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1. Introduction 
 

Natural frequency values of frames are of high 

importance in civil and mechanical engineering structures 

exposed to dynamic loading. Therefore, exact results of free 

vibration analysis of frame structures become an important 

research area. In open literatures, free vibration analysis of 

frame structures using finite element method (FEM) that 

provides approximate solutions can be found (Clough and 

Penzien 2003, Paz and Leigh 2004, Chopra 2012, Rao 1995, 

Wu 2008, Özyiğit 2009, Minghini et al. 2010, Ranjbaran 

2014, Mehmood 2015, Ozturk et al. 2016).  

Distributed parameter model is used in very limited 

number of studies about vibrat ions of frames as 

mathematical formulations and analysis procedure are 

complicated. In the study of Albarracin and Grossi (2005), a 

frame that have one column and one beam is considered and 

eigenfrequencies are calculated according to distributed 

parameter model. Caddemi and Calio (2013), developed 

dynamic stiffness matrix for cracked Euler-Bernoulli beams 

and natural frequencies of damaged frames are calculated. 

Labib et al. (2014) performed free vibration analysis of 

mult iple  cracked frames using dynamic st iffness 

formulation using EBT. Mei and Sha (2015) investigated 

vibrations of a simple spatial frame using wave propagation 

approach and EBT. In the study of Grossi and Albarracin 

(2013), free vibrations of frames that consist of inclined 

members are investigated using variational approach. Mei 

(2012) obtained natural frequencies of one storey frames via 

wave vibration approach according to EBT. Caddemi et al. 
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(2017)  investigated free vibrations of multiple cracked 

axially loaded frames using Dynamic Stiffness Method 

(DSM) according to EBT. 

DSM is an effective technique for vibration analysis of 

beams and beam assembly structures such as frames. The 

DSM provides exact results as uses the exact mode shapes 

(Banerjee 1997). There are many studies about application 

of DSM for calculation of natural frequencies of different 

type of beams and plates (Jun et al. 2008, Bao-Hui et al. 

2011, Banerjee 2012, Banerjee and Jackson 2013, Su and 

Banerjee 2015, Jun et al. 2016, Bozyigit and Yesilce 2016). 

It is a known issue that EBT overestimates natural 

frequencies. Thus, Timoshenko Beam Theory (TBT) which 

considers shear deformation and rotational inertia is used in 

many studies that focus on more accurate results. Even TBT 

provides more realistic results according to EBT, there is an 

important parameter called shear coefficient or area 

reduction factor in TBT. This parameter is used to decrease 

the error arised from unconstant distribution of shear stress 

on the cross section (Han et al. 1999).  

The high order shear deformation theories that based on 

realistic shear stress distribution with the assumption of 

cross section does not remain plane after bending have been 

studied by many of the researchers (Levinson 1981, 

Bickford 1982, Reddy 1984, Heyliger and Reddy 1988). 

Ghugal and Shimpi (2001) reviewed EBT, TBT and high 

order beam theories for isotropic and anisotropic laminated 

beams. Shimpi (2002) researched on refined plate theory 

that has shear and bending components of lateral and axial 

displacements. Shimpi et al. (2007) introduced two new 

displacement based first-order shear deformation theories 

involving only two unknown functions for plate bending. 

Even high-order theories provide more accurate results 

when compared to EBT and TBT, the solutions of these 

theories are significantly complicated and time-consuming. 

Shimpi et al. (2016) presented a new SVSDT that considers  
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Fig. 1 One-storey two-bay frame model and degrees of 

freedom 

 

 

Fig. 2 Two-storey one-bay frame model and degrees of 

freedom 

 

 

the varying shear stress distribution along the cross section. 

The governing equation of motion of SVSDT is a fourth 

order partial differential equation and the requirement of 

shear correction factor vanishes. 

In this study, the SVSDT is applied to vibration analysis 

of frames for the first time. Three different frame structures 

are considered and first five exact natural frequencies of 

frames are calculated according to SVSDT using DSM. As 

SVSDT is used for vibrations of frames for the first time, 

the results are compared with the solutions of EBT and 

TBT. The effect of cross-sections of inner and outer 

columns are compared. In addition to this, different beam 

cross sections are used in the free vibration analysis of 

frames to reflect the effects on natural frequencies. The 

mode shapes are plotted. 

 

 

2. Models and formulation 
 

The first model of the study is a one-storey two-bay 

frame that consists of three columns and two beams (Fig. 1). 

The second model is a one-bay two-storey frame structure 

(Fig. 2). The third model is a two-bay two-storey frame that 

can be experienced for architectural purposes (Fig. 3). The 

columns of all three models are fixed supported. In Figs. 1-

3, X and Y are global axes of frames, x and y are local axes 

of frame members, Hc is height of the columns, Lb is length 

of the beams. Columns and beams are denominated as Cmn 

and Bmn (m: 1,2,3; n: 1,2,3) where m and n represent model  

 

Fig 3. Two-storey two-bay frame model and degrees of 

freedom 

 

 

number and member number, respectively. Degrees of 

freedom of models can be seen in Figs. 1-3. The 

assumptions listed below are considered for all models: 

1) The cross-sections of members are uniform.  

