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Abstract. In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-
dimensional finite element model is performed. Since railroads are constructed mostly as double tracks,
there exists eccentricity between the vehicle axle and the neutral axis of cross section of a railway bridge.
Therefore, for the more efficient and accurate vehicle-bridge interaction analysis, the analysis model
should include the eccentricity of axle loads and the effect of torsional forces acting on the bridge. The
investigation into the influences of eccentricity of the vehicle axle loads and vehicle speed on vehicle-
bridge interactions are carried out for two cases. In the first case, only one train moves on its track and in
the other case, two trains move respectively on their tracks in the opposite direction. From the analysis
results of an existing bridge, the efficiency and capability of the simplified 3-dimensional model for
practical application can be also verified.

Keywords: railway bridge; vehicle-bridge interaction analysis; double tracks; eccentricity of vehicle
axle loads; influence of eccentricity; influence of vehicle speed.

1. Introduction

Willis (1849), Timoshenko (1920’s), and Inglis (1930’s) are the earlier contributors to the
technical advancement in the impact and vibration problem of railway bridges. However, their
studies were based on the simple models, which were intended to represent a steam locomotive
moving on a bridge. Also, a number of experimental studies on railway bridge vibrations were
carried out by Robinson (1887) and Hunley (1936) and the extensive tests of impact on railway
bridges were reported by a subcommittee of the American Railway Engineering Association
(AREA) (Turneaure 1911 and Ruble 1955). A realistic attempt to systematically analyze the
dynamic responses of a girder and a truss bridge during the passage of a series of railway vehicles
was made by Dhar (1978). In his study, both the bridge and vehicles were assumed to have vertical
motions only. Wiriyachi (1980) investigated into the effects of the impact on an open-deck truss
bridge and developed 3-dimensional bridge models to study fatigue failures of critical members.

Wiriyachi’s work has been followed by many other researches. However, in most of these
researches, only the vertical interaction between the bridge and vehicles has been considered, using
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the simplified vehicle models which do not take into account many important geometric and
suspension nonlinearities present in an actual freight car. In addition, because of the limitations in
the formulation of vehicle-bridge interaction models, the effect of vehicle motion prior to the entry
onto the bridge has been accounted for by simply assigning certain initial displacement and/or
rolling motion values to all the vehicles in the train. Bhatti (1982) proposed the 3-dimensional
vehicle-bridge interaction model which took into consideration the significant geometric and
suspension nonlinearities present in an actual freight car. The dynamic responses and impact factors
of various members of an open-deck bridge were determined by including both vertical and lateral
interactions between the bridge and vehicle, and the vertical and lateral track irregularities. Hino
(1985) and Chang (1996) proposed a finite element analysis for the vibration of bridges loaded by
moving vehicles considering geometric nonlinearities of bridges.

Recently, to increase the operating speed of trains has received a lot of researchers’ attention in
many countries. As for the commercial operating speed, TGV (le train de grande vitesse, France) and
Shinkansen (Japan) are being operated at about 300 km/h, ICE (Germany) is being operated at
280 km/h, and KTX (Korea Train eXpress; Korea-version TGV) is due to be operated at 300 km/h in
Korea. As the speed of trains becomes higher and the operating speed of train reaches 300 km per
hour or more, the more accurate analysis of vehicle-bridge interactions becomes the more important
factor to be considered for bridge design. Using the 2-dimensional model for vehicle-bridge
interactions, the analysis for the effect of some parameters, i.e., characteristics of stiffness and mass
of the bridge, stiffness of the train, bridge span, and track irregularities, was performed by Delgado
(1997). Yang (1994) proposed the dynamic condensation method for vehicle-bridge interaction
analysis. Yang (1997) also investigated the key parameters that govern the dynamic responses of the
simple beams by an analytical approach using moving load assumption. Tanabe (1997) developed a
3-dimensional analysis program for the dynamic interaction analysis for Shinkansen trains and
railway bridges. Fafard (1996) proposed also a 3-dimensional analysis model to study the vehicle-
bridge interactions, in which the bridge was modeled with plate and beam finite elements and the
vehicle was modeled with 5 axles. Mermerta (1997) analyzed the interaction between the vehicle and
the simply supported curved bridge deck. Tan (1998) introduced the grillage analysis method for the
vehicle-bridge interactions to consider the nonlinear behavior of suspension in an actual vehicle and
the yield surface of materials of bridges. Recently, Li (1999) studied the dynamic responses of a
simply supported girder bridge under high-speed trains with the emphasis on the resonant vibration
using moving load analysis and vehicle-bridge interaction analysis. Yang (2001) derived a versatile
element that was capable of treating various vehicle-bridge interaction effects. In most of the previous
2-dimensional analysis models, the influence of the eccentricity between the axle loads of vehicles
and the neutral axis of cross section of the bridge cannot be considered, whereas the full 3-
dimensional analysis models require a lot of modeling and computing efforts.

