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Axisymmetrical free-vibration analysis of liquid-storage 
tanks considering the liquid compressibility

Jin-Rae Cho† and Jin-Kyu Lee‡

School of Mechanical Engineering, Pusan National University, Pusan 609-735, Korea

Abstract. In this paper, we address the numerical investigation on the effect of liquid compressibility
onto the natural frequency of liquid-filled containers. Traditionally the liquid motion has been treated as
an ideal fluid motion. However, from the numerical experiments for the axisymmetrical free-vibration of
cylindrical liquid-storage tanks, we found that the relative difference in natural frequencies between ideal
and compressible motions becomes remarkable, as the slenderness of tank or the relative liquid-fill height
becomes larger. Therefore, in such cases of dynamic systems, the liquid compressibility becomes an
important parameter, for the accurate vibration analysis. For the free-vibration analysis of compressible
liquid-structure interaction we employed the coupled finite element formulation expressed in terms of the
acoustic wave pressure and the structure deformation.

Key words: axisymmetrical free vibration; liquid compressibility; acoustic wave; coupled liquid-struc-
ture formulation; relative difference; parametric variation.

1. Introduction

In the free vibration and seismic response analysis of liquid-structure interaction problems, the
formulation of hydrodynamic pressure field in liquid plays an important role. Traditionally, the
liquid motion in stationary engineering liquid-storage tanks has been regarded as an ideal fluid flow,
according to its relatively lower frequency and simpler flow behavior. As a result, the liquid motion
is governed by Laplace equation in terms of a velocity potential function, as well the hydrodynamic
pressure field by a similar one resulted from combing the continuity and Euler momentum
equations.

Housner (1957) and other early investigators laid down a fundamental theoretical framework for
ideal-liquid-structure interaction problems. Besides an ideal flow assumption, early studies involved
further simplifications, the exclusion of the container flexibility and the liquid free-surface sloshing.
Since Veletsos (1963) emphasized first the importance of the former, the refinement and assessment
of the early studies, by reflecting the container flexibility, have been widely performed. On the other
hand, the influence of the latter was investigated first by Abramson (1966) and Moiseev and
Rumyantsev (1968). Both effects influence the free vibration behavior as well as the seismic
response, however the influence intensity has been numerically found to be negligible (Cho et al.
2000, Haroun and Tayel 1985). Literature and the extensive work on numerical formulation
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considering sloshing effect may refer to a book by Morand and Ohayon (1995).
The viscosity effect of real liquids, while assumed to be ideal, is modeled by means of a damping

term, by measuring from experiments, that is introduced in the dynamic motion of the container. In
fact, the viscosity does not influence the free vibration behavior itself of real liquid-storage tanks
(Conca et al. 1997). But, the consideration of real viscous liquid leads to the complex situation in
the formulation of hydrodynamic pressure field. As for the compressibility, Walker (1980)
introduced a boundary element formulation considering its effect, and reported that it should be
regarded for the liquid-structure interactions under high frequency excitations. The research
literature for recent studies on fluid-structure interactions is well summarized in a paper by
Mackerle (1999).

In a series of our previous works (Cho et al. 1999, 2000, 2001a and 2001b) for ideal-liquid-
storage tanks, we in this paper intend to quantitatively and numerically investigate the effect of
liquid compressibility upon the free vibration behavior. For this goal, we establish a finite element
formulation and develop a test finite element program. Through the comparative numerical
experiments, we examine the relative difference in natural frequencies between compressible and
incompressible liquid motions.

2. Compressible liquid-structure interaction problems

We consider the axisymmetric free-vibration behavior of cylindrical tank of uniform thickness h,
as shown in Fig. 1, in which irrotational inviscid compressible liquid is filled up to the height HL

and the bottom plate is fixed to ground. The superscripts L and S in symbols refer to liquid and
structure, respectively, throughout this paper. And we denote the liquid velocity vector by v = {vr, vz} T

while the structure dynamic displacement by u = {ur, uz}
T, respectively.