2) The material of members is isotropic. 

3) The frame members behave linear and elastic. 

4) The damping is neglected.  

The displacement and force functions are derived to 

begin the DSM solution. Firstly, equation of flexural motion 

of an Euler-Bernoulli beam in free vibration (Mei 2012) is 

written in Eq. (1) 

4 2

4 2
0

E Ey ( x,t ) y ( x,t )
EI m

x t

 
 

 
          (1) 

where x is the position along the beam, t is time, yE(x,t) is 

transverse displacement function according to EBT, E is 

elastic modulus, I is the area moment of inertia of cross 

section, m  is mass per unit length. Separation of variables 

method is applied to Eq. (1) with the assumption of 

harmonic motion using yE(x,t) = yE(x)eiωt to obtain Eq. (2). 

4 2 4

4
0

E
Ed y ( z ) m L

y ( z )
dz EI

 
            (2) 

where ω is natural frequency, z = x/L. It should be noted 

that L represents the member length. The solution is 

assumed as: 

 E iszy ( z ) C e                 (3) 

where 1i   .  

Substituting Eq. (3) into Eq. (2), the transverse 

displacement yE(z) and slope θE(z) functions are presented in 

Eqs. (4)-(5), respectively. 

31 2 4

1 2 3 4

is zis z is z is zEy ( z ) ( C e C e C e C e )          (4) 

31 2 4

1 1 2 2 3 3 4 4

is zis z is z is zE( z ) ( is C e is C e is C e is C e )       (5) 
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Bending moment function and shear force function are 

defined in Eqs. (6)-(7), respectively. 

1 2

3 4

2 2

1 1 2 2

2 2

3 3 4 4

is z is zE

is z is z

M ( z ) ( Hs C e Hs C e

Hs C e Hs C e )

 

 

       (6) 

1 2

3 4

3 3

1 1 2 2

3 3

3 3 4 4

is z is zE

is z is z

Q ( z ) ( Jis C e Jis C e

Jis C e Jis C e )

 

 
        (7) 

where H=EI/L2 and J=EI/L3. 

Shimpi et al. (2016) defined the transverse displacement 

function of SVSDT as 

S

b sy y y                   (8) 

where ys is total transverse displacement, yb is displacement 

component of bending and ys is displacement component of 

shearing. The governing equations of bending motion of a 

beam in free vibration according to SVSDT is written as 

follows (Shimpi et al. 2016) 

 

 

4 4

4 2 2

4 42

2 2 4

12 1
1

5

12 1
0

5

b b

b b

y ymI
EI

x A x t

y ym I
m

t A E t





  
  

   

 
  

 

        (9) 

where A and μ represent cross-sectional area and Poisson’s 

ratio, respectively. yb is obtained from the solution of Eq. 

(9). Using separation of variables method with the 

assumption of yb(x,t)=yb(x)eiωt, ordinary differential 

equation below is obtained 

4 2
2

0 04 2

2 4

0 0 0

b b

b b

d y ( z ) d y ( z )
A B

dz dz

C y ( z ) D y ( z )



 



  

         (10) 

where 

 

 

 

0 0 04 2

2

0 2

12 1
1

5

12 1
1

5 12 1

5

EI mI
A ;B ;C m;

L AL

m I

D
A E







 
     

 

 
 

 

 

The solution is assumed as 

  ikz

by ( z ) D e                (11) 

where 1i   .  

The bending component of transverse displacement 

function is written by substituting Eq. (11) into Eq. (10) 

31 2 4

1 2 3 4

ik zik z ik z ik z

by ( z ) ( D e D e D e D e )         (12) 

The slope function due to bending can be derived as 

follows 

31 2 4

1 1 2 2 3 3 4 4

ik zik z ik z ik zbdy ( z )
( ik D e ik D e ik D e ik D e )

dz
    (13) 

The bending moment function and shear force function 

are defined in Eq. (14) and Eq. (15), respectively (Shimpi et 

al. 2016). 
2

2 2

S bd y ( z )EI
M ( z )

L dz
               (14) 

3 2

3 3

S b bd y ( z ) dy ( z )EI mI
Q ( z )

L dz AL dz


  

 

     (15) 

Eqs. (14)-(15) can be rewritten by using Eq. (12) as 

follows 
1 2

3 4

2 2

1 1 2 2

2 2

3 3 4 4

ik z ik zS

ik z ik z

M ( z ) ( Hk D e Hk D e

Hk D e Hk D e )

 

    

        (16) 

1 2

3 4

3 3

1 1 1 2 2 2

3 3

3 3 3 4 4 4

ik z ik zS

ik z ik z

Q ( z ) ( Jik Kik )D e ( Jik Kik )D e

( Jik Kik )D e ( Jik Kik )D e

   

       

(17) 

where    2K mI / AL   

The displacement function due to shearing ys and total 

displacement yS function are defined in Eqs. (18) and (19), 

respectively. 