In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional
finite element model is performed. This simplified 3-dimensional analysis model can improve the
accuracy of 2-dimensional analysis nearly to the level of full 3-dimensional analysis and reduce
modeling and computing efforts as well. This study focuses on the analytical formulations of motion
of the total vehicle-bridge system and on the applications of the proposed method to numerical
examples. The calculation of vertical deflections and torsional rotations are emphasized as the
member forces (bending moments, torsional moments, and shear forces) of bridge elements are
easily obtained based on the deflections. In addition, an intensive investigation into the influences of
the eccentricity of axle loads and the vehicle speed on vehicle-bridge interactions are carried out for
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two cases. In the first case, only one train moves on the one side of a bridge and in the other case,
two trains move respectively on their tracks in the opposite direction. 

2. Vehicle model

Lagrange’s equations for the vehicle-bridge system are derived based on the model shown in Fig. 1.
In the ordinary train vehicles, there are two bogies in the fore and rear parts of the car body and
thus the adjacent car bodies move separately and as a result, the relatively large vibration in each
car body may be generated. In this study, bogies are connected at the joints between car bodies so
that a series of car bodies move on the track just like one organic body. Thus, the vibration

Fig. 2 The relation between the positions of axles and the nodes of beam elements

Fig. 1 A model for high-speed vehicle-bridge interaction analysis
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generated in each car body, in particular at the connections of two car bodies, can be reduced to the
considerably low level. The combined effect of bouncing and pitching motions of car bodies and
bogies generates the vertical and rotational degrees of freedom (d.o.f.) in the bogie and joint
between car bodies. As shown in Fig. 2, the bouncing and pitching motions of car bodies are
expressed by the vertical d.o.f. (vc) at the joints of bogies. And, the bouncing and pitching motions
of bogies are expressed by the vertical (vg) and rotational d.o.f. (θ g) at the center of bogies,
respectively. For the simplicity, it is assumed that car bodies and bogies are rigid bodies with masses
and that they move along a straight track with constant speed.

For the Lagrange’s equations of motion, the kinetic energy, potential energy, and damping energy
of power cars and passenger cars are expressed by the vertical and rotational degrees of freedom at
joints, bogies, and a bridge.

2.1 Power cars

The kinetic energy, potential energy, and damping energy of the entire vehicles are separately
expressed in two categories; power cars and passenger cars. For many vehicles, for example, the
motive power for KTX is supplied by the front and rear power cars. A series of passenger cars are
connected in a line between these two power cars and motor coach motor bogies are set up in the
fore and rear part of the each power car.

The kinetic energy of power cars (Ek) is expressed by the degrees of freedom of bogies and joints
of power cars as in Eqs. (1) and (2)

For a front power car :

 (1)

For a rear power car :

 (2)
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Fig. 3 The relation between motion of unsprung mass and vertical deflections of nodes
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where Mk = mass of k-th car body, Ik = moment of inertia for pitching of k-th car body, Lk = length
of k-th car body, mj = mass of j-th bogie, ij = moment of inertia for pitching of j-th bogie,  =
vertical d.o.f. in the joint connected with j-th bogie between two car bodies,  = vertical d.o.f. in
the center of j-th bogie,  = rotational d.o.f. in the center of j-th bogie, and n = total number of
car bodies as shown in Figs. 1 and 2, and a dot (·) represents the time derivative.

The potential energy (Ep) is defined by the primary and secondary suspension springs set up in
bogies and joints. It can be expressed by the degrees of freedom of joints, bogies, and bridges as in
Eqs. (3) and (4).

For a front power car :

 (3)

For a rear power car :

 (4)

where kp = spring constant of the primary suspension, ks= spring constant of the secondary
suspension, and = relative vertical deformation of the primary suspension at the l-th wheel-rail
contact point (l = 1, 2) of j-th bogie.

The damping energy (Ed) is defined by the primary and secondary suspension dampers set up in
bogies and joints. It can be expressed by the degrees of freedom of joints, bogies, and a bridge as in
Eqs. (5) and (6).

For a front power car :

 (5)

For a rear power car :

 (6)

where cp= damping coefficient of the primary suspension and cs = damping coefficient of the
secondary suspension.

2.2 Passenger cars

The kinetic energy, potential energy, and damping energy of passenger cars can be obtained in the
similar manner as mentioned in the previous section. Intermediate carrying bogies are set up in the
front and back end of respective passenger car, while trailer motor bogies are set up between power
cars and passenger cars. The kinetic energy, potential energy, and damping energy of passenger cars
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are expressed in the following equations.

