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dependent external pressure

A.H. Sofiyevt

Ondokuz Mayis University, Civil Engineering Department, 55139, Samsun, Turkey

O. Aksogan¥

Cukurova University, Civil Engineering Department, 01330, Adana, Turkey

Abstract. In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli
and density varying in the thickness direction, subject to a uniform external pressure which is a power function
of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility
equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform externa, gragsu

been derived. Applying Galerkin's method, these equations have been transformed to a pair of time
dependent differential equations with variable coefficients. These differential equations are solved using
the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the
dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure
impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the
loading speed, the variation of the semi-vertex angle and the power of time in the external pressure
expression on the critical parameters have been studied.
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1. Introduction

In the contemporary technology, the improvement of the strength properties of materials used in
producing the structural elements of construction, aims at decreasing their sizes and weights. To this
end, computation methods taking the actual behaviour of materials into consideration are essential.
The foregoing fact has, recently, pulled the attention of researchers to the elasticity problems of
objects made of homogeneous and nonhomogeneous anisotropic materials (Lekhnitski 1980, Lomakin
1976). The aforementioned nonhomogeneity stems from the effects of humidity, heat and methods
of production, which render the physical properties of materials vary from point to point. For
example, Brinkman (1954) has shown that the elastic properties of metal shells, subjected to
radiation, can be taken as a linear function of the coordinate in the thickness direction, as a first
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approximation.

Delale and Erdogan (1983), and Zhang and Hasebe (1999) have assumed the variation of the
elasticity modulus to be unbounded and have used exponential functions of the radial coordinate in
their expressions.

In actual engineering applications, the variation of the elastic properties of materials remains in a
bounded range and small enough, necessitating a restriction on the variation functions. Researchers
have given this restriction in different ways. Massaasal (1981, 1982) have, first, taken the
elasticity modulus as a function of thickness coordinate and, then, as a function of longitudinal
coordinate. Heyliger and Juliani (1992) have taken it to be a function of the radial coordinate in
some vibration problems. Guiterret al (1998) have taken density to be a linear, quadratic and
cubic function of the radial coordinate in their work. Sofiyev and Aksogan (1999), and Aksogan and
Sofiyev (2000) have solved the dynamic stability problems of single and multi-layered cylindrical shells
varying the elasticity moduli in both the thickness and the longitudinal directions and elasticity modulus
and density only in the thickness direction, respectively. In those studies, the functions expressing
the nonhomogeneity have been assumed as continuous (linear, quadratic, cubic and exponential) functions,
always less than unity.

The pioneering studies in the static buckling of shells can be mentioned as follows. Mushtari and
Sachenkov (1958) have worked on the buckling of circular cylindrical and conical shells under combined
external and axial pressures. Singer (1961) has studied the axisymmetric buckling problem of a
circular conical shell under external pressure. Sachenkov and Aganesov (1964) have worked on the
buckling and nonsymmetric vibrations of structurally orthotropic elastic cylindrical and conical
shells under external and axial pressures. Singer (1966), later, proposed a procedure for the solution
of the three equilibrium equations using complex series. Bagtieth (1970) studied the buckling
of a simply supported isotropic conical shell under axial pressure using the Donnell type shell
theory.

Leissa (1973) summarized all the past literature on the vibration of conical shells. Tani (1973,
1981) examined the dynamic buckling of truncated conical shells under a periodic external pressure
and a pulsating torsional loading, respectively. #tieal (1984) have studied the free vibration of
truncated conical shells. Sivadas and Ganesan (1991) worked on the vibrations of laminated conical
shells with variable thickness. Torg al (1992) and Tong (1993) have used the Donnell type shell
theory to examine the linear vibrations and buckling of simply supported orthotropic conical shells
under axial pressure. Mecitoglu (1996) has solved, numeritdadlyjynamic equations of a stiffened
composite laminated conical thin shell under the influence of initial stressesetlan{1999) have
studied the effects of the boundary conditions on the vibration characteristics of thick truncated
conical shells.

The dynamic stability problems of thin conical shells subject to pulsating pressure loading has not
been studied enough. In particular, it has been observed that, various theoretical solutions of these
problems using different methods do not match well with experimental results. This is due to the
difficulty of accounting for all the factors (variation of load with time, scattering of waves through
the materials, etc.) affecting the behavior of systems deformed by dynamic loading. Consequently,
recently, researchers are extremely more interested in the theoretical and experimental studies of
thin conical shells under different loading conditions, and thus, try to obtain functional expressions
for critical loads. Making use of the dynamic criterion concerning the stability of plates and shells
proposed by Sachenkov (1976), Sachenkov and Klementev (1980) have examined the dynamic
stability of an elastic conical shell subject to a linear time dependent external pressure and Baktieva
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et al (1988) have studied the dynamic stability of cylindrical and conical shells. In the two latter
works, some factors involved in the expressions for the critical parameters are taken from
experiments and the pertinent results have been shown to be perfectly acceptable.