 
2

2

b
s b

d y
y T H Py z

dz

 
   

            

 (18) 

   

   

1 2

3 4

2 2

1 1 2 2

2 2

3 3 4 4

1 1

1 1

ik z ik zS

ik z ik z

y THk TP D e THk TP D e

THk TP D e NHk TP D e

     

     

    (19) 

where 
 

 2
12 1

5
T ;P mI / A

AE


 


  

Finally, the total slope function is obtained by assembly 

of bdy ( z )

dz
 and sdy ( z )

dz
 as follows 

 

   

 

1

32

4

3

1 1 1 1

3 3

2 2 2 2 3 3 3 3

3

4 4 4 4

S
ik z

ik zik z

ik z

dy ( z )
ik TJik TRik D e

dz

ik TJik TRik D e ik TJik TRik D e

ik TJik TRik D e

  

     

  

 (20) 

where R=P/L 

It should be importantly noted that the further details of 

derivations and definitions of displacement, slope, bending 

moment and shear force functions of SVSDT are clearly 

presented by Shimpi et al. (2016). 

The axial vibrations of frame members are also 

considered in this study. Thus, axial displacement function 

and axial force function are obtained by solving the 

equation of motion of a beam in free axial vibration (Rao 

1995) given below 

2 2

2 2
0

u( x,t ) u( x,t )
AE m

x t

 
 

 
          (21) 

where u(x,t) is axial displacement function. Separation of 

variables method is applied to Eq. (21) using u(x,t)=u(x)eiωt 

with the assumption of harmonic motion, the following 

equation is obtained 

2 2 2

2
0

d u( z ) m L
u( z )

dz AE
 

            (22) 

where z = x / L. 

Substituting Eq. (23) into Eq. (22), the axial 

displacement function u(z) and axial force function N(z) are 

given in Eqs.(24) - (25), respectively.  

  ikzu( z ) D e                (23) 

5 6

5 6

ik z ik z
u( z ) ( D e D e )             (24) 

5 6

5 5 6 6

ik z ik z
N( z ) V( is D e is D e )         (25) 

where V=AE /L. 
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The equations of motion of a Timoshenko beam can be 

written as 

   0
),(),(),(

2

2

2

2





























t

txy
m

x

tx

x

txy

k

AG TT      (26) 

         
   

 
 

2 2

2 2

0

T

x,t x,tmI
EI

x A t

y x,tAG
x,t

k x

 


 

 
   

 

         (27) 

where k  is shear correction factor, G is shear modulus. 

The bending moment function MT(x,t) and the shear 

force function QT(x,t) of the Timoshenko beam are written 

as 

 
 ,

,T
x t

M x t EI
x





            (28) 

 



















 ),(

),(
),(),( tx

x

txy

k

AG
tx

k

AG
txQ

T
T      (29) 

where γ(x,t) is the associated shearing deformation. 

Assuming that the motion is harmonic we substitute for 

yT(x,t) and φ (x,t) the following 

   T T i ty z,t y z e              (30) 

( ) ( ) iωtφ z,t φ z e=               (31) 

where yT(z) and φ(z) are the amplitudes of the total 

transverse deflection and the angle of rotation due to 

bending, respectively; 1i   . Eqs. (26) and (27) can be 

written as ordinary differential equations by using Eqs. (30) 

and (31) as 

0)((
)()( 2

2

2

2


















zym

dz

zd

kL

AG

dz

zyd

Lk

AG T
T




   (32)                                                                                                                                     

   
 

2 2

2 2
0

d z dy zEI AG m I AG
z

L dz Lk dz A k

 


  
     
     

(33) 

where z=x/L. 

   It is assumed that the solution is  

 T ibzy z Be                (34) 

( )T ibzφ z Fe=                (35) 

Substituting Eqs. (34) and (35) into Eqs. (32) and (33) 

results in  

2 2

2
0

AG AG
m b B ib F

kL Lk


    
      
    

    (36) 

0
22

2























F

bL

EI

k

AG

A

Im
Bib

kL

AG      (37) 

Eqs. (36) and (37) can be written in matrix form for the 

two unknowns B and F as 

11 12

21 22

0

0

A A B

A A F

     
    

    
          (38) 

where 

2 2
11 21 122

2
2

22 2

AG AG
A m b ; A A ib;

LkkL

m I AG EI
A b

A k L





 
     

 

  

 

The non-trivial solution is obtained when the 

determinant of the coefficient matrix will be zero. Thus, we 

have a fourth-order equation with the unknowns, resulting 

in four values and the general solution functions can be 

written as 

 zibzibzibzibT eBeBeBeBzy 4121

4
3

321[)(  ]    (39) 

zibzibzibzib
eFeFeFeFz 4321

4321[)(  ]     (40) 

The eight constants, B1, ..., B4 and F1, ..., F4 will be 

found from Eqs. (39), (40) and boundary conditions where 

Bn=jnFn ,         2 2 2/ / / / /n n nj AGib Lk m I A AG k EIb L     , 

(n:1,2,3,4). 

The bending moment and shear force functions of the 

Timoshenko beam can be obtained as 

 
 T

d zEI
M z

L dz

 
  
 

              (41) 

















 )(

)(
)( z

k

AG

dz

zdy

Lk

AG
zQ

T
T           (42) 

 

 

3. Dynamic stiffness method for SVSDT and EBT 
 

The end forces and end displacements of a frame 

member are used to construct the dynamic stiffness matrix. 