 (7)

The potential energy is defined by the primary and secondary suspension springs set up in bogies
and joints. 

 (8)

The damping energy is defined by the primary and secondary suspension dampers set up in bogies
and joints. 

 (9)

3. Bridge model

3.1 Modeling of a bridge

A simple but reasonably accurate 3-D model for the bridge that the influence of eccentricity of
axle loads can be considered may be the use of the beam finite element in which the torsional
rotation (φb) is included in addition to 2 degrees of freedom at each node, i.e., the vertical deflection
(vb) and rotation (θb), as shown in Fig. 4. In the present study, the bridge with variable cross-section
is approximately modeled by beam elements with segment-wise constant cross sections. At supports,
the vertical deflections (vb) and torsional rotations (φb) are restrained but the rotations (θb) are free.
The vertical deformations occurred in the piers and torsional rotations produced at supports due to
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be straight and the formulation of element stiffness and mass matrices can be found in many
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Fig. 4 Degrees of freedom of beam element
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published literatures (Przemieniecki 1968).

3.2 Track irregularities

In this study, only the vertical roughness of rail (or track irregularities) is considered in the
interactions between vehicles (wheels) and rails. To define the track irregularities along the distance,
the power spectral density (PSD) function needs to be assumed and then the generation of random
number and inverse Fourier transform are needed.

Track irregularities are considered as stationary and ergodic processes in the space, i.e., random
functions in the longitudinal coordinate x, and are characterized most frequently by PSD function,
Sz(γ ). The PSD function depends on the wave number (γ ) which is expressed as in Eq. (10).

 

(10)

where λ is the wave length, T is the period of wave, V is the vehicle speed, and ω is the circular
frequency of wave.

The PSD functions for the generation of track irregularities have been proposed by many
organizations and institutes for the applications in practice such as SNCF of France, FRA of USA
and CSD, ZZO, SZD of Czech Republic. Thus, the different PSD functions are used depending on
the characteristics of rails used in each country. In the present study, the formula in Eq. (11), which
is similar to the PSD function proposed by the practical measurement of French National Railways
(SNCF), is used.
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where A = 2.0× 10−6, B = 0.36 are used. By using 1024 spectra, the vertical track irregularities are
generated with respect to the longitudinal coordinate x as shown in Fig. 6. The coefficients of A and
B in Eq. (11) are the values related to track irregularities (roughness). A is a constant for the short
waves whose wave lengths are shorter than 3 m and B is a constant for the long waves longer
than 3 m.

3.3 Modeling of the eccentricity of axle loads

In the 2-dimensional vehicle-bridge interaction analysis, it is assumed that the axle loads of
vehicles are applied on the neutral axis of cross-section of the bridge. However, since railroads are
constructed mostly as double tracks, the eccentricity between the axles and the neutral axis of the
cross-section of the bridge should be considered in the analysis of railway bridges.

Fig. 6 Track irregularities as longitudinal coordinate x

Fig. 7 Modeling of the eccentricity of axle loads
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When an axle load P is applied at the position apart from the neutral axis of cross-section by a
distance , the vertical deflection (vb) and torsional rotation (φb) in the neutral axis of
cross section of the bridge are produced simultaneously as seen in Fig. 7. Thus, the vertical
deflection of , which is additional to the vertical deflection (vb) in the neutral axis of
cross-section at the position of axle, is generated and the vertical deflection ( ) at the position of
axle, i.e., point B in Fig. 7, becomes vb + . Hence, when vehicles move on the track with
the eccentricity of , the relative vertical deformations of the primary suspensions at the wheel-
rail contact points are extended by .

The vertical deformations of the primary suspensions at the wheel-rail contact points of two
vehicle axles of j-th bogie, as shown in Eqs. (3)-(6), (8), and (9), are defined as Eqs. (12) and (13)
considering the torsional rotation of the bridge generated by the eccentricity of vehicle axle.

 (12)

 (13)

In Eqs. (12) and (13),  and  are the elevations of the first and second axle of j-th bogie due
to the track irregularities, respectively. Similarly,  and  are the vertical deflections and 
and  are the torsional rotations under the two vehicle axles of j-th bogie on the bridge. Also, the
vertical deflection under vehicle axle is interpolated from vertical deflections at the nodes of the
bridge model as given in the following equations and as also shown in Figs. 2 and 3.

 (14)
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 (16)

 (17)

where αj1 = bj1/cj1, β j1 = 1 − α j1, αj2 = bj2/cj2, and βj2= 1 − α j2.
Therefore, by substituting Eqs. (14)-(16), and (17) into Eqs. (12) and (13), the vertical

deformations of the primary suspensions at the wheel-rail contact points of two vehicle axles of j-th
bogie are obtained by the following equations.