In practical applications, liquid and wind pressures are sometimes confronted as power functions
of time, as well as, linear and periodical ones. The buckling problems under such loads have been
studied by Yakushev (1990) for an homogeneous cylindrical shell, by Sofiyev and Aksogan (1999)
for a nonhomogeneous orthotropic elastic cylindrical shell and by Aksogan and Sofiyev (2000) for a
laminated shell composed of layers of the foregoing type.

The aim of the present work, is to study the dynamic stability of an orthotropic elastic conical
shell, the elasticity moduli and density of which varies continuously with the coordinate in the
thickness direction, under an external pressure which is a power function of time, employing the
method presented by Sachenkov and Baktieva (1978) with some modifications.

2. Fundamental relations and governing equations

Consider a truncated conical shell of medium length with a circular cross-section made of a
nonhomogeneous orthotropic elastic material. Assume that the elasticity moduli and density of the
material are continuous functions of the coordinate in the thickness direction. Hence, the elasticity
moduli and density can be expressed as functions of , the normalised coordinate in the thickness
direction, as follows:

Es(Q) = Eos[1+ ud:1(¢)],  Eq(Q) = Ege[1+ (4],
G(Q) = Go[1+ups(9)],  p(Q) = po[1+ uds(¢)], ¢=¢lh 1)

where Egs, Egp and Gy are the elasticity moduli of the homogeneous orthotropic material and its
shear modulus, respectively is the density of the homogeneous material and the variation
coefficient of the elasticity moduli and density satisfyifg u<1, ¢;(¢),(i=1,2 3 4 , are
continuous functions corresponding to the variations of the elasticity moduli and density, which
satisfy‘«pi('c)‘ < 1, anch is the thickness of the shell.

Let the coordinate system be chosen such that, the @iginat the vertex of the whole cone, on
the middle surface of the shell, aBdxis lies on the curvilinear middle surface of the c@eand
S being the coordinates of the points where this axis intersects the small and large bases, respectively. The
average radii of the small and large baseRa@ndR,, respectively, angtis the semi-vertex angle.
Furthermore ¢ axis is always normal to the movii®axis, lies in the plane of the axis and the
axis of the cone and points inwaréds the angle of rotation around the longitudinal axis starting from a
radial plane. The axes of orthotropy are parallel to the curvilinear coordiate (see Fig. 1).

In accordance with the Kirchhoff-Love hypothesis, in the case of small displacements, the strain
at ¢ distance from the middle surface is given as follows:

(Es € €s0) = (€5 €9, €59) + G(Xs X v Xs0) (2

wherees andey are the normal strains in the curvilinear coordinate directiossd 8 on the middle
surface, respectivelys is the shear strairys and yyare the curvatures of the deformed shell in the
curvilinear directionsS and 6, respectively, angtss is the twist of the middle surface, the last three
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P(t)

Fig. 1 The geometry of a truncated conical shell under a uniform external pressure

entities being defined as follows:

=_@ =_1dzu 1du _ 1 Fu +Lou 3)
X = 75g K0T "o @ T S0s X% T Tsi506,” 206,

in which 6, =6 siny andu is the displacement of the middle surface in the normal direction, positive
towards the axis of the cone and assumed to be much smaller than the thickness (Molmir 1967, Tani
1973). For the physically linear shell described above, the stress-strain relations are as follows:

EUS E Q11 Q12 O ESS E
DGG 0 = 1Q21 Qs O DEG O (4)
Hose U | 0 0 Qs

where, 0s, dgand 0y are the stresses amgh, Vgs are the Poisson’s ratios, which are constant, and
Q; (i, j = 1,2,3) are defined as:

Q,, = Eos[1 + 1¢:1(Q)] Q,, = Eool 1+ 1¢,(Q)]
" 1-VgeVos % 1 —VggVgs
Q12 = VesQi1, Q21 = VseQaa Q3 = 2Go[ 1+ L5(Q)] 5)