2.1 Pressure field in compressible liquid region

In the liquid motion within storage tanks, the mean flow and dissipation are absent so that ∇ v⋅ =

Fig. 1 Geometry and symbol definition of compressible liquid-storage tank
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, further the acoustic amplitude caused by the fluctuation of pressure (i.e., acoustic

pressure pc(r, z ; t)) is usually small relative to the mean pressure po(r, z ; t) (Howe 1998). Then, for
irrotational inviscid compressible flows, combining the continuity equation and the Navier-Stokes
equations leads to the well-known wave propagation equation in terms of dynamic pressure p(r, z ; t)
=po+pc:

(1)

together with corresponding boundary conditions

(2)

where  and  are gradient and Laplace operators defined in axisymmetric cylindrical
coordinates. The speed of sound c in Eq. (1) is defined by , in which k and  denote
respectively the bulk modulus and the mean density of liquid. The compatibility condition between
normal pressure and acceleration of structure deformation field u(r, z ; t) is specified on the liquid-
structure interface . By specifying the boundary condition on the liquid free surface  as in
Eq. (2), we exclude the free-surface sloshing effect of liquid. When it is included, the modal
analysis becomes a nonlinear eigenvalue problem (Morand and Ohayon 1995, Cho et al. 2000).

Above pressure formulation can be easily switched to an alternative formulation in terms of
compressible velocity potential :

(3)
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Fig. 2 Boundary conditions specified for the axisymmetric liquid region
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(4)

For harmonically oscillating dynamic pressure described by

(5)

the above wave equation reduces to the Helmholtz equation:

(6)

2.2 Dynamic displacement field in structure region

Viewing liquid-storage container as a three-dimensional axisymmetric linear elastic structure, as
opposed to usual shells, we have the dynamic motions given by

(7)

equipped with

(8)

where i and j refer to r and z. In addition, σij denote stress components corresponding to Cauchy
strains given by

(9)

In order for the modal analysis, by separating structure and liquid regions, the hydrodynamic
interference on  should be transformed into equivalent mass added to the counterpart. For
ideal- fluid-structure interactions, the numerical procedure becomes linear (Appa Rao et al. 1993)
when the liquid free-surface sloshing excludes, otherwise it becomes frequency-dependent nonlinear,
as mentioned before. For the nonlinear case, one needs a sort of predictor-corrector-type numerical
iteration scheme, as one proposed by authors (Cho, Song and Lee 2001) for separate modal analysis
including the ideal liquid free-surface sloshing. This nonlinearity occurs also when one tries to
analyze compressible-liquid-structure interactions according to the separate modal analysis, even
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when the liquid free-surface sloshing is not included. The reader, from Eq. (6) and the interface
boundary condition in Eq. (8), can easily realize that the hydrodynamic pressure acting on 
becomes frequency-dependent.

3. Coupled finite element approximations

According to usual variational formulation, together with defining the space  of admissible
pressure field given by

(10)

the wave equation in Section 2.1 results in: Find  such that, 

(11)

Using two-dimensional isoparametric finite-element basis functions, we approximate trial and test
pressure fields and structure deformation

(12)

where Φ is the (1× N) basis-function matrix and Ψ the (2× 2 M) basis function matrix.
Substituting finite element approximations into the variational form (11), we obtain

(13)

with matrices defined by

(14)

(15)

(16)

where {n} is defined as {nr, nz}. In Eq. (13),  indicates the structure nodal vector restricted
on the liquid-structure interface with MI nodes, thus its size is (2M I × 1, M I < N). While [S] is of
(MI × 2MI) size and [RL] is the (N × M I) row extension operator defined by

(17)

This row extension operator, while most of its components are 0, relocates rows of [S] into the
correct row positions based on the two matrices in Eq. (13).

Defining the space W(Ω s) of admissible double-vector dynamic displacement field, for the
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(18)

variational formulation of the dynamic motion is as follows: Find  such that, 

(19)

According to finite element approximations for the dynamic displacement and the pressure field
given in Eq. (12), we arrive at

(20)

with matrices:

(21)

(22)

(23)

In Eq. (20),  is the (M I × 1) pressure nodal vector restricted on , and  the
(2M × 2M I) row extension operator, defined as similar as [RL], which relocates rows of [ST] into the
correct row positions based on the two matrices in Eq. (20). In addition, in Eq. (22), E is the
material matrix consisting of Lame constants that constitutes stresses and strains.

In order to couple two sets of matrix Eqs. (13) and (20), we need to extend the two restricted
nodal vectors  and  to entire nodal vectors  of structure and  of liquid,
respectively. So, using the two restriction operators, we have

(24)

(25)

Introducing these two relations into Eqs. (13) and (20), respectively, we obtain a coupled
compressible-liquid-structure formulation:

(26)

where

(27)

In order to apply the standard eigenvalue computation methods, we symmetrize the equation
system (26) according to a simple method suggested by Morand and Ohayon (1995). For harmonic
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motions  together with introducing an additional variable  satisfying
, we easily rewrite Eq. (26) as

(28)

According to static condensation, we have

(29)

and

(30)

in which we use the symmetry of [M L] and [KL].
When liquid motion is assumed to be incompressible, [ML] becomes identically a zero matrix

(letting 1/c2 in Eq. (14) be zero). Then, above symmetric coupled equation system reduces to the
separate free-vibration problem of structure containing incompressible liquid:

(31)

The term , the hydrodynamic effect by the mean pressure filed, is defined as an
added-mass matrix in incompressible-liquid-structure interactions (Cho et al. 2000).