After obtaining global stiffness matrices of all members, the 

global dynamic stiffness matrix of frame can be formed to 

calculate natural frequencies. The vector of end 

displacements of a frame member and the vector of 

coefficients for SVSDT are written in Eqs. (43)-(44), 

respectively. 

0 0 0 1 1 1
[ ]

SS S S S Tu y u y             (43) 

1 2 3 4 5 6[ ]TD D D D D D D         (44) 

where 

0 0 0( 0), ( 0), ( 0),S S S Su u z y y z z        

1 1 1 1( 1), ( 1), ( 1)S S Su u z y y z z        

Using Eqs. (19)-(20) and Eq. (24), the following 

equation is obtained 

δS=ΔSD                 (45) 

where 

5 6

31 2 4

31 2 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0 1 1

0 0

0 0

0 0 0 0

0 0

0 0

S S S S

S S S S

S

ik ik

ikik ik ikS S S S

ikik ik ikS S S S

=
e e

e e e e

e e e e

   

   


   

   

 
 
 
 
 
 
 
 
  
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   2 31

1 2 3 4

S S

n n n n n nTHk TP , ik TJik TRik

( n , , , )

      



 

The vector of end forces of the frame member is given 

below 

0 0 0 1 1 1[ ]S S S S S TF N Q M N Q M     (46) 

where 

0 0 0( 0); ( 0), ( 0),S S S SN N z Q Q z M M z        

1 1 1( 1), ( 1), ( 1)S S S SN N z Q Q z M M z       

It should be noted that the following relations are valid 

for sign convention 

0 1 0 1 0 1, ,S S S SN N Q Q M M        (47) 

The matrix form of end force functions given in Eq. (46) 

is presented using Eqs. (16)-(17) and Eq. (25) as 

 0 0 0 1 1 1 1 2 3 4 5 6

T TS S S S SN Q M N Q M D D D D D D     
(48) 

where 
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The closed form of Eq. (48) can be written as 

S SF D                   (49) 

Eqs. (45) and (49) are used to construct the dynamic 

stiffness matrix of a frame member as 

1( )S S S SF                    (50) 

* 1( )S S SK                    (51) 

Here, K*S is the local dynamic stiffness matrix of a 

frame member modeled according to SVSDT. The 

calculation of natural frequencies of distributed parameter 

frames is performed after obtaining the global dynamic 

stiffness matrix. The global dynamic stiffness matrix is 

constructed using transformation of local member dynamic 

stiffness matrices to global stiffness matrices. The angular 

transformation matrix and transformed dynamic stiffness 

matrix of a frame member are given in Eqs. (52)-(53), 

respectively (Paz and Leigh 2004). 

cos( ) sin( ) 0 0 0 0

sin( ) cos( ) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos( ) sin( ) 0

0 0 0 sin( ) cos( ) 0

0 0 0 0 0 1

TM

  
 
  
 
 

  
  

   
 
      

(52) 

* 1 *( ) ( )( )S SK TM K TM            (53) 

Here, α is the angle between local axes of the frame 

member and global axes of the frame, *SK  is the global 

dynamic stiffness matrix of frame member according to 

SVSDT. 

The derivation procedure of dynamic stiffness 

formulation for EBT and TBT are same as SVSDT. The 

global dynamic stiffness matrix of frame models according 

to EBT can be obtained by using displacement functions in 

Eqs. (4)-(5), (23) and force functions in Eqs. (6)-(7), (25). 

Similarly, Eqs. (24)-(25) and Eqs. (39)-(42) are used to 

construct dynamic stiffness formulations of frames 

according to TBT.  

In this study, three different frame models are used. Let 

the denomination of frames in Fig. 1 and Fig. 2 as Frame-I 

and Frame-II, respectively. The third model that presented 

in Fig. 3 is entitled as Frame-III. It is seen that Frame-I and 

Frame-II have 18 degrees of freedom. Thus, the dimension 

of the global dynamic stiffness matrices of Frame-I and 

Frame-II is 18×18. Frame-III has 24 degrees of freedom and 

its global dynamic stiffness matrix is formed as 24×24 

square matrix.  

The related global dynamic stiffness matrices of frames 

can be constructed by a standard coding technique. It should 

be noted that the global dynamic stiffness matrices of 

Frame-I, Frame-II and Frame-III are reduced by erasing 

rows and columns due to restriction of displacements and 

rotations.  

 The ω values that equate the determinant of reduced 

global dynamic stiffness matrices of the frames to zero are 

obtained as natural frequencies using Wittrick-Williams 

algorithm. Besides, an alternative procedure such as a trial 

and error method based on interpolation and bisection 

approach can be used for calculating roots. When there is a 

change of sign between trial values, there must be a root 

lying in this interval. Using some iterations, the natural 

frequencies can be determined (Tuma and Cheng 1983). The 

calculation of natural frequencies are performed using 

computer programs on Matlab (2014).  