The internal forces and moments per unit length of the cross-section of the shell are found using
the following expressions:

h/2 h/2
(Ns: Ng, Ngp) = _[ (0s Ty, Osp)dG, (Mg, Mg, Mgp) = _[ (0s, Ty, Osp) GdG (6)
A2 —fAr2

The relations between the forddg Ng andNg, and the stress functidn are as follows:
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_ 1(9212 19F _0F 1 9F 10F
Ns Ne - o Nse B
szae2 " So8 0

59598, " 2ae, (7)
Taking account of the radial inertia forces, the modified Donnell type stability and compatibility
equations of a conical shell are found as follows (Volmir 1967):

Mg 20"MS+2(92M39 1My, 2Msy 10°M,
o8 SOS S0S06, SOS 96, & 9p?

oﬁzlJ NG dzu oud, o 0[;1:o”'ug ~ dzu

N

ctgydu 2 d%eqy 20es d%, L1 dzes 208y 106 _

S 9 S9S06, F06, 3 S o6 *S3s 7595 ° ©)

- 1/2 B B
whereNg Ny andNg, are the membrane forces in the fundamental config@ratieh, J E1+ ug,(9)ldc

=172
andt is time. The shell is subject to a uniform external pressure (see Fig. 1), varying as a power

function of time as follows (Yakushev 1990, Aksogan and Sofiyev 2000):

Ns 0, Ne = —S(P, + Pot")tgy, Nse =0 (10)

whereP; is the loading spee®, is the static external pressueejs a positive whole number power
which expresses the time dependence of the external pressure satigflingubstituting expressions

(2, 4) in (6) and considering the resulting expressions together with relations (7), after some
rearrangements the relations found for moments and strains, being substituted in (8-9) together with
relations (7, 10), one gets the following pair of equations, written in matrix from,dndF:

Lyy Ly OF O
g g=0 (11)
L21 I—22 au

whereL; (i, j = 1,2) are the partial differential operators, which are defined in the Appendix.

3. Solution of the differential equations

Considering the shell to be simply supported along the peripheries of both bases, the displacement
and stress functions andF, can be chosen as follows (Baktiestaal 1988):

u= E(t)e’“sinmlrcomlel, F = Z(t)Sze}wsinmlrcosnla1 (12)

where &(t) and {(t) are time dependent amplitudes, = 77/l, | = In(S/S), mm=n/sin y, A;=A+1
andn is the wave number in the circumferential direction. For a truncated cone, the parameter
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varies with the geometric parametes follows (Sachenkov and Aganesov 1964):
A=1.2whenl <2.7,A=1.6 when 2.&1<3.5 andA =2.0 whenl <3.5 (13)

After applyingr =In(§S) transformation to this system of equations and taking derivatives with
respect to variable§;, andS each at a time, it is noted that, the functions involved in them should
be steeply increasing with respeciBicand varying slowly with respect ® Taking these properties into
consideration, neglecting small terms, multiplying the first equa’tiouﬁ};&zrdrda1 and the second
by FSiezrdrdel, considering Eq. (12), for 96,<2msiny and -1 <r <0, applying Galerkin's
method and eliminating(t) from the equations, thus obtained, one gets

2 . ber Oy ot QY N
%ﬂ + {/\ — (P, + Pyt tkr)kgh;g”ﬂ E§1)=0 (14)

in which t = tT1, t, being the critical time and being the dimensionless time parameter such that
0<rt<1. In Eqg. (14) the following definitions apply:

- tir {J_ nt+ §5octgzy} (15)
Ph§ bllﬁ 1b1s
q = (b€ —C1014) 04 (16)
mp = (Mg +A%)(mi+ A°—1) (17

[1-e?"YImE + (A + 1)*](A + 1)
[1-e2" D mi+ (A +K)*](A+K)

O = =-1,0 12 (18)

In pertinent literature the approximating function satisfying Eq. (14) has been chosen as a first
approximation in the following form (Sachenkov and Baktieva 1978):

&) = AT[(B+2)(B+1) "t -1] (19)

and satisfies the initial conditiong0) = 0, %TQ =0. Here8 is an unknown coefficient and the

displacement amplitud& is found from the condition of transition to static condition.