From equation system (30) for compressible liquid motions, we realize that the hydrodynamic
interference of liquid is divided into two, one by the mean pressure field po (i.e., the added mass of
mean pressure (or one in incompressible case)) and the other by the acoustic wave pressure pc (the
terms including [M L] matrix). It is worth to note, differing from the incompressible case, that the
free-vibration can not be separately implemented when the liquid compressibility is considered.

4. Numerical experiments

According to the finite element formulation, we modified our test FEM program that has been
previously developed for the free-vibration and seismic analysis of incompressible-liquid-storage
tanks. In this test program, mesh generation and output visualization are implemented by utilizing
pre- and post-processor modules of ANSYS commercial software.

In Table 1, we record geometry and material data of shell and liquid selected for the numerical
experiments. In which the tank height and the liquid fill height are taken variable in order for the
parametric investigation of the liquid compressibility.

Fig. 3(a) shows a finite element mesh generated with 8-node quadrilateral elements for the model
tank with H/R of 2 and HL/H of 1. In the radial direction, the liquid region is uniformly divided into
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fifty while the structure into one. On the other hand, we made uniform partition in the vertical
direction Nz such that liquid elements become almost square. The variation of fundamental
frequency to the element number for this mesh pattern is given in Fig. 3(b), from which we ensure
that the assigned mesh density produces numerically high accuracy.

We carried out the comparative numerical experiments, in order to investigate the relative
difference in natural frequencies between compressible and incompressible liquid motions, for
various combinations of the relative tank height and the relative liquid fill height. The free-vibration
analysis for the incompressible case was implemented with our previous test FEM program
developed for the free-vibration and seismic analysis of incompressible-liquid-storage tanks. The
computed numerical values are contained in Table 2. In order to retain the numerical error during
iteration process through Lanczos transformation, we computed twenty natural frequencies for three
lowest ones.

Fig. 4 presents the relative difference variations of fundamental frequencies, for three tank heights,
with respect to the liquid fill height. By the relative difference is defined as [(f incomp−f comp)/

Table 1 Geometry and material data for numerical experiments

Items Parameter Data

Structure

Radius R(m) 20

Height H(m) Variable

Thickness h(m) 0.0283
Density ρ S(kg/m3) 7.85×103

Young’s modulus E(KPa) 21.5×107

Poisson’s ratio υ 0.3

Liquid
Fill height H L(m) Variable
Mean density (kg/m3) 1,000
Speed of sound c(m/s) 1,410

ρo
L

Fig. 3 Finite element mesh (H/R=2 and H L/H=1) (a), and the variation of fundamental frequency to the
element number (b)



Axisymmetrical free-vibration analysis of liquid-storage tanks considering the liquid compressibility363

f comp] × 100%. First of all, we observe that the relative difference increases uniformly as either the
relative tank height or the relative liquid fill height becomes larger. This reflects that the larger
liquid amount becomes the higher acoustic wave influence is.

However, the relative-difference increase in proportion to the liquid-fill height becomes dull as the
tank slenderness increases. This phenomenon is solely associated with the characteristic of
equivalent liquid mass affecting the structure motion, i.e., added mass of liquid madd, with respect to
the slenderness of liquid HL/R. Referring to the work of Cho et al. (1999) and Haroun (1983), the
relative added mass to the total liquid mass madd/mTOT exhibits a saturation behavior along the liquid
slenderness (refer to Fig. 5a). Since the relative added mass itself saturates in proportion to the
increase of liquid slenderness HL/R, the relative difference between compressible and incompressible
liquid motions shows naturally the saturation behavior.

