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Thermomechanical buckling of rectangular,
shear-deformable, composite laminated plates

Y. S. Ge†, W. X. Yuan‡ and D. J. Dawe‡†

Department of Civil Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

Abstract. The B-spline finite strip method is developed for the prediction of the buckling of
rectangular composite laminated plates under the combined action of applied uniaxial mechanical stress
and increasing temperature. The analysis is conducted in two stages, namely an in-plane stress analysis in
the pre-buckling stage to determine the pre-buckling stresses, followed by a buckling analysis using these
determined stresses. The buckling analysis is based on the use of first-order shear deformation plate
theory. The permitted lay-up of the laminates is quite general, within the constraint that the plate remains
flat prior to buckling, and a wide range of boundary conditions can be accommodated. A number of
applications is described and comparison of the results generated using the finite strip method is made
with the results of previous studies.
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1. Introduction

A considerable body of literature exists on the buckling of rectangular composite laminated plates
subjected to mechanical loads and a quite recent book, edited by Turvey and Marshall (1995),
contains much information on this subject area. A lesser body of information exists on the buckling
of such plates under thermal loading but within the aforementioned book Tauchert (1995) has
presented a review of work on thermal (and hygrothermal) buckling, and a later study by Dawe and
Ge (2000) includes reference to numerous pertinent works. The problem of buckling under the
combined action of thermal and mechanical loading has been considered by relatively few
investigators but is of importance and is the focus of attention in the present paper.

In dealing with the combined problem the critical buckling temperatures for initially-stressed,
thick, simply supported plates were determined using the Galerkin method by Chen et al. (1982),
for isotropic plates, and by Yang and Shieh (1988) for anti-symmetric cross-ply laminates. A study
of the buckling of composite laminated plates subjected to combined thermal and axial mechanical
loadings was presented by Noor and Peters (1992) using a mixed finite element approach in the
context of Reissner-Mindlin first-order shear deformation plate theory (referred to simply as SDPT
here). This approach was extended by Noor and Peters (1993) to embrace postbuckling behaviour,
incorporating a multi-parameter reduction method (as in their earlier work) in determining stability
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boundaries and postbuckling responses. Sai Ram and Sinha (1992) investigated the effects of
temperature and moisture on the stability of composite laminated plates subjected to in-plane loads.
They used a finite element method (FEM) in the context of SDPT, incorporating reduced lamina
material properties at elevated temperatures, and considered symmetric and anti-symmetric laminates
with simply-supported and clamped boundaries.

The B-spline finite strip method (B-s FSM) in the context of SDPT is developed here for the
analysis of the thermomechanical buckling of rectangular laminates. The B-s FSM was introduced by
Cheung and Fan (1983) in studying the static behaviour of box girder bridges in the context of
classical plate theory (CPT). More recently, it has been developed in the context of both CPT and
SDPT for a range of types of application which include mechanical buckling of both single plates
and complicated plate structures (Dawe and Wang 1994, 1995, Dawe 1995, Wang and Dawe 1997)
and thermal buckling of single plates (Dawe and Ge 2000). The present report extends this successful
analysis approach, in the context of SDPT, to the study of thermomechanical buckling behaviour
and presents description of a number of applications for which earlier, comparative results are
available.

2. Finite strip method

2.1 Preamble

The flat rectangular plate under consideration, of length A (in the x-direction), width B (in the y-

Fig. 1 A finite strip
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direction) and thickness h (in the z-direction) is modelled with a number of finite strips of the type
shown in Fig. 1, of width bú B. In general the plate may be a laminate formed of N layers of
unidirectional fibre-reinforced composite material. From a stress-free state the plate may be
subjected to a temperature rise T(x, y) which does not vary through the thickness but may be non
-uniform in the plane of the plate, and/or to mechanical loading p(y) per unit width at its ends x = 0,
A as indicated for a strip in Fig. 1.