Applying the method given by Sachenkov and Baktieva (1978) to Eq. (14), i.e., multiplying it by
&'(1) and integrating with respect tg first from 0 to 7 and then from 0 to Igne finds the
following characteristic equation:

a d C . Bila, B)phszctgy
Pt = By(a, B)| LAY LA 0—9—1/ L 20
otir = Bol B’{@émbu Y Sbnoy, (20)

tkr O1/2 n1

where the following definitions apply:
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1[[E(r)]zdr ![E’(T)]Zdr
BO(av B) = ] Bl(a1 B) = 1T (21)

1T

2!{0”5’(0)5(U)dndT 2!{0“5’(n)£(n)dndr

Minimizing (Potg ) with respect ton? and considering the result in Eq. (20), after some mathematical
operations, the following equation is found to determine the minimum critical load:

2 3
. qctgy 2 M S ctgy Py
Poter = 2By(a, B) = 3, bS5, ne 2

(22)

For P;=0 and Py,=200 MPa/§, eliminating t,, from Egs. (20) and (22), solving the resulting
equation forn, wave parameter and taking the relation= n/siny into consideration, one finds
(Aksogan and Sofiyev 2000).

g = [miSaa etg’y]”'C” T siny (23)

where the wave numbey, which is dependent on the way the dynamic load varies, characterizes
the form of loss of stability of the shell under the dynamic load and the following definition applies:

= B,(a, ﬁ)bh( |:’051/2)2/0’$30{Jrs)/mb(lzl+ e
22/aB(()2+ a)/a(a’ B)[m§5o] (1+ a)/(ZG)[thgzn(% a)/(2a)

WhenP; = 0, substituting expression (23) in Eq. (22), the dynamic critical load is found as follows:

(24)

d _ a _ 2By(a, B)53/4m;/2q3/4(3t93/2y a’/(2+2a)
Pir = Potir = > > C
172 bllg

(25)

The B coefficient, for which this dynamic critical load takes its minimum value, is found as the
ordinate of the minimum point ofPg, B) parabola and, for external pressures given as a power
function of time, it can be shown by numerical computations that it correspofidsda 1. In the
static casetf » o , Po—0) the following equation is found for the wave number corresponding to
the static critical load:

nZ = [3MSa,q 'ctg’y]” siny (26)

When P; =0, substituting expression (26) in Eq. (22), the static critical load, which refers to
Potir’ /By (a, P), is given as

st 4 6%/4m;/2q3/4ctg3/2y
B T bt @n
11
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and, from the definitioty = P3/Pg, the dynamic factor is given as

3/4
K, = 3 802(01 IB)Ca/(2+ 2a) 28)
The critical time can be found from Eq. (25) as

/a

1
t, = {250(0, B) 53/4m;-/2q3/4ctgg/2y:| Cl/(2+ 20) (29)

Pody, 2b11§/2

The corresponding critical impulse is obtained as

r (1+a)/a

I, = [Pot’dt =
“ J)— ’ (:l-"'a)Pé/Or 51/2bn§/2

Remembering that, for a conical shell made of an homogeneous orthotropic elastic matdrial,
and the counterparts of (27-30) formulas are found as a special case.

4. Numerical computations and results

Computations have been carried out for the case where the material properigs=&#&225x
10* MPa, Eyg = 1.085x10 MPa, Vg = 0.117,Vgs = 0.057,00 = 1.84x16 kgs/m* (Yakushev 1990) and the
shell parameters af® = 8x102m, R, = 2.25x10° m, h=2.5x10*m (Sachenkov and Klementev 1980).
For comparison the following material and shell properties have beerEgséil1x10 MPa, v=0.3,
o =8x1G kgg/m* andR,=8x10?m, R, =2.25x10° m, h=1.3x10"m (Sachenkov and Klementev 1980)
(Table 6). A computer program called MAPLEV2 has been used to compute numerical values from
the formulas obtained.

P fr 0,1
(MPa) 0'09

008 |-~ -

0,07

0,08 |- nomm s . N

0,05

0,04 - _; e PO em —

0,03 /i- R S

0,02

o 4 8 12 16 20

v
Fig. 2 Variation of dynamic critical load with the paramefera =(1, =2, P, = 200 MPa/s)
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Table 1 Variation of critical parameters with elasticity modal=(1, 8= 2, Po =200 MPa/s)

p=0 $.(0) = e*Mcog 0.8)(i=1,2 4),u=0.9
Yy  EodEoe Ny Ny Pd (MPa) Kq Nt Ny P& (MPa) Kq
30 2 11 10 0.0911 2.0132 11 8 0.1236 1.4899
5 13 14 0.0724 3.1897 13 12 0.0982 2.3606
45 2 9 7 0.0824 1.7435 9 6 0.1117 1.2903
5 10 10 0.0654 2.7624 10 9 0.0888 2.0443
60° 2 7 6 0.0693 2.0132 7 5 0.0940 1.4899
5 8 9 0.0550 3.1897 8 8 0.0746 2.3606