       (18)

       (19)

And by substituting Eqs. (18) and (19) into Eqs. (3)-(6), (8), and (9), the equations for the kinetic
energy, potential energy, and damping energy of the vehicle-bridge system can be expressed by the
degrees of freedom of joints, bogies, and a bridge.
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4. Equations of motion of vehicle-bridge system

The equations of motion for the problem can be derived by substituting equations which define
the kinetic energy, potential energy, and damping energy of power cars and passenger cars (Eqs.
(1)-(9)) into the Lagrange’s equations.

 (20)

where qt(t) is the degrees of freedom at the joints and bogies of vehicles. Thus, the equations of
motion can be expressed by the degrees of freedom of joints, bogies, and a bridge.

The vertical interactive force between the first axle of j-th bogie and the rail is expressed as in
Eq. (21).

 (21)

where  and mu are respectively the sprung mass and unsprung mass (wheel and axle) of primary
suspension and g is gravity acceleration.

In modeling the bridge with beam elements, the vertical interactive force as in Eq. (21) is
transferred to the node by interpolation. Then the equation of motion of the bridge is given as

 (22)

where [Mb], [Cb], [Kb], and {qb(t)} are the mass matrix, stiffness matrix, damping matrix, and vector
of nodal degrees of freedom of the bridge, respectively and {Pb(t)}is the load vector transferred to
the node.

From the above Eqs. (20), (21), and (22), the equation of motion of the total vehicle-bridge
system is derived as given in Eq. (23).
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 is composed of stiffness matrices of the bridge ([Kb]) and the train ([Kt(t)]). And,
 is the load vector of the bridge ([Pb(t)]) and the train ([Pt(t)]). To obtain the numerical

solution for the equation of motion of total vehicle-bridge system, Newmark’s β method with
average acceleration(γ = 1/2 and β = 1/4), which is unconditionally stable, is used.
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5. Numerical examples

5.1 Numerical verifications

The model presented in this study is verified by comparing the analysis results with the
experimental results. The experimental results were obtained by operating 20-car formation high-
speed train on 2-span continuous PC box girder railway bridge (Kim et al. 2001 and Choi 2001).
20-car formation high-speed train is composed of 2 power cars, 2 power passenger cars, and 16
passenger cars, which are operated on the railway bridge at the speed of 300 km/h in this
verification. 2-span continuous PC box girder railway bridge is the 14 m-width bridge with ballasted
double tracks, which have the eccentricity of 2.5 m.

The vertical deflections at the center of the bottom slab were adopted as the measured data in the
in situ test. The experimental results of this verification were obtained by low pass digital filtering
for the frequency over 10 Hz of the measured data. Because the natural frequency for the main
modes of the vehicles and bridge were surely proved to be below 10 Hz through the spectral
analysis of the measured data. The vertical deflections were measured at the mid-points A and B of
each span as shown in Fig. 8(a). Total 76 beam elements are used to model the bridge, which have
8 types of cross sections to model the various cross section.

In Fig. 8(b) and (c), the analysis results are compared with the experimental results after filtering.
Because there can be errors in the calibration of the in situ test, construction of the bridge,
calculation of the cross-sectional properties, and evaluation of mass and damping ratio, there exist a

Fig. 8 Comparison of the analysis results with the experimental results
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little discrepancies between the analysis results and the experimental results. In spite of many
uncertainties and the simplification of the bridge and vehicle models in this study, the vertical
deflections of the analysis results are well agreed with the experimental results.

Fig. 9 Modeling of 3-span continuous PC box girder bridge with beam elements

Table 1 The details of the bridge

Bridge type 3-span continuous
PC box girder bridge

Details

Span length 3@25 m = 75 m
Breadth 14 m
Height 3.5 m
Track Distance between double tracks = 5 m

Live loads Axle loads
(2 power cars, 15 passenger cars)

Material 
properties

Young’s modulus 3.6×105 kgf/cm2

Damping ratio 5%
Mass density 4,812 kg/m3

Poisson’s ratio 0.2

   

(a) the lengths of elements

Lengths of 
elements (m) Element ID No.