It is assumed that under the action of increasing temperature and/or mechanical loading the plate
remains flat as in-plane stresses develop progressively, until these stresses reach a critical level at
which out-of-plane, bifurcational buckling occurs. This assumption has implications for the range of
laminate lay-ups that can be accommodated. It naturally includes all symmetrically laminated, or
balanced, plates but it does not necessarily exclude all anti-symmetric unbalanced plates. Pertinent
to this, Leissa (1986) and Qatu and Leissa (1993) have shown that specific unbalanced laminates
with particular boundary conditions will remain flat when acted upon by particular distributions of
in-plane stress. This statement includes anti-symmetric angle-ply laminates with simply supported or
clamped edges when subjected to uniform or linearly-varying in-plane direct stresses. It also
includes anti-symmetric cross-ply laminates with clamped edges when subjected to uniform in-plane
direct stresses. Hence there is justification for including some in-plane to out-of-plane coupling
terms in the laminate constitutive equation at the onset of buckling (as will be done below).

In line with the assumption of bifurcational buckling there is a need to determine, in the first
stage, the pre-buckling distribution of membrane stresses. Such determination may be trivial in
situations where stresses are clearly uniform or may be complicated in other situations where it is
necessary to conduct a plane stress, finite strip analysis to determine the non-uniform, pre-buckling,
in-plane stress distribution. In either situation the pre-buckling stresses are taken forward to the
second stage of the analysis where they enter into the plate geometric stiffness matrix in an
eigenvalue buckling calculation. The two distinct stages of calculation are described separately in
what follows but it is noted that the same number and width of strips is used in each stage.

2.2 Pre-buckling plane stress analysis

The displacement field of a finite strip in the pre-buckled state is assumed to be of the form

(1)

Here the Ni = Ni(y) are standard Lagrangian shape functions of degree n running across the strip
which has (n + 1) reference lines at which degrees of freedom are located. The finite strip shown in
Fig. 1 corresponds to n = 3 (i.e., a cubic strip) with four (numbered) reference lines. The

 are modified B-spline function bases of degree k running along the strip and du and dv

are column matrices of degrees of freedom associated with u and v, respectively. The spline knots
are equi-spaced along the strip length, with q spline sections and q + 1 knots in the length A, as
shown in Fig. 2a, plus other knots outside each end of this length which are required for the
purposes of completing the definition of a function and prescribing end conditions. The individual
local spline functions  of polynomial degree k (for k = 1 to 5) are defined algebraically
elsewhere (Dawe and Wang 1992) : here Fig. 2b shows a local cubic B3-spline function (k = 3)
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whilst Fig. 2c shows the juxtaposition of such local functions to form a complete function. The
modified B-spline function basis  incorporates revisions to the original function basis, so as
to facilitate the specification of end conditions. Such revisions can be made in more than one way
but here they follow the procedures of Dawe and Wang (1992). For k = 3, for instance, and in
representing u (with similar considerations applying to the representation of v), the 
corresponds to a definition of the column matrix  of degrees of freedom associated with the u-
displacement, as 

.  (2)

Here α1 to αq−1 are generalised coefficients, uo and  are values of u and du/dx at spline knot 0,
and uq and  are similarly defined at knot q.

The linear stress-strain relationships of an individual, orthotropic layer, related to the x, y axes,
have the form

 (3)

where αx, αy and αxy are thermal expansion coefficients, T = T(x, y) is the temperature rise, σx, σy

and τxy are the stresses, the Qrs (r, s= 1, 2, 6) are transformed layer stiffness coefficients, and εx, εy

and γxy are the linear strains which are defined as

. (4)
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Fig. 2 Spline representation: (a) spline sections and knots; (b) local cubic spline functions; and (c) a
combination of cubic spline functions. 



Thermomechanical buckling of rectangular, shear-deformable, composite laminated plates415

The corresponding constitutive equations for the laminate plane stress behaviour are

or

F = L(e− et). (5)

Here e and et are the column matrices of elastic and thermal strains, respectively; Nx Ny and Nxy in
F are the membrane direct and shearing forces per unit length; and the stiffness coefficients
appearing in L are defined by

. (6)

During the deformation process the change in total potential energy of a finite strip is

Π = U + V (7)

where U is the strain energy and V is the potential energy of the applied loading at the two ends
x = 0, A.