 

 

4. Numerical analysis and discussions 
 

In the numerical examples, three different frame 

structures that can be designed for civil projects are 

considered. The cross-sections of frame elements that used 

in numerical examples are rectangular. As one of the aims of 

study is to reflect the effect of frame element geometries on 

natural frequencies, the dimensions of members are 

increased step by step. For all frame models, the length of 

the beams Lb and height of the columns Hc are selected as 

5.00 m and 3.50 m, respectively. It is assumed that beams 

and columns are designed using same material that has 

following properties: E=29430000 kN/m2, μ=0.3, weight 

per unit volume γ=24.5 kN/m3. 
The first five natural frequencies of Frame-I for different 

inner and outer column cross-sections are presented in Table 
1 and Table 2, respectively. It is observed that the effect of 
geometry of inner columns on natural frequencies is more 
remarkable in comparison with outer columns for two-bay 
one-story frame structures. Table 1 and Table 2 also 
revealed that SVSDT provides more realistic results 
according to EBT as it is known that EBT overestimates 

13



 

Baran Bozyigit and Yusuf Yesilce 

 

Table 1 First five natural frequencies of Frame-I 

(B11=25×50, C11=C13=30×50) 

C12 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 16.1367 48.7472 57.3666 102.2397 111.0760 

TBT 16.0807 47.0969 56.1850 97.3475 104.7325 

SVSDT 15.8508 46.9930 55.0043 96.7709 104.1406 

30×55 

EBT 16.8051 50.1277 57.5484 102.3432 112.2561 

TBT 16.6767 49.1970 56.3348 97.4323 105.5077 

SVSDT 16.4870 48.2301 55.1638 96.8544 104.9951 

30×60 

EBT 17.4589 51.3999 57.6997 102.4269 112.8797 

TBT 17.3476 50.2881 56.4595 97.5010 105.9516 

SVSDT 17.1088 49.3653 55.2965 96.9222 105.4323 

30×65 

EBT 18.1095 52.5383 57.8275 102.4960 113.2784 

TBT 18.0501 51.2506 56.5649 97.5576 106.2629 

SVSDT 17.7266 50.3786 55.4087 96.9783 105.7106 

30×70 

EBT 18.7680 53.5355 57.9369 102.5540 113.5525 

TBT 18.5431 52.1570 56.6551 67.6051 106.4949 

SVSDT 18.3510 51.2653 55.5047 97.0255 105.9017 

 

Table 2 First five natural frequencies of Frame-I 

(B11=25×50, C12=C13=30×50) 

C11 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 16.1367 48.7472 57.3666 102.2397 111.0760 

TBT 16.0807 47.0969 56.1850 97.3475 104.7325 

SVSDT 15.8508 46.9930 55.0043 96.7709 104.1406 

30×55 

EBT 16.5757 49.3534 58.2186 103.6869 113.8331 

TBT 16.4187 48.6595 56.9241 98.5381 106.7951 

SVSDT 16.2757 47.5416 55.7580 98.0480 106.5033 

30×60 

EBT 17.0443 49.7761 59.0133 104.2935 115.8333 

TBT 16.9339 48.0815 56.6600 99.0558 108.3850 

SVSDT 16.7286 47.9266 56.4589 98.5745 108.1259 

30×65 

EBT 17.5498 50.0731 59.7164 104.5628 116.8253 

TBT 17.4430 49.3956 58.3002 99.2911 109.2395 

SVSDT 17.2160 48.1990 57.0791 98.8055 108.8366 

30×70 

EBT 18.0970 50.2858 60.3189 104.6854 117.3257 

TBT 18.0616 48.6305 58.8886 99.3988 109.6840 

SVSDT 17.7418 48.3953 57.6115 98.9095 109.1721 

 

 

natural frequencies. For SVSDT, TBT and EBT, an 

augmentation on natural frequencies is observed with 

increasing column dimension. 

  Table 3 that prepared for Frame-II shows that 

increasing beam height with constant beam width increases 

natural frequencies of one-bay two-storey frames. However, 

a decrease in natural frequencies is seen when beam width is 

increased with constant beam height. According to Table 4, 

an increment of column dimension increases natural 

frequencies of one-bay two-storey frames. SVSDT results 

are consistent as well for Frame-II.  

Tables 5-7 are prepared to reflect the effects of inner and 

outer columns on natural frequencies for two-bay two-

storey frames like Frame-III. For EBT, TBT and SVSDT, it 

is seen that the most effective column on natural frequencies 

Table 3 First five natural frequencies of Frame-II 

(C21=C22=30×50) 

B21,22(cm) 

Z×Y 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

25×50 

EBT 7.4992 27.5364 46.8720 55.4259 92.0980 

TBT 7.4452 27.4617 46.6522 54.9296 89.4017 

SVSDT 7.3946 26.9501 45.4370 53.2991 87.5133 

25×55 

EBT 7.8174 27.5723 48.2064 57.4002 95.1024 

TBT 7.7622 27.2403 47.2085 56.4489 92.4773 

SVSDT 7.6928 26.9647 46.6439 55.0568 90.1069 

25×60 

EBT 8.0894 27.5525 49.4277 58.8589 98.1559 

TBT 8.0200 27.4444 48.4305 57.6156 95.5791 

SVSDT 7.4241 26.9269 47.7452 56.3527 92.8234 

30×50 

EBT 7.4470 26.6038 45.3808 53.7150 92.4678 

TBT 7.3991 26.3985 44.9199 52.3112 89.9377 

SVSDT 7.3394 26.0387 44.0466 51.7378 87.9118 

30×55 

EBT 7.7338 26.6702 46.6629 55.4248 95.5102 

TBT 7.6543 26.5939 45.8819 54.6522 93.2251 

SVSDT 7.6070 25.9871 45.2128 53.2657 90.8099 

 
Table 4 First five natural frequencies of Frame-II 

(B21=B22=25×50, C22=30×50) 

