(Of course, the initial velocity condition®=0 is used for the initial time stage.) After that, we
iteratively solve Egs. (38b) and (38c) by enforcing the same velocity boundary condition and the
pressure boundary conditions (21) and (22), in order for the Lagrangian velbcityWe next
perform the remeshing process for the fluid domain according to Eq. (23 .Tf we terminate the
time iteration loop, otherwise we calculate the critical time step. When judgebt)ag; < (At),e
we go to Step 3, otherwise we go to Step 1. In whith,{ indicates the allowable time-step size
preset by the analyst at the beginning.

Step 3: Eulerian-phase flow analysis ; According to Eqg. (24) we first calculate the mesh velocity
V", and then compute the intermediate velogify * using Eqg. (39a). Next, we iteratively solve
Egs. (39b) and (39c) for calculating the final flow veloaity * and hydrodynamic pressup8*™.

The enforcement of velocity and pressure boundary conditions are same as in Step 2. After the
Eulerian phase is completed, we go to Step 1, for the next iteration t¥h€&n , otherwise we
terminate the time iteration loop.

6. Numerical experiments
6.1 Description of the model problem
Fig. 4(a) shows a model fuel-storage tank, with a baffle of the same material for the container, in

which liquid fuel is filled up 90% of the total container-volume (it§.=0.9 H). The container is
moving in thez-direction with constant vertical acceleration 10 g, against the gravitational force,
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Fig. 4 Cylindrical fuel-storage container with a baffle and its FEM meshes

Table 1 Material data taken for numerical experiments

Fluid Structure
Density, p 8.15x1@ kg/n? Density, p 2.78x10 kg/n?
Viscosity coefficienty 8.15x10%kg/m -s  Young's modulu€  7.24x106° N/m?
Bulk modulus,k 2.2x10 N/m? Poisson’s ratioy 0.33

which applies along two edges of the top and bottom plates. This external loading is implemented
numerically by specifying the time-stage-wise displacement boundary condition along the edges.
Material data are contained in Table 1. And geometry dimensions are as fdow@:4 m,
H=1.0m,t=2.54 mm andg = 3.0 mm, respectively. In accordance with the objective of this paper,
the baffle locatiorHg and the inner-hole diametBg are taken variable: three casedDgfD = 1/4,

1/2 and 3/4, and six casesldf/H = 0.1, 0.3, 0.5, 0.7, 0.8 and 0.85. As a result, total 18 cases are
parametrically examined.

Figs. 4(b) and 4(c) show finite element meshes of the structure and the fuel, for which bilinear
shell elements and trilinear solid elements are respectively used. Total element numbers are as
follows: 1,704 elements for the structure and 9,810 elements for the fuel region. Both meshes have the
same mesh partition over the fluid-structure interfac , in order for the easy numerical data
communication between two coupled fields. Furthermore, both meshes share common nodes along
the interface based upon that the vertical fluid free-surface fluctuation near the interface is not
remarkable, differing from the horizontal sloshing motion. The observationTimeset 0.06 sec,
and the speeds of souadre 1,643 m/sec in fuel and 5,053 m/sec in structure, respectively. Furthermore
the peak flow velocity is 6.27 m/sec from the preliminary experiment. Then, according to Egs. (36)

and (41), we obtained the critical time-step sizes for two initial meghes), = 1.41x 10° sec and
(A1 = 4.26x 10° sec, respectively. Based upon these initial critical values, we set the
minimum allowable time step-siZé\t),,, , for our flow analysis,1byx 10 sec.

6.2 Numerical results to the baffle location and inner-hole size

Referring to Fig. 4, cylindrical fuel-storage tank exhibits the peak dynamic deformation at the
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center of the bottom plate, when it accelerates vertically, and its transient dynamic response is
crucial within a short initial time period starting from the boosting. On the other hand, the
deformation field in any linearly elastic body characterizes the stress field. For this reason, we focus
our attention on the relative displacement at the center of the bottom plate during the time period of
60 m/sec Here, the termrelative indicates the displacement measured with respect to the
constrained edge, and hereafter the displacement is used in the relative sense.

Figs. 5-7 present the parametric time-history responses of the container displacement at the
bottom center for 18 cases, where the case without baffle is included in order for a comparison
purpose. Above all, we can observe that the baffled cases, except for two cadeg/viti 3/4,
produce the relatively smaller displacement than the no baffle case. For the cases where the baffle is
installed at relatively lower positions beldds/H = 0.5, the time-history responses are quite similar
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to the baffle location, but their magnitudes decrease as the baffle inner-holes&zelecreases.
While when the baffle is positioned higher abokg/H = 0.5, the time-history response is
considerably dependent on the baffle location, such that the peak displacement increases together
with the baffle locatiorHg/H and the response frequency decreasé$:&$ decreases. In particular,
such a trend is remarkable when the baffle inner-hole becomes wider.

Next, we analyze the numerical results from three points of view: the absolute maximum
displacement, the response frequency and the logarithmic decrement, as shown in Figs. 8-10. Here,
the logarithmic decrement, is defined by

_ In(dy/dh)
Xd = N

in which and denotes the absolute displacements at the first peak and the ahilgbéak in
time-history responses.