The strain energy can be expressed as (Dawe and Ge 2000)

U = U1 − 2U2+ U3 (8)

where

(9)

 (10)

 (11)

Using Eqs. (1) and (3) the elastic strains e can be expressed as

(12)

where the prime ( )' denotes differentiation with respect to x for  and with respect to y for
Ni(y). It then follows (Dawe and Ge 2000) that U1 can be written in the form

 (13)
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with typical submatrix kij (i, j = 1, 2 Î n + 1) of the strip stiffness matrix k defined as

(14)

and where d is the column matrix of all strip degrees of freedom. It also follows that U2 can be
written as

(15)

with the typical submatrix fti of the thermal loading column matrix ft defined as

(16)

In et (see Eq. 5) the variation allowed for T over the strip surface is that T can vary across the
strip (with y) as a polynominal function of degree three, using Lagrangian interpolation, and can
vary linearly (with x) along the strip.

The third part, U3, of the strain energy need not be considered in any further detail since it is not
a function of the strip freedoms d and hence will play no part when the total potential energy is
minimised.

The potential energy of the applied mechanical loading is

(17)

Clearly the integrations are made only over the ends of the finite strip and the effective expression
for u in each of the integrations is the particular reduced form of the general expression for u (given
in Eq. 1) that applies at the end. Thus

(18)

which can be written in the form

V = −dTfm (19)

where the typical submatrix fmi of the mechanical loading column matrix fm is defined as a column
matrix of zeros except for entries of

in the first and last-but-one positions (i.e., in positions corresponding to ui at x = 0 and x = A,
respectively).

The total potential energy of a finite strip now becomes, using Eqs. (6), (7), (12), (14) and (18),
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The integrations involved in evaluating k, ft and fm are performed analytically in the y-direction
and numerically in the x-direction through Gaussian integration with four points per spline section.

For the complete plate an expression of the same form applies, but written in terms of the plate
stiffness matrix K, degrees of freedom D, thermal load column matrix Ft and mechanical load
column matrix Fm rather than their lower-case equivalents in Eq. (20). The plate matrices are
obtained by appropriate super-imposition of the strip matrices in the standard direct stiffness
procedure. If it is assumed that K, D, Ft and Fm denote plate matrices after the prescribed kinematic
boundary conditions have been applied, then the minimisation of the plate total potential energy
gives the set of equations

K D = Ft + Fm. (21)

Solution of these equations for the degrees of freedom D is obtained using Gaussian elimination.
When D is known, and hence d for each strip, the forces per unit length Nx, Ny and Nxy can be
determined using Eqs. (4) and (5). The corresponding pre-buckling stresses are denoted as 
and , respectively, and are obtained from the forces per unit length by dividing by the plate
thickness h.

2.3 Buckling analysis

In the second-stage analysis the flat laminated plate is subjected to the pre-buckling membrane
stresses whose distributions are available from the first-stage analysis described above. Now
ordinarily the situation will not be that the temperature and the end thrust increase directly
proportionally in some known fashion until buckling occurs. Rather, two practical situations are
considered here. The first situation is that the temperature increases a known amount (which is less
than that which will cause buckling on its own) and it is required to find the critical value of end
thrust which will then cause buckling. The second situation is that the end thrust is known (at a
level not leading to buckling on its own) and it is required to find the critical value of temperature
rise which will then cause buckling. Hence, in the pre-buckling stage what is required is two
separate solutions for Eq. (21) and the subsequent determination of stresses : one for Ft = 0 and a
specified magnitude (unity say) of end thrust, and the other for Fm = 0 and a specified magnitude
(again unity say) of temperature increase. Then the total pre-buckling stresses moving forward to the
buckling analysis will comprise an initial specified (in distribution and magnitude), or “dead”, stress
system plus an imposed, or “live”, system whose distribution is known but whose magnitude which
will cause buckling is not. Thus we will have a pre-buckling stress system of the form

(22)

where subscripts D and L denote the dead and live systems, respectively, λ is a load factor and
 etc.

The aim now in the second stage of the analysis is to determine the critical value of λ that causes
out-of-plane buckling. The buckling analysis is conducted in the context of Reissner-Mindlin first-
order shear deformation plate theory. In this stage the displacements (and quantities derived from
them) that occur are to be regarded as perturbation displacements, i.e., are to be regarded now as the
changes of displacements that occur at the moment of buckling. In fact u and v are such changes
but the displacements relating to out-of-plane deformation, i.e., the deflection w and the rotations of
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the plate normal, ψx and ψy (see Fig. 1), are total displacements since there are no out-of-plane
displacements in the first analysis stage.