1.000 4, 11, 21, 26, 36, 43
1.500 2, 5, 6, 7, 8, 9, 10, 37, 38, 39, 40,

41, 42, 45
1.525 12, 13, 34, 35
1.550 20, 27
1.600 14, 15, 18, 19, 28. 29, 32, 33
1.700 1, 46
2.250 16, 17, 22, 23, 24, 25, 30, 31
2.300 3, 44

(b) the properties of types of cross sections

Types of 
cross sections

Area
(m2)

Moment of 
inertia (m4)

Torsional 
constant (m4)

a 14.832 12.215 172.028
b 11.278 12.793 135.699
c 10.046 10.061 131.168
d 10.882 12.737 134.959
e 12.313 11.568 159.633
f 11.053 12.827 135.738
g 13.498 13.464 162.963

   Table 2 Modeling of the bridge with beam elements
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5.2 Analysis of an existing bridge

5.2.1 The bridge under consideration
The vehicle-bridge interaction analysis scheme suggested in this study is used to analyze a 3-span

continuous straight PC box girder railway bridge. The details of the bridge for analysis are given in
Table 1. Since the cross section of the bridge varies in the length direction, it is modeled by beam
elements of segment-wise constant sections (Fig. 9). Total 46 beam elements of 7 different cross
sections are used in modeling the entire bridge. Details are given in Table 2(a) and Fig. 9, in
which ID numbers of the beam elements used to model the bridge are given. The values of area,
moment of inertia of area, and torsional constant of 7 different types of cross sections are listed in
Table 2(b). 

5.2.2 Vehicle details
Dynamic properties of the vehicle used in this analysis are given in Table 3. Bogies are classified

into three categories; motor coach motor bogies, trailer motor bogies, and intermediate carrying
bogies.

5.2.3 The influence of the eccentricity of axle loads
To investigate the influence of the eccentricity of axle loads, the results from this study are

compared with those of the analysis for moving constant force and those of 2-dimensional vehicle-

Table 3 Dynamic properties of the vehicle in analysis

ITEM Motor coach motor 
bogie Trailer motor bogie Intermediate carrying 

bogie

Train speed 200 km/h~400 km/h

Car body mass (kg) 51,152 38,770 22,560

Bogie mass (kg)
(including unsprung mass) 7,057 7,057 7,057

Unsprung mass (kg) 4,096 4,096 4,096

Load/axle (kgf) 17,000 17,000 17,000

Inertia moment of car body
(gallop motion, kg · m2) 1,054,325 804,420 599,264

Inertia moment of bogie
(gallop motion, kg · m2) 1,487 1,487 1,487

Primary suspension
- vertical spring(kgf/m)

510,200
(=255,100/axle)

510,200
(=255,100/axle)

291,500
(=145,800/axle)

Secondary suspension
- vertical spring(kgf/m) 255,100 85,030 60,020

Primary suspension Damper
- vertical (kgf · sec/m)

4,082
(=2,041/axle)

4,082
(=2,041/axle)

4,082
(=2,041/axle)

Secondary suspension Damper
- vertical (kgf · sec/m) 2,041 2,041 1,020
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bridge interaction analysis not considering the eccentricity. In the analysis for moving constant
force, it is assumed that there are no inertia effect and damping effect resulting from the mass and
damping mechanism of a bridge. As the train passes through the bridge from the left to the right,
the vertical deflections and torsional rotations in the centroids of cross sections at the mid-points of
each span, i.e., points A, B, and C in Fig. 9, are obtained. In the case that double tracks are
constructed on the bridge, the main loads acting on the bridge are the vertical and torsional forces
transmitted through vehicle axles. Nodal force vector is constructed by the weights of vehicles and
the elevation of track irregularities according to the positions of vehicles as time goes by. For
example, the vertical nodal force acting on point A as the vehicle moves is shown in Fig. 10.

The vertical deflections at points A, B, and C are shown in Fig. 11 when vehicle moves along
track with a speed of 300 km/h. Two outstanding vertical deflections at each of points A, B, and C
are produced at the time when two bogies set up between a power car and a passenger car pass
through these points. Because the structure of the bridge is symmetric about the mid-length point of
the bridge and a series of axle loads are also nearly symmetric as shown in Fig. 10, the maximum
value of vertical deflections at points A and C are almost the same. However, the amplitude of
vertical deflection at A is larger than those at other two points not only when bogies of passenger
cars pass by but also after the vehicle passes through the bridge completely. Therefore, it is
observed that the first span (point A), which the vehicle arrives first, is more affected by the
dynamic effect of vehicle movement than any other spans. As shown in Fig. 12, torsional rotations
show the tendency similar to vertical deflections, that the peak magnitude descends sequentially in
the order of C, B, and A and torsional rotations have the components of higher frequencies of
vibration at B than A and C. Torsional rotations at A, B, and C have nearly the same maximum
values. The maximum discrepancy between torsional rotations from this study and those of the
analysis for moving constant force is most clearly seen at B. And the time histories of torsional
rotations at A and C show the same fashion if one of these are reversed.

Fig. 10 Vertical nodal force at point A generated by axle loads
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In Fig. 13, the vertical deflections at points A, B, and C are compared to the cases with and
without the eccentricity of 2.5 m of vehicle axle loads. The difference in vertical deflections caused
by the eccentricity is not significant except at t = 0.4 sec when two bogies set up between a front
power car and a passenger car pass through the point A for the first time. At this time, relatively
large deflections are observed at point A, and the vibration with high frequencies appear due to the
effect of torsional vibrations (Fig. 12).