C21 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 7.4992 27.5364 46.8720 55.4259 92.0980 

TBT 7.4452 27.4617 46.6522 54.9296 89.4017 

SVSDT 7.3946 26.9501 45.4370 53.2991 87.5133 

30×55 

EBT 7.6980 28.9091 48.2478 56.4691 94.4248 

TBT 7.6033 28.6084 47.1551 55.9416 91.2492 

SVSDT 7.5883 28.2415 46.6952 54.2381 89.4218 

30×60 

EBT 7.8976 30.3631 49.4414 57.2813 95.4157 

TBT 7.8237 29.9955 48.2573 55.7552 92.1242 

SVSDT 7.7826 29.5977 47.7836 54.9692 90.1117 

30×65 

EBT 8.1013 31.9067 50.4517 57.9163 95.8007 

TBT 8.0517 31.7842 49.2363 56.4059 92.5019 

SVSDT 7.9809 31.0238 48.7032 55.5412 90.3489 

30×70 

EBT 8.3114 33.5419 51.2946 58.4168 95.9539 

TBT 8.2503 33.2098 49.8181 56.9280 92.6656 

SVSDT 8.1854 32.5192 49.4700 55.9926 90.4276 

  

Table 5 First five natural frequencies of Frame-III 

(B31=B32=25×50, C31=C33=30×50) 

C32 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 8.6782 24.2036 46.3221 53.7029 57.8976 

TBT 8.4475 24.1555 46.1949 53.2827 57.0339 

SVSDT 8.2428 23.5211 45.2590 53.0086 57.0084 

30×55 

EBT 8.8576 25.4108 47.6861 54.8616 58.1537 

TBT 8.5200 25.2045 46.6548 54.5643 57.2455 

SVSDT 8.3838 24.6420 46.5071 54.0577 57.0094 

30×60 

EBT 9.0241 26.6942 48.8979 55.7851 58.3836 

TBT 8.6515 26.5874 47.7384 54.8987 57.4338 

SVSDT 8.5253 25.8283 47.6012 54.8715 57.1467 
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Table 5 Continued 

30×65 

EBT 9.1856 28.0613 49.9442 56.5054 58.6007 

TBT 8.8865 28.0141 48.7158 55.5226 57.6074 

SVSDT 8.6706 27.0822 48.5357 55.4969 57.4763 

30×70 

EBT 9.3480 29.5149 50.8314 57.0544 58.8145 

TBT 9.0555 29.2884 49.3666 56.1159 57.7721 

SVSDT 8.8221 28.4019 49.3210 55.9790 57.4883 

 

Table 6 First five natural frequencies of Frame-III 

(B31=B32=25×50, C32=C33=30×50) 

C31 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 8.6782 24.2036 46.3221 53.7029 57.8976 

TBT 8.4475 24.1555 46.1949 53.2827 57.0339 

SVSDT 8.2428 23.5211 45.2590 53.0086 57.0084 

30×55 

EBT 8.8013 25.3594 47.4771 54.2057 58.7593 

TBT 8.5927 25.2572 46.8798 53.9613 58.5516 

SVSDT 8.3780 24.6293 46.4201 53.7800 58.3719 

30×60 

EBT 8.9292 26.5815 48.4163 54.6137 59.4997 

TBT 8.7176 26.4854 47.5948 54.5479 59.1495 

SVSDT 8.5180 25.7898 47.4036 54.3482 58.7192 

30×65 

EBT 9.0655 27.8752 49.1529 54.9767 60.1116 

TBT 8.8561 27.8474 48.7985 54.7986 59.6695 

SVSDT 8.6657 27.0064 48.2165 54.7752 59.0342 

30×70 

EBT 9.2122 29.2407 49.7179 55.3104 60.6097 

TBT 9.0605 29.0463 47.6897 55.2364 59.6492 

SVSDT 8.8219 28.2777 48.8786 55.1055 59.3096 

 

Table 7 First five natural frequencies of Frame-III 

(B31=B32=25×50, C31=C32=30×50) 

C33 (cm) 

Z×X 
Theory 

Natural Frequency (Hz) 