The perturbation displacement field for the buckling problem is assumed to be 

which again is of the form

(23)

where the definitions of the various quantities is along similar lines to that following Eq. (1). Here
again the Ni are Lagrangian shape functions in the y-direction. The  and  are modified B-
spline function bases of degrees k and k − 1, respectively, in the x-direction : a lower degree of
spline representation is used for the longitudinal variation of  than for the other four
displacement quantities so as to avoid any shear-locking problem that may otherwise occur while
analysing thin plates (Dawe and Wang 1992, 1994, 1995, Dawe 1995, Wang and Dawe 1997).

The in-plane (perturbation) stress-strain relationships of the individual layer, related to the
laminate axes, are as in Eq. (3) but without the thermal contributions. These relationships are now
augmented by the relationships

(24)

between the through-thickness shear stresses τyz and τzx and the corresponding shear strains γyz and
γzx, where the Qrs (r, s= 4, 5) are transformed stiffness coefficients. The strain-displacement
relationships are now

       

                     (25)
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or 

F = Le (26)

where, clearly, new definitions of F, L and e apply from those given in the first-stage analysis. Here
Nx, Ny and Nxy are the membrane direct and shear forces per unit length; Mx, My and Mxy are the
bending and twisting moments per unit length; and Qy and Qx are through-thickness shear forces per
unit length. The laminate stiffness coefficients appearing in L are defined in the usual way as

(27)

and

(28)

wherein the krks are prescribed shear correction factors. The constitutive relationships of Eq. (26)
embrace a range of types of laminate which can correspond to a bifurcational buckling problem,
dependant upon the nature of the pre-buckling stress field and the laminate boundary conditions
(Leissa 1986, Qatu and Leissa 1993), as mentioned earlier. The B12 stiffness coefficient is omitted
from L simply because its presence would not be compatible with a plate remaining flat prior to
bifurcational buckling taking place. In general, not all the stiffness coefficients appearing in L in Eq.
(26) will be present for any one laminate, of course.

The strain energy U of a finite strip in the buckling analysis can be expressed in the same form as
given earlier for U1 in Eq. (9), but now with L and e as given in Eq. (26), of course. The column
matrix e can be expressed in the form of Eq. (12) but now with new definitions of di, as in Eq. (23),
and of Bi, as recorded in the Appendix. Further, U can be expressed in the form of the right-hand
side of Eq. (13) with the typical sub-matrix kij of the strip stiffness matrix k given again by Eq. (14).
In evaluating k direct integration is used in the y-direction and numerical integration in the x-
direction, as in the pre-buckling analysis. 

The comprehensive expression for the potential energy Vg, of the applied in-plane stresses
 and  (arising from the first stage of the analysis) acting on the finite strip is (Dawe and

Wang 1994, 1995)
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                (29)

Using the displacement field of Eq. (23) in conjunction with Eq. (29) makes it possible ultimately
to express Vg in the form

(30)

where kg is the strip geometric stiffness matrix of which the typical submatrix kgij (i, j = 1, 2 Î
n + 1) is

(31)

with

(32)

and with matrices G1i to G5i defined in the Appendix. Since the pre-buckling stresses have the form of
Eq. (22) the strip geometric stiffness matrix can be split into those parts corresponding to the dead
stresses and to the live stresses, with the incorporation of a load factor for the live stresses, i.e.,

(33)

In evaluating kg, Gaussian numerical integration is used in both the x- and y-directions, typically
with five points both across a strip and per spline section along a strip.

The strip total potential energy in the buckling stage is

(34)

For the complete plate a similar expression applies in terms of whole-plate matrices K, KgD, KgL

and D which are assembled in the direct stiffness manner and which are assumed to relate to the
situation after the kinematic boundary conditions have been applied. On minimising the energy, the
set of equations for the eigenvalue problem governing plate buckling becomes

. (35)

Solution for critical values of λ is achieved using the iterative Sturm sequence-bisection procedure
and the corresponding eigenvector, representing the buckling mode, is determined through the use of
a random force vector.
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3. Applications

3.1 General remarks

The developed computer program arising from the analysis described above allows the user the
choice of a number of types of spline finite strip model, i.e., models based on the assumption in the
displacement field of different degrees, n, of crosswise Lagrangian interpolation and different
degrees, k, of longitudinal spline function. However, in the few applications that are described here,
only one type of model is used, corresponding to n = 3 and k = 3, i.e., cubic interpolation across a
strip, with four equi-spaced reference lines, and piecewise-cubic spline representation along a strip
(except for ψx where such representation is piecewise-quadratic).