Table 2 Comparison of natural frequencies for compressible- and incompressible-liquid-structure
interactions for variable tank and liquid-fill heights

H/R Mode

Compressible (Hz) Incompressible (Hz)

Liquid-fill height H L/H

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

2.0
1
2
3

14.44
28.37
33.18

 7.85
18.66
25.18

 5.32
13.97
19.78

 4.01
11.07
16.34

 3.22
 9.11
13.88

15.06
28.70
33.24

 8.34
19.14
25.53

 5.69
14.51
20.22

 4.30
11.61
16.84

 3.45
 9.62
14.41

1.0
1
2
3

24.10
43.32
64.66

14.47
28.48
37.09

10.24
22.43
29.59

 7.86
18.68
25.20

 6.36
16.00
22.13

24.59
43.58
64.87

15.07
28.81
37.33

10.81
22.84
29.89

 8.35
19.16
25.55

 6.78
16.53
22.53

0.5
1
2
3

37.87
70.00
83.57

23.73
41.24
54.82

17.92
32.87
42.03

14.39
28.10
36.04

11.96
24.78
32.11

38.21
70.27
83.57

24.20
41.45
55.01

18.48
33.14
42.21

14.98
28.42
36.26

12.55
15.14
32.36

Fig. 4 Variations of the relative difference in fundamental frequencies, for different tank heights, to the liquid-
fill height
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Figs. 6-8 present the variations of relative difference in three lowest natural frequencies for three
relative tank heights H/R of 2, 1 and 0.5, respectively. Similar to the fundamental frequency, the
relative difference in second and third ones becomes larger as either the tank height or the liquid-fill
height increases. However, from Fig. 6, we find that the saturation behavior occurred for the
fundamental frequency, when the liquid slenderness becomes significantly larger, disappears as the
natural frequency goes higher. Therefore, we conclude that the saturation behavior prevails as the
natural frequency goes lower and the liquid slenderness HL/R increases.

On the other hand, for each relative tank height the relative difference between compressible and
incompressible liquid motions decreases uniformly in proportion to the increase of natural
frequency. Referring to Fig. 5(b), the free-surface fluctuation η is (Howe 1998).
And this fluctuation height decreases uniformly as the natural frequency goes higher. Therefore, we
can physically infer that the spatial variation of dynamic-pressure field diminishes in proportion to
the natural frequency increase.

∇p nz⋅ / ρLω2( )

Fig. 5 Added mass saturation to the liquid slenderness (a), and the free-surface fluctuation (b)

Fig. 6 Variations of the relative difference in three lowest natural frequencies when H/R is 2
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Last three figures show the comparison of mode shapes and dynamic-pressure distributions, for
three lowest natural frequencies, when H/R and H L/H are respectively 3 and 1. In plots,
displacement amplitudes and minimum/maximum dynamic pressure values are mass-matrix
normalized. Since the compressible case includes an additional mass contribution [M L] due to the
acoustic pressure field, as represented in Eqs. (26) and (30), it leads to smaller normalized values
compared to the incompressible case.

We can not notice any remarkable difference, except for the difference in normalized amplitude
values, in mode shapes between compressible and incompressible cases. But, we observe the
noticeable difference in dynamic-pressure contours between both cases by minutely comparing the
contour extension lengths in the radial direction. The compressible case shows smaller dynamic-
pressure gradient, a little bit, in the radial direction, particularly near the vertical locations where
mode shapes show convex and concave apexes.

Fig. 7 Variations of the relative difference in three lowest natural frequencies when H/R is 1

Fig. 8 Variations of the relative difference in three lowest natural frequencies when H/R is 0.5
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5. Conclusions

In order to investigate the effect of liquid compressibility on the free-vibration of stationary
liquid-storage tanks, we numerically studied the axisymmetrical free-vibration of cylindrical liquid-

Fig. 9 Comparison of first mode shapes (× 10−6) and corresponding dynamic-pressure distributions (mass-
normalized; H/R=3 and H L/H=1)

Fig. 10 Comparison of second mode shapes (× 10−6) and corresponding dynamic-pressure distributions (mass-
normalized; H/R=3 and H L/H=1)
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storage tank. This is because, among free-vibration modes, the axisymmetrical mode is more
associated with the liquid compression.

For this goal, we established a coupled finite element formulation, and developed a test FEM
program by modifying our previous one that was developed for the free-vibration and seismic
analysis of incompressible-liquid-storage tanks. With the test program, we carried out the
comparative numerical experiments, in order to examine the difference in natural frequencies
between compressible and incompressible liquid motions, for various relative tank and liquid fill
heights.

From the numerical results, we observed that the relative difference increases as either the relative
tank height or the relative liquid fill height becomes larger. As well as, it decreases in proportion to
the increase of natural frequency. On the other hand, we observed noticeable difference in mass-
normalized dynamic pressure distributions, even though any remarkable difference in mode shapes
except for the difference in normalized amplitudes is not shown.
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