1st 2nd 3rd 4th 5th 

30×50 

EBT 8.6782 24.2036 46.3221 53.7029 57.8976 

TBT 8.4475 24.1555 46.1949 53.2827 57.0339 

SVSDT 8.2428 23.5211 45.2590 53.0086 57.0084 

30×55 

EBT 8.8633 24.3264 46.4610 54.2991 58.6237 

TBT 8.7054 24.1756 45.6301 53.3587 57.6292 

SVSDT 8.4517 23.6470 45.2695 53.0329 57.2064 

30×60 

EBT 9.0531 24.4738 46.5522 54.6604 59.3815 

TBT 8.9032 24.2059 45.7222 53.7684 59.2616 

SVSDT 8.6863 23.8077 45.2779 53.0504 58.0425 

30×65 

EBT 9.2494 24.6486 46.6147 54.8805 60.0850 

TBT 9.1029 24.2640 45.7871 53.5537 59.3782 

SVSDT 8.9429 24.0058 45.2852 53.0640 58.4463 

30×70 

EBT 9.4526 24.8538 46.6593 55.0208 60.6978 

TBT 9.3058 24.5471 45.8340 52.2527 58.4448 

SVSDT 9.2169 24.2440 45.2920 53.0751 57.4300 

 

 

of Frame-III is C33 which does not create a joint with an 

upper floor column. The inner column C32 and the outer 

column C31 effects natural frequencies of frame similarly. 

However, the natural frequencies are affected a little more 

from C32 when compared to C31. 

 

 

Fig. 4 Increment of fundamental frequency of Frame-I for 

different column dimensions using EBT 

 

 

 

Fig. 5 Increment of fundamental frequency of Frame-I for 

different column dimensions using TBT 

 

 

 

Fig. 6 Increment of fundamental frequency of Frame-I for 

different column dimensions using SVSDT 

 

 

The augmentation of fundamental frequency of Frame-I 

by increasing column size are presented in Figs. 4-6. The 

effects of column size on fundamental frequency of Frame- 
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Fig. 7 Increment of fundamental frequency of Frame-III for 

different column dimensions using SVSDT 

 

 

 

Fig. 8 Increment of fundamental frequency of Frame-III for 

different column dimensions using EBT 

 

 

 

Fig. 9 Increment of fundamental frequency of Frame-III for 

different column dimensions using TBT 

 

 

Frame-III can be observed from Figs. 7-9. It is clearly seen 

from Figs. 7-9 that column C33 effects significantly the 

vibrations of Frame-III that modeled using SVSDT and TBT 

in reference to EBT. It is observed that the importance of 

SVSDT becomes evident for large columns. 

The mode shapes of frames can be plotted by equating 

one of the nonzero nodal displacements to an arbitrary value 

 

Fig. 10 First mode shape of Frame-I (B11=25×50, C11=C12= 

C13=30×50) 

 

 

Fig. 11 Second mode shape of Frame-I (B11=25×50, 

C11=C12=C13=30×50) 

 

 

Fig. 12 Third mode shape of Frame-I (B11=25×50, 

C11=C12=C13=30×50) 

 

 

Fig. 13 Fourth mode shape of Frame-I (B11=25×50, 

C11=C12=C13=30×50) 

 

 

Fig. 14 Fifth mode shape of Frame-I (B11=25×50, 

C11=C12=C13=30×50 

 

 

after calculation of natural frequencies. For instance, the 

first five mode shapes of Frame-I according to SVSDT are 

presented in Figs. 10-14.  
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6. Conclusions 
 

This study introduced an application of a single variable 

shear deformation theory for free vibration analysis of frame 

structures. SVSDT which considers the varying shear stress 

distribution along the cross section without shear correction 

factor, provides an effective solution procedure as there is 

not more than one variable contrary to TBT. Dynamic 

stiffness formulation is working consistently with SVSDT. 

The effects of dimensions of columns and beams are 

indicated. Moreover, the importance of inner and outer 

columns on natural frequencies of frames is revealed. The 

computer programs that prepared for calculation of natural 

frequencies are working fast. The results show that SVSDT 

can be used for calculation of exact natural frequencies of 

various type of frames with any support conditions.  

 

 

References 
 
Albarracin, C.M. and Grossi, R.O. (2005), “Vibrations of 

elastically restrained frames”, J. Sound Vib., 285, 467-476. 

Banerjee, J.R. (1997), “Dynamic stiffness for structural elements: 

A general approach”, Comput. Struct., 63, 101-103. 

Banerjee, J.R. (2012), “Free vibration of beams carrying spring-

mass systems-A dynamic stiffness approach”, Comput. Struct., 

104-105, 21-26. 

Banerjee, J.R. and Jackson, D.R. (2013), “Free vibration of a 

rotating tapered Rayleigh beam: A dynamic stiffness method of 

solution”, Comput. Struct., 124, 11-20. 

Bao-hui, L., Hang-shan, G., Hong-bo, Z., Yong-shou, L. and Zhou-

feng, Y. (2011), “Free vibration analysis of multi-span pipe 

conveying fluid with dynamic stiffness method”, Nucl. Eng. 

Des., 241, 666-671. 

Bickford, W.B. (1982), “A consistent higher order beam theory”, 

Develop. Theor. Appl. Mech., 11, 137-150. 

Bozyigit, B. and Yesilce, Y. (2016), “Dynamic stiffness approach 

and differential transformation for free vibration analysis of a 

moving Reddy-Bickford beam”, Struct. Eng. Mech., 58(5), 847-

868. 