The range of boundary conditions that could be accommodated in the developed capability is
broad but, for the applications described here, attention is restricted to plates which have the same
type of condition on all four edges, and this condition is one of four kinds. For an edge running
parallel to the y-axis, i.e., at x = 0, A, the types of kinematic condition applied in the buckling
analysis are defined as 

S1 condition, u = v = w =ψy = 0;
S2 condition, v = w = ψy = 0;
S3 condition, u = w = ψy = 0;
C1 condition, u = v = w = ψx = ψy = 0;

and conditions on an edge running parallel to the x-axis are obtained by replacing u, v, ψx and ψy by
v, u, ψy and ψx, respectively.

The shear correction factors are assumed to have the value 5/6 in the described applications, to be
consistent with the presented results of earlier studies based on the use of first-order SDPT.

3.2 Buckling of isotropic plates under pure mechanical and pure thermal loading

Here the two extreme situations of buckling under pure mechanical loading with no temperature
effect, and buckling under pure thermal loading with no initial mechanical stress, are considered.
The aim is to establish the nature of the convergence properties of the developed FSM in relatively
simple situations where comparative solutions are available. The plates considered are square and
isotropic, with Poisson’s ratio ν = 0.3 and coefficient of thermal expansion α = 2×10−6. In the case
of pure mechanical loading the plate is S2 simply supported and subjected to uniform uniaxial stress

. Two thickness ratios are considered separately, i.e., A/h = 10 and A/h = 100. In the case of pure
thermal loading, two types of boundary condition on all edges are considered separately, i.e., the S3
simply supported and the C1 clamped conditions. The thickness ratio is then A/h =100.

The FSM results are presented in Table 1 in the form of convergence studies with respect to the
number of strips NS and the number of spline sections, q. Comparative results from several sources
are also recorded in Table 1. The buckling coefficient K in Table 1 is related to the critical stress
( )cr by the equation ( )cr =Kπ2Eh2/[12(1− ν2)A2]. The result of Srinivas and Rao (1969) is an
exact solution to the full three-dimensional elasticity equation. The result quoted in Timoshenko and
Gere (1961) is exact within the confines of classical plate theory. The results of Gowda and Pandali
(1970) correspond to use of the Rayleigh-Ritz method (RRM) in the context of CPT and the results
of Thangaratnam and Ramachandran (1989) correspond to use of the FEM using semiloof elements.

σx
o

σx
o σx

o
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From Table 1 it is clear that the FSM results converge very rapidly with respect to both q and NS,
particularly for simply supported plates. The FSM results compare closely with the existing
comparative solutions except, as expected, that the CPT result for K for the plate with A/h = 10 is
significantly higher than both the SDPT FSM and three-dimensional elasticity results due to the
neglect of through-thickness shearing effects.

3.3 Thermomechanical buckling of 16-layer, symmetric laminates

Noor and Peters (1992) have considered the thermomechanical buckling of symmetrically-laminated
rectangular plates. In their work the plates in general are subjected to a uniform uniaxial stress and
a uniform temperature rise. A mixed finite element formulation is used in the context of first-order
SDPT : the fundamental unknowns consist of generalized displacements and stress resultants, each
of which is represented with bi-quadratic Langrangian shape functions. An efficient multiple-
parameter reduction method is used in conjunction with the FEM models. In the presented examples
the plates considered are square, with side length 254 mm, and with S2 simple support conditions.
The individual plies have a thickness of 0.127 mm and properties, with relation to fibre axes 1
(along) and 2 (across), defined as 

E1 = 130.3 GPa, E2 = 9.377 GPa, G12 = G13 = 4.502 GPa,
G23 = 1.724 GPa, ν12 = 0.33, α1 = 0.139×10−6/oC, α2 = 9.0×10−6/ºC

Amongst the examples considered are those which concern a 16-layer angle-ply plate of [±45]4,S

construction and a 16-layer quasi-isotropic plate of [±45/0/90]2,S construction. These constructions,
each of total thickness h = 2.032 mm, are the ones considered here.