The spectral densities of vertical deflections at the mid-points of spans, which are generated by
fast Fourier transform (FFT), are shown in Fig. 14. When a series of vehicle axle loads are acted on
the bridge, the heavy spectral densities at zero frequency of points A and C are observed while a
quite different pattern of spectral density of vertical deflection at B is shown reflecting the vertical

Fig. 11 Vertical deflections in considering the eccen-
tricity of axle loads and in moving constant
force analysis

Fig. 12 Torsional rotations in considering the eccen-
tricity of axle loads and in moving constant
force analysis
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deflection at B which vibrates up and down the neutral axis. The heavy spectral densities of vertical
deflections at A, B, and C are observed at 1 Hz and 3.7 Hz. The heavy spectral density of 1 Hz is
induced by axle loads of bogies set up between power cars and passenger cars and that of 3.7 Hz is

Fig. 14 Spectral densities of vertical deflections in
considering the eccentricity of axle loads
and in moving constant force analysis

Fig. 13 Vertical deflections in considering the
eccentricity of axle loads and not
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induced by the axle loads of bogies set up in passenger cars. The distributions of the spectral
densities for vertical deflections at A, B, and C are almost identical to those of the analysis for

Fig. 15 Spectral densities of torsional rotations in
considering the eccentricity of axle loads
and in moving constant force analysis

Fig. 16 Longitudinal bending stress when one train
moves
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moving constant force in the range less than 3 Hz and a denser distribution than the analysis for
moving constant force is observed in the high frequency range between 3 Hz and 8 Hz. Such a
phenomenon is due to the vibrations with high frequencies included by the actions of torsional
forces, torsional rotations and vehicle-bridge interactions.

The spectral densities of torsional rotations in the mid-points of spans, which are generated by
FFT, are shown in Fig. 15. It is observed that the spectral densities of torsional vibrations with
higher frequencies than vertical deflections appear and the spectral densities of 30 Hz is remarkable
in particular. All the spectral densities of torsional rotations at A, B, and C are similar except the
spectral densities of 30 Hz at B which is more significant than at A and C.

Fig. 17 Vertical deflections as the increase of vehicle speed
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Once nodal displacements have been calculated from the analysis, member forces for the
structural behavior can be calculated. The main member force in a bridge is the longitudinal
bending stress generated by bending moments. Longitudinal bending stress can be calculated from
flexure formula, in which bending moments can be evaluated by multiplying the element stiffness
matrix by the nodal displacements in local coordinate system. The longitudinal bending stresses at
points A, B, and C at the upper face of top slab and at the lower face of bottom slab when one train
moves, are shown in Fig. 16. Compressive stress is indicated to be negative and tensile stress is to
be positive. In addition, the stresses calculated in the above-mentioned stress analysis can be used to
determine the fatigue lives of structural members.

Fig. 18 Torsional rotations as the increase of vehicle speed
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5.2.4 The Influence of the vehicle speed
Once the bridge has been constructed and the running vehicle has been determined, the vehicle

speed is the only variable parameter left undecided. Therefore, it should be of interest to investigate
the dynamic behavior of the bridge with different vehicle speeds.

In cases that vehicle speeds are respectively 200 km/h, 250 km/h, 300 km/h, 350 km/h, and
400 km/h, the time histories of vertical deflections and torsional rotations in the centroids of cross
sections at points A, B, and C are shown in Figs. 17 and 18. As the vehicle becomes faster, the
increases of vertical deflections and torsional rotations are not outstanding at the arrival of vehicle.
However, when the bogies of passenger cars pass through or when the bogies set up between power
cars and passenger cars pass by the mid-points of spans, the increases become more significant.

As the vehicle becomes faster, the change of the maximum vertical deflections is shown in Fig. 19.

Fig. 19 The change of vertical deflections as 
the increase of vehicle speed

Fig. 20 The change of torsional rotations as 
the increase of vehicle speed

Table 4 Comparison of the maximum deflections with allowable values for serviceability

Specifications Vertical deflections Torsional rotations

UIC code
∆max/L ≤ 1/1700 0.4 mm

per 3 m in longitude and 1 m in transverse

5.882× 10−4 0.4(mm)

Shinkansen
vmax ≤ L/1800 -

1.389× 10−2(m) -

Present
study

1 train
∆max/L = 1.037× 10−5

vmax = 3.890× 10−4(m)
(C, vehicle speed : 400  km/h)

7.300× 10−5(mm)
(B, vehicle speed : 400 km/h)