Caddemi, S. and Calio, I. (2013), “The exact explicit dynamic 

stiffness matrix of multi-cracked Euler-Bernoulli beam and 

applications to damaged frame structures”, J. Sound Vib., 332, 

3049-3063. 

Caddemi, S., Calio, I. and Cannizzaro, F. (2017), “The Dynamic 

Stiffness Matrix (DSM) of axially loadad multi-cracked frames”, 

Mech. Res. Commun., 84, 90-97. 

Chopra, A.K. (2012), Dynamics of Structures-Theory and 

Applications to Earthquake Engineering, Prentice-Hall 

International Series in Civil Engineering and Engineering 

Mechanics, USA. 

Clough, R.W. and Penzien, J. (2003), Dynamics of Structures, 

McGraw-Hill Book Co. Computers & Structures Inc., USA. 

Ghugal, Y.M. and Shimpi, R.P. (2001), “A review of refined shear 

deformation theories for isotropic and anisotropic laminated 

beams”, J. Reinf. Plast. Compos., 20, 255-272. 

Grossi, R.O. and Albarracin, C.M. (2013), “Variational approach to 

vibrations of frames with inclined members”, Appl. Acoust., 74, 

325-334. 

Han, S.M., Benaroya, H. and Wei, T. (1999), “Dynamics of 

transversely vibrating beams using four engineering theories”, J. 

Sound Vib., 225(5), 936-988. 

Heyliger, P.R. and Reddy, J.N. (1988), “A higher order beam finite 

element for bending and vibration problems”, J. Sound Vib., 

126, 309-326. 

Jun, L., Hongxing, H. and Rongying, H. (2008), “Dynamic 

stiffness analysis for free vibrations of axially loaded laminated 

composite beams”, Comput. Struct., 84, 87-98. 

Jun, L., Xiang, H. and Xiaobin, L. (2016), “Free vibration analyses 

of axially loaded laminated compiste beams using a unified 

higher-order shear deformation theory and dynamic stiffness 

method”, Compos. Struct., 158, 308-322. 

Labib, A., Kennedy, D. and Featherstone, C. (2014), “Free 

vibration analysis of beams and frames with multiple cracks for 

damage detection”, J. Sound Vib., 333, 4991-5003. 

Levinson, M. (1981), “A new rectangular beam theory”, J. Sound 

Vib., 74, 81-87. 

Matlab R2014b (2014), The MathWorks, Inc. 

Mehmood, A. (2015), “Using finite element method vibration 

analysis of frame structure subjected to moving loads”, Int. J. 

Mech. Eng. Robot. Res., 4(1), 50-65. 

Mei, C. (2012), “Free vibration analysis of classical single-storey 

multi-bay planar frames”, J. Vib. Control, 19(13), 2022-2035. 

Mei, C. and Sha, H. (2015), “Analytical and experimental study of 

vibrations in simple spatial structures”, J. Vib. Control, 22(17), 

1-25. 

Minghini, F., Tullini, N. and Laudiero, F. (2010), “Vibration 

analysis of pultruded FRP frames with semi-rigid connections”, 

Eng. Struct., 32, 3344-3354. 

Ozturk, H., Yashar, A. and Sabuncu, M. (2016), “Dynamic 

stability of cracked multi-bay frame structres”, Mech. Adv. 

Mater. Struct., 23(6), 715-726. 

Özyiğit, H.A. (2009), “Linear vibrations of frames carrying a 

concentrated mass”, Math. Comput. Appl., 14(3), 197-206. 

Paz, M. and Leigh, W. (2004), Structural Dynamics-Theory and 

Computation, Kluwer Academic Publishers, USA. 

Ranjbaran, A. (2014), “Free-vibration of stiffened frames”, J. Eng. 

Mech., 140(9), 040140711-040140719. 

Rao, S.S. (1995), Mechanical Vibrations, Addison-Wesley 

Publishing Company, USA. 

Reddy, J.N. (1984), “A simple higher-order theory for laminated 

composite plates”, J. Appl. Mech., 51, 745-752. 

Shimpi, R.P. (2002), “Refined plate theory and its variants”, Am. 

Inst. Aeronaut. Astronaut. J., 40, 137-146. 

Shimpi, R.P., Patel, H.G. and Arya, H. (2007), “New first order 

shear deformation plate theories”, J. Appl. Mech., 74, 523-533. 

Shimpi, R.P., Shetty, R.A. and Guha, A. (2016), “A simple single 

variable shear deformation theory for a rectangular beam”, J. 

Mech. Eng. Sci., 231(24), 4576-4591. 

Su, H. and Banerjee, J.R. (2015), “Development of dynamic 

stiffness method for free vibration of functionally graded 

Timoshenko beams”, Comput. Struct., 147, 107-116. 

Tuma, J.J. and Cheng, F.Y. (1983), Theory and Problems of Dynamic 

Structural Analysis, Schaum’s Outline Series, McGRAW-HILL, 

INC. 

Wu, J.J. (2008), “Transverse and longitudinal vibrations of a frame 

structure due to a moving trolley and the hoisted object using 

moving finite element”, Int. J. Mech. Sci., 50, 613-625. 

 

 

CC 

17