Table 1 Buckling of isotropic square plates : convergence of values of K and Tcr 

Solution method
Buckling coefficient K Critical temperature Tcr

A/h = 10 A/h = 100 S3 conditions C1 conditions

FSM, NS = 8 :
q = 2
q = 4
q = 6
q = 8
q = 10

FSM, q = 8 :
NS = 2
NS = 4
NS = 6
NS = 8
NS = 10

3.737
3.732
3.731
3.731
3.731

3.737
3.732
3.731
3.731
3.731

4.004
3.998
3.997
3.997
3.997

4.006
3.998
3.997
3.997
3.997

63.35
63.23
63.22
63.22
63.22

63.35
63.23
63.22
63.22
63.22

168.52
168.07
167.55
167.47
167.45

168.52
167.80
167.52
167.47
167.45

Exact 3-D (1)
Exact CPT (2)
RRM CPT (3)
FEM (4)

3.741
4.000

-
-

-
4.000

-
-

-
-

63.27
63.33

-
-

168.71
167.70

(1) Srinivas and Rao (1969), (2) Timoshenko and Gere (1961), (3) Gowda and Pandalai
(1970), (4) Thangaratnam and Ramachandran (1989).
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The FEM results of Noor and Peters are presented in terms of two parameters which are defined as  

q1 = α2ToA2/h2, q2 = Nx
° A2/E2h

3

where To is the uniform temperature rise and  is the uniform axial compressive stress
resultant. For particular combinations of q1 and q2 an instability will occur. Noor and Peters (1992)
present the stability boundary in q1 − q2 space which separates areas of stability and instability. This
is reproduced here in Fig. 3 for the 16-layer angle-ply and quasi-isotropic plates: the stable region
for each plate is the region beneath the appropriate curve, of course. On the same figure are shown

Nx
o hσx

o
=

Fig. 3 Stability boundary of 16-layer quasi-isotropic and angle-ply laminates under combined thermal and
mechanical loading. 

Table 2 Buckling of 16-layer, square plates under combined loading : critical values of q1 and q2

     
Solution 
method

Quasi-isotropic plates Angle-ply plates

Mode 1 Mode 2 Mode 1 Mode 2

Pure axial compression : values of q2

1.0
1.0

FSM
FEM*

28.71
28.74

36.83
36.92

37.63
37.64

37.66
37.69

Pure temperature rise: values of q1

0
0

FSM
FEM*

50.07
50.13

104.4
104.7

36.26
36.28

71.97
71.92

Combined loading : values of q1

0.75
0.75
0.5
0.5
0.25
0.25

FSM
FEM*
FSM
FEM *
FSM
FEM *

13.20
13.21
25.90
25.92
38.17
38.22

49.96
50.16
72.25
72.46
93.20
93.42

11.35
11.37
20.64
20.66
28.82
28.84

21.28
21.36
40.75
40.82
58.54
58.60

*Noor and Peters (1992)

Nx
o

Nx
o( )cr

---------------
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the results obtained for these applications when using the present FSM (with NS= q = 8). It is clear
that there is very close comparison between the sets of FSM and FEM results. 

Noor and Peters (1992) also calculate the lowest two critical values of q1 and q2 for the two plates
for a few different values of the ratio  where  is the buckling stress resultant
corresponding to pure axial compression. These numerical results are recorded in Table 2 together
with results generated using the present FSM, again with NS= q = 8. The FSM results are generally
slightly lower than the corresponding FEM results but the comparison is very close, with the
greatest difference being approximately 0.4%.

3.4 Thermomechanical buckling of 4-layer, symmetric and anti-symmetric, cross-ply plates

FSM results are presented here which pertain to the mechanical buckling of plates which have an
initial thermal stress field due to a uniform temperature change. These results are compared to those
of Sai Ram and Sinha (1992) who considered the buckling of various four-layered, graphite-epoxy
laminates of different aspect ratios, with both S1 simply supported and C1 clamped edges, using a
finite element method. The element used by Sai Ram and Sinha is an eight-node, 40 degree-of-
freedom quadrilateral, employing quadratic serendipity shape functions in defining each of the five
displacement-type quantities. The properties of this shear-deformable (first-order SDPT) element are
evaluated using Gaussian quadrature. The change in material properties at elevated temperatures was
considered and Table 3 shows the assumed variation of E1, E2 and G12 with temperature, as recorded
by Sai Ram and Sinha. Other material properties are that 

G13 = G12, G23 = 0.5G12, ν12 = 0.3, α1 = −0.3×10−6/°K, α2 = 28.1×10−6/°K .