2 trains
∆max/L = 1.941× 10−4

vmax=7.281× 10−4(m)
(C, vehicle speed : 400 km/h, dx= 50 m)

1.420× 10−4(mm)
(B, vehicle speed : 400 km/h, dx= 12.5 m)
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When the vehicle runs faster than 300 km/h, the maximum vertical deflection increases slowly but
steadily. The change of the maximum torsional rotations, as vehicle becomes faster, is shown in
Fig. 20. When the vehicle speed is in the range of 200 km/h to 300 km/h, the increases of vertical
deflections and torsional rotations are not so significant, on the other hand, when the vehicle speed
is higher than 300 km/h, the increases of vertical deflections and torsional rotations become a little
more significant. The fundamental frequency of the analyzed bridge is 6.8 Hz and the effective
beating interval for the present type of the vehicle is 18.7 m. Therefore, the critical velocity, which
is originated from the concept of the resonance under the passage of uniformly distributed load, is
457.78 km/h. The critical velocity is sufficiently deviated from the highest speed of the present type
of vehicle, i.e., 350 km/h.

Bridges on which a high-speed vehicle moves are to be designed to insure the structural safety
and the comfort of passengers. To satisfy these requirements, the allowable deflections are specified
in several design codes such as the International Railway Federation (UIC) and the specifications of
designing bridges for Shinkansen. The maximum vertical defections and torsional rotations
evaluated by the method proposed in this study are compared with the allowable values by the
codes/specifications and shown in Table 4. Even though the high-speed vehicle moves on the bridge
of current analysis with a speed of 400 km/h which is much higher than commercial operation
speed, the maximum vertical deflections and torsional rotations are much less than the allowable
values presented in the UIC code and the specifications of Shinkansen.

5.2.5 The Influence of the speed of two vehicles on double tracks
Investigations into the influence of vehicle speed on vehicle-bridge interactions are also carried

out for the case that two trains move respectively on their tracks in the opposite direction. It is
assumed that the train enters into the bridge first from the left as shown in Fig. 21 and that two
trains move at the same speed. The train speeds considered are 200 km/h, 250 km/h, 300 km/h,
350 km/h, and 400 km/h. Because the arrival time of two trains are different, after the first train has
passed some distance on the bridge, the other train enters into the bridge from the opposite
direction. Seven different cases of passed distances (dx) of the first train before the other train enters
into the bridge are considered, i.e., 0 m, 12.5 m, 25 m, 37.5 m, 50 m, 62.5 m, and 75 m. For the five
different cases of vehicle speeds, the changes of vertical deflections and torsional rotations at A, B,
and C are examined with different dx.

Fig. 21 Passed distance (dx) of the first train until the other enters into the bridge
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As the vehicle becomes faster, the vertical deflections and torsional rotations in the centroids of
cross sections at the mid-points of spans due to two trains on double tracks are shown in Figs. 22
and 23 for the typical case that the passed distance (dx) of the first train is 25 m. In this case, it
takes 0.45, 0.36, 0.3, 0.26, and 0.23 seconds for the first train to move 25 m with the five different
vehicle speeds, respectively. After these time periods, the other train enters into the bridge and the
dynamic responses of bridges induced by two moving trains are observed. The dynamic responses
of bridges are more complicated than those for a single moving train as shown in Figs. 11 and 12. It
is observed that the time histories of vertical deflections and torsional rotations include the higher
frequency components when two trains move on the bridge than when a single train moves.

Fig. 22 Vertical deflections as the increases of the speeds of two trains (dx = 25 m)
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In Table 5, the values of dx that generate the maximum vertical deflections and torsional rotations
at points A, B, and C are listed for the speeds of two trains. From the analysis results at A, B, and
C, the following facts are observed. When the first train passes the mid-point of the third span from
the left of the bridge and the other train enters into the bridge, the maximum vertical deflections are
generated at A. And, when the first train passes the center span of the bridge and the other train
enters into the bridge, the maximum torsional rotations are generated at A. When two trains enter
into the bridge simultaneously, the maximum vertical deflections are generated at B. When the first
train passes the mid-point of the center span of the bridge and the other train enters into the bridge,
the maximum torsional rotations are generated at B. When the first train passes the third support
from the left of the bridge and the other train enters into the bridge, the maximum vertical

Fig. 23 Torsional rotations as the increases of the speeds of two trains (dx = 25 m)
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deflections are generated at C. And when two trains enter into the bridge simultaneously, the
maximum torsional rotations are generated at C.