(41)
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The absolute maximum displacement, from Fig. 8, decreases in proportion to the dedigdBe of
but this dependence on the baffle inner-hole size approaches the case without baffle. In particular,
the case ofDg/D = 3/4, the difference with the no baffle case is minute. Needless to say, it is
because the hydrodynamic force acting on the bottom plate becomes smaller as the baffle inner-hole
size decreases by suppressing more the fluid flow. However, the flow suppression becomes
negligible as the baffle goes up to the fuel free surface. The variation of maximum displacement to
the baffle location, wherHg/H<0.5 , is not shown remarkable, when compared to one with
respect to the baffle inner-hole size. The smallest value in maximum displacements is obtained when
Dg/D = 3/4 andHg/H =0.5. From this parametric result, we can conclude the baffle effect reduces
either the baffle location approaches the free surface or the baffle inner-hole size becomes larger.

Fig. 9 represents the variation of response frequency, and which is for estimating the stabilization
tendency in transient dynamic response. In order words, the dynamic response becomes more stable
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as the response frequency decreases. By comparing with respect to the baffle inner-hole size, the
case withDg/D = 1/4 exhibits the highest frequency while the case DHID = 2/4 the lowest one,

but this distinction disappears when the baffle location approaches the fuel free surface. This can be
explained as follows. Until the criticBlz/D the decrease of baffle inner-hole size delays continuously

the major fluid flow, but further decrease beyond the critical value separates the major fluid flow
into the compartmented flow regions, as can be inferred from the next Fig. 12. In general, the
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compartmented liquid container exhibits higher response frequency compared to non-compartmented
one (Abramson and Graza 1964). On the other hand, the response frequency decreases, even though
slightly, as the baffle location goes up wheg/H<0.7 , but it remarkably increases to the same
limit when Hg/H >0.7. Hence, one should determine a suitable baffle inner-hole size by combining
this tendency with the previous result. While, the baffle location should not be too high or too low.

The variation of logarithmic decrement is represented in Fig. 10, where we confirm that almost all
cases have higher decrements than the no baffle case. Regardless of the baffle inner-hole size, the
logarithmic decrement increases with the baffle location wiatiH = 0.7, but it strictly drops to the
case without baffle wheig/H >0.7 . In the same manner, the baffle inner-hol®gi2eof 2/4
produces the best logarithmic decrement. Considering all of three parametric results, we conclude
that the suitable baffle location and inner-hole size, from 18 parametric cases for our model tank,
are as followsHg = 0.7 H andDg = 0.5 D.

For the baffle case considered most suitable, we trace the time-history response of the structure
effective stress along time and represent the effective stress distributions when it reaches maximum
and minimum in Fig. 11(a). Where, we see that the maximum stress occurred at the bottom center
is almost two times of that in the minimum stress distribution. Corresponding hydrodynamic-
pressure distributions at both time stages are given in Fig. 11(b). Flow patterns at four different time
stages are also given in Fig. 12. We first realize that the initial simple and uniform flow becomes
non-uniform and complex as time goes. In particular, the localized circulating flow around the baffle
tip is remarkable.

7. Conclusions

In this paper, transient dynamic characteristics of cylindrical fuel-storage container with a baffle,
which accelerates abruptly in the vertical direction, were numerically investigated. For this goal, we
employed the ALE finite element method for effectively maintaining the fluid mesh to be fairly
regular. Furthermore, the ALE Navier-Stokes equations were solved by two-phase Lagrangian-
Eulerian scheme, together with the selective mesh-smoothing algorithm by presetting the minimum
allowable time-step size. Through the numerical implementation, we confirm that the coupled time-
incremental ALE finite element method successfully and effectively treats the baffles moving
container.

In order to examine parametrically the baffle effects, we took the baffle location and inner-hole
size as the simulation parameters. From the numerical results of eighteen combinations of parameters,
we could find out the parametric effects of both parameters on three major dynamic characteristics:
the maximum displacement, the response frequency and the logarithmic decrement. As well, we
could choose the most suitable combination of the baffle location and inner-hole size.

We believe that the current parametric study can suggest the research direction in the optimal
baffle design involving more design parameters for more general situations.
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Appendix A: Derivation of the boundary condition Eq. (22)

Taking divergence on Eq. (10) in the Lagrangian phase, together with the relation (12), results in
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0 [l
R s A B PRV
p,| pFDdt pF(VI,J +Vj,|),] fl% (Al)

In which the last two terms on the right-hand-side are related to the intermediate velocity through Eq. (17).
Meanwhile, we want to compufg which enforcess” to satisfy the incompressibility condition, so that we

o _ vi=V

would let = = . Substituting these into Eq. (Al) leads to

ot At
Lo D/'L _V.n V'L _V.n|:|
p,i - _pFD At - At O
_ ProL =L
- At(vl Vi ) (AZ)
From the non-penetration condition along the fluid-structure inteidae , we obtain Eq. (22):
Op- Th = —%(vt—\?t) =0 on dQ (A3)

Appendix B: Definition of matrices used in the flow analysis

For the matrix-operation convenience, we introduce two partial differential opdbatarsiD,

D] = {8/ 0x, 8/ dy, / 3z} (B1)
/ox 0 0 d/dy 0 d/0z
D=2 0 d/dy 0 9/9xd/dz O (B2)

0 0 d/dz O /3y d/dx

and, two operators defined by

B=DJ/®, L=D,® (B3)
Then, the matrices in Eqgs. (38a)-(39c) are defined by
H = [, ®TPdv (B4)
S = (pF/Zu)IQF(OLTLdv (B5)
Ry = [o o @fdv+ [ ®T(nTDI + (NDT)N)] dvds (B6)
G = [, ,(DW)'D,Wdv (B7)
Q = [, ¥Bdv (B8)
Re = [o0.0 WT(dp/ on)ds (B9)
A= Iﬂp(t) ®T(c™BTI)Pdv (B10)

where,n = {n,, n,n;}T and| the (3 x 3) identity matrix.