In all their applications Sai Ram and Sinha use a 4×4 mesh of equal rectangular elements to model
an entire plate, and present no evidence of quality of convergence of calculated buckling loads with

Nx
o Nx

o( )cr⁄ Nx
o( )cr

Table 3 Elastic moduli E1, E2 and G12 of a graphite - epoxy lamina at different temperatures

Elastic moduli 
(GPa)

Temperature, °K
300 325 350 375 400 425

E1

E2

G12

130
9.5
6.0

130
8.5
6.0

130
8.0
5.5

130
7.5
5.0

130
7.0

 4.75

130
 6.75
4.5

Table 4 Buckling of four-layer, cross-ply square plate at 325°K : critical values of λ

Solution method λ Solution method λ
FSM, NS = 8 :

q = 2
q = 4
q = 6
q = 8

0.4536
0.4467
0.4467
0.4467

FSM, q = 8 :
NS = 2
NS = 4
NS = 6
NS = 8

0.4467
0.4467
0.4467
0.4467

FEM *
RRM *

0.4488
0.4477

FEM *
RRM *

0.4488
0.4477

*Sai Ram and Sinha (1992)
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increase in the number of elements used. As a precursor to their presentation of results they have
made comparison with a result which they calculated using a Rayleigh-Ritz method of Whitney and
Ashton (1971). This comparison is for the buckling under uniform uniaxial compressive stress  of
a S1 simply supported, square, 0/90/90/0 symmetric cross-ply plate which is heated from the base
temperature of 300°K up to 325°K, i.e., T = 25°K. For this particular case the lamina properties are
assumed to be unaffected by temperature. FSM results have been generated using the present
approach for this case in convergence studies with varying values of NS and q. The complete
collection of all results is recorded in Table 4 : these results are values of a non-dimensional critical
load factor λ =  i.e., the ratio of buckling load at the elevated temperature
(which in this example is 325°K) to buckling load at 300°K. It can be seen from the table that, for
this relatively simple situation in which the buckled mode shape has one half-wave in each co-
ordinate direction there is very close agreement between the three sets of results, and that the FSM
results demonstrate very fast convergence. In what follows the FSM results have been generated
using NS= q = 8 (and the FEM results of Sai Ram and Sinha are for a 4 ×4 mesh).

Continuing with square laminates, Sai Ram and Sinha have presented graphical results for the
change of λ when the temperature changes from its base of 300°K up to 425°K (or T varies from
0°K to 125°K). Here we study two plates, one of the same 0/90/90/0 symmetric cross-ply
construction considered above, and the other of 45/-45/45/-45 anti-symmetric angle-ply construction.
In both cases, plates with all edges S1 simply supported and all edges C1 clamped are considered.
Figs. 4 and 5 show the comparison between the FEM results copied from Sai Ram and Sinha
(1992) (from Figs. 10 and 13 of that reference) and those calculated using the present FSM
approach. It can be seen that generally there is close comparison between the two sets of results,
although exceptionally for the clamped 0/90/90/0 plate (see Fig. 4a) the comparison is less close,
with the λ values predicted by the FEM being significantly greater than those predicted by the FSM.

Finally, some further, tabulated results are available from the work of Sai Ram and Sinha for 0/90/
0/90 anti-symmetric cross-ply plates, for aspect ratios, A/B, of 0.5 and 2.0 and for thickness ratios,
A/h, of 10, 20, 30 and 40. These results relate to values of λ corresponding to a number of
prescribed temperature rises T. For clamped boundary conditions the FEM results are recorded,

σx
o

Nx
o( )cr Nx

o( )cr[ ]⁄ T 300K=

Fig. 4 Effect of temperature on the non-dimensional critical load λ for (0/90/90/0) laminates with (a) clamped
C1 boundary, and (b) simply supported S1 boundary.
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within parentheses, in Table 5 together with results generated using the present FSM approach. It
can be seen from the table that the comparison between the two sets of results is quite close
although, at least for the larger values of To, not as close as seen earlier for square plates. The
greatest difference between any two comparative values is about 3.35%. Perhaps the main reason for
the relative lack of closeness is that the 4×4 FEM mesh is insufficiently fine in situations where, as
now, the buckling mode shape has more than one half-wave in the direction of the longest plate edge.