The change of the maximum vertical deflection is shown in Fig. 24 as the vehicle speed becomes
higher. When the vehicle speed becomes higher than 300 km/h, the maximum vertical deflection
increases steadily. It is observed that the changes of the maximum vertical deflection at A and B
have similar tendencies. The change of the maximum torsional rotation is shown in Fig. 25 as
vehicle speed becomes higher. The maximum torsional rotations at A, B, and C are increased
somewhat irregularly as vehicle speed increases, however, in case that the vehicle speed reaches
400 km/h the maximum torsional rotations at B are increased significantly. As shown in Table 4,
although the two trains move on double tracks of the bridge with the speed of 400 km/h in the
opposite direction, the maximum vertical deflections and torsional rotations are less than the
allowable values presented in the UIC code and the specifications of Shinkansen.

The vertical deflections and torsional rotations are shown in Figs. 26 and 27 when one or two
trains move on the bridge. In case of two trains, when the passed distance (dx) of the first train is
25 m, or 0.3 seconds after the entering of the first train, the other train enters into the bridge and the

Table 5 Passed distances (dx, m) generating the maximum vertical deflections for the speeds of two trains

Response for max. vertical deflection for max. torsional rotation

Position A B C A B C

Vehicle 
speed
(km/h)

200 62.5 12.5 62.5 12.5 37.5 25
250 62.5 0. 50. 12.5 37.5 12.5
300 62.5 0. 50. 37.5 37.5  0.
350 62.5 0. 50. 50. 37.5 12.5
400 62.5 0. 50. 37.5 75. 12.5

Fig. 24 The change of vertical deflections as 
the increases of the speeds of two trains

Fig. 25 The change of torsional rotations as 
the increases of the speeds of two trains
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influence of the second moving train is shown. By investigating the ratio of the maximum responses
for the case of two trains to those for the case of one train, the influence of two trains moving on
the bridge can be indirectly compared with that of one train. As the speeds of two trains become
higher, the ratio of the maximum vertical deflections for the case of two trains to those for the case
of one train is shown in Fig. 28. The ratios at B and C are decreased while it is increased at A. The
ratio of the maximum torsional rotations for the case of two trains to those for the case of one train
is shown in Fig. 29. As the speeds of two trains become higher, the ratios at A and C are decreased
while increased at B. The vertical deflections at each span when two trains move are larger than
those when one train moves but the torsional rotations at C when two train move become smaller
than those when one train moves as the speeds of two trains become higher.

Fig. 26 Vertical deflections when one train moves
and when two trains move

Fig. 27 Torsional rotations when one train moves and
when two trains move
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6. Conclusions

In this study, the analysis of high-speed vehicle-bridge interactions by a simplified 3-dimensional
finite element model was performed. By using this model, which includes the eccentricity of axle
loads and the effect of the torsional forces acting on the bridge, the more efficient and accurate
vehicle-bridge interaction could be obtained. For the verification of this model, the analysis results
were compared with the experimental results and were well agreed with the experimental results.
Also, the investigation into the influences of the eccentricity of vehicle axle loads and the vehicle
speed on vehicle-bridge interaction were carried out. Finally, the calculation of the longitudinal
bending stress was performed. In the future study, the additional fatigue analysis based on the stress
analysis should be carried out to evaluate the fatigue life of railway bridges.

The difference of the vertical deflections in the centroids of cross sections of the bridge caused
by the eccentricity of vehicle axle loads was not significant except when two bogies set up
between the front power car and the passenger car passed through the mid-point of the first span
for the first time. The difference, however, can be more seriously amplified in the cases of
torsionally flexible bridges. And in that case, the consideration of the eccentricity of vehicle axle
loads is essential to obtain the accurate behavior of a bridge. By considering the eccentricity of
axle loads, the components of high frequencies could be included in vertical deflections and
torsional rotations.

It is of special interest to see the influence of the train speed exceeding current practiced limit of
300 km/h. The influence of the vehicle speed on the maximum responses of the bridge is not
significant within the maximum operational speed limit of 300 km/h. However, when the train speed
exceeds 300 km/h, the influence becomes more significant. For example, for a single train passing,
the magnitude of the maximum vertical deflection at the mid-point of the middle span increased by
25% as the change of the train speed from 300 km/h to 400 km/h. And the magnitude of the

Fig. 28 The ratio of the maximum vertical
deflections for two trains to those for one
train

Fig. 29 The ratio of the maximum torsional rotations
for two trains to those for one train
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maximum torsional rotation at the mid-point of the last span increased by 13% as the change of the
train speed from 300 km/h to 400 km/h. The critical velocity was 457.78 km/h, which was
sufficiently deviated from the highest speed of the present type of vehicle, i.e., 350 km/h.

The maximum vertical deflections and torsional rotations in the analysis results of numerical
examples were much less than allowable values described in major design codes, including the UIC
code and the specifications of Shinkansen, to secure the serviceability and safety of the bridge.
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