Fig. 5 Effect of temperature on the non-dimensional critical load λ for (45/-45/45/-45) laminates with (a)
clamped C1 boundary, and (b) simply supported S1 boundary.

Table 5 Effect of temperature increase T on non-dimensional critical load for 0/90/0/90 clamped rectangular
plates

Aspect ratio
A/B

Thickness ratio
A/h T = 0°K T = 25°K T = 50°K T = 75°K T = 100°K T = 125°K

0.5

10

20

30

40

 1.000*
 (1.000)*

1.000
(1.000)
1.000

(1.000)
1.000

(1.000)

0.985
(0.988)
0.978

(0.980)
0.967

(0.970)
0.953

(0.958)

0.940
(0.951)
0.945

(0.954)
0.931

(0.940)
0.907

(0.918)

0.892
(0.911)
0.912

(0.928)
0.897

(0.912)
0.865

(0.882)

0.864
(0.888)
0.890

(0.909)
0.872

(0.890)
0.833

(0.854)

0.837
(0.865)
0.870

(0.893)
0.849

(0.871)
0.803

(0.828)

2.0

10

20

30

40

1.000
(1.000)
1.000

(1.000)
1.000

(1.000)
1.000

(1.000)

0.989
(0.994)
0.981

(0.989)
0.982

(0.985)
0.978

(0.982)

0.922
(0.931)
0.940

(0.946)
0.946

(0.951)
0.945

(0.951)

0.854
(0.865)
0.892

(0.900)
0.909

(0.916)
0.912

(0.919)

0.817
(0.828)
0.864

(0.873)
0.885

(0.894)
0.890

(0.898)

0.781
(0.792)
0.837

(0.848)
0.864

(0.873)
0.870

(0.880)

*Upper value is FSM result, lower value in parentheses is FEM result (Sai Ram and Sinha 1992)
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4. Conclusions

The scope of the B-spline finite strip method has been extended to allow the prediction of the
buckling of rectangular composite laminated plates subjected to combined thermal and mechanical
loading. The analysis makes allowance for through-thickness shear effects at the buckling stage and
permits consideration of laminates with a range of types of lay-up and of boundary conditions. The
method has been applied to the solution of a number of specific problems and has been shown to
have good convergence properties to values which generally compare closely with the results of
previous studies.

The analysis described herein is of a linear nature, taking place in two distinct stages, namely a
pre-buckling stage in which only in-plane behaviour is involved in a perfectly flat configuration
(with appropriate restriction on the type of lay-up) and the bifurcational buckling stage wherein out-
of-plane displacements develop. The general problem of the full-range response of a plate to
thermomechanical loading is nonlinear, of course, but this general problem can also be studied using
the B-spline finite strip method, and this will be described in a future publication.
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Appendix

Matrices Bi and G1i to G5i of Section 2.3 are defined as

    
 

 
 

                                  
    

where the prime ( )
 denotes differentiation with respect to x for  and  and with
respect to y for Ni(y).

Bi

NiΦk
′ 0 0 0 0

0 Ni′ Φk 0 0 0

Ni′ Φk NiΦk
′ 0 0 0

0 0 0 0 NiΦk 1–
′

0 0 0 Ni′ Φk 0

0 0 0 NiΦk
′ Ni′ Φk 1–

0 0 Ni′ Φk NiΦk 0

0 0 NiΦk
′ 0 NiΦk 1–

=

G1i
NiΦk

′ 0 0 0 0

Ni′ Φk 0 0 0 0
= G2i

0 NiΦk
′ 0 0 0

0 Ni′ Φk 0 0 0
,=,

G3i
0 0 NiΦk

′ 0 0

0 0 Ni′ Φk 0 0
 G4i

0 0 0 NiΦk
′ 0

0 0 0 Ni′ Φk 0
,=,=

G5i
0 0 0 0 NiΦk 1–

′

0 0 0 0 Ni′ Φk 1–

=

Φk x( ) Φk 1– x( )