In Fig. 2 are seen three curves pertaining to the critical dynamic loads for three different forms of
the elasticity moduli and density variation functions. In curve 1, the caggcdt e *lcos@ ),
(i=1,2,4) andu=0.90 is considered. For<03<5.15, the dynamic critical load is higher than
that for the homogeneous case and takes its maximum valde=foras (0.0942 MPa). For
5.15<8<12.10, it is lower than the value for the homogeneous case and takes its minimum value
for =8 as (0.0510 MPa). Curve 2 corresponds to the homogeneous case and the pertinent value of
the dynamic critical load is 0.0688 Mpa. In curve 3, the casg(gf= —e*Mcos@q), (=1, 2, 4)
and u=0.90 is considered. For<03 <5.15, the dynamic critical load is lower than that for the
homogeneous case and takes its minimum valué fof as (0.0246 MPa), whereas, for 5.18 <
12.10, it takes higher values and is a maximum fer8, taking the value (0.0808 MPa). For
3 >12.10, the effect of the variation of the elasticity moduli and density on the dynamic critical load
is very little (Fig. 2).

When Egs is kept constant and the ratiQdEqg is increased, the dynamic critical load decreases
for both homogeneous and nonhomogeneous cases, whereas, the dynamic factor increases and the
effect of the variation of the elasticity moduli and density is relevant. As theEgfify, increases,
the difference betweemy and ny increases, also. Hence, for materials with high degree of
anisotropy, an increase in the the difference betwgeandny can cause the loss of the stability of
the conical shell (Table 1).

When ¢(¢) =+ €% co0s(0.2), (i=1,2,4) the dynamic critical load, critical time and critical
impulse decrease gsincreases. The values of the static critical load and dynamic factor decrease
for 20°< y<4% and increase for 4% y<8C. When ¢i(¢) =e°¥ cos (0.2), (i=1,2,4), the
difference between the wave numbers corresponding to the dynamic and static critical loads take values
lower than that for the homogeneous case, whereas, yt@F —e ¥ cos (0.2), (=1, 2, 4), it
takes higher values. When the angl@creases the effect of the variations of elasticity moduli and
density on the dynamic critical load and dynamic factor does not change appreciably (Table 2).

When a increases, the dynamic critical load and dynamic factor decrease. When the variation of
the elasticity moduli and density are given by linear, quadratic and exponential functions, the effect
on the critical parameters is more pronounced in the second case than in the first and even more so
in the third case. Wheg(¢) = -€° cos (0.8), (=1, 2,4), u=0.9, compared to the homogeneous
case, the dynamic critical load takes 60.15% lower values fol and 75.00% lower values for
a =4, whereas, the dynamic factor takes 134% higher valueg #at and 37.95% higher values
for a = 4. Consequently, whem increases, the effect of the variation of the elasticity moduli and density
on the dynamic critical load increases, whereas, that on the dynamic factor decreases (Table 3).

As the loading speed increases, the dynamic critical load and dynamic factor values increase, too.
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Table 2 Variation of critical parameters wigh{a = 1, f= 2, P, = 200 MPa/s)
6.0 =e*Mcog 0.2)(i=1,2 4

y u Ny Nt Pd (MPa) Pg'(MPa) Kq tir () I« (MPa s)
2¢° 0 14 14 0.0943 0.0344 2.7468 0.0013 0.0017
0.9 12 14 0.1290 0.0641 2.0117 0.0013 0.0017
3¢° 0 10 11 0.0906 0.0444 2.0387 0.0012 0.0014
0.9 8 11 0.1239 0.0830 1.4931 0.0012 0.0014
40° 0 8 10 0.0852 0.0475 1.7928 0.0012 0.0014
0.9 6 10 0.1165 0.0887 1.3130 0.0012 0.0014
45° 0 7 9 0.0818 0.0464 1.7656 0.0011 0.0012
0.9 6 9 0.1119 0.0866 1.2931 0.0011 0.0012
5¢° 0 7 8 0.0780 0.0435 1.7928 0.0011 0.0012
0.9 6 8 0.1067 0.0813 1.3130 0.0011 0.0012
6(° 0 6 7 0.0688 0.0338 2.0387 0.0009 0.0008
0.9 5 7 0.0941 0.0630 1.4931 0.0009 0.0008
7 0 6 6 0.0569 0.0207 2.7468 0.0008 0.0006
0.9 5 6 0.0778 0.0387 2.0117 0.0008 0.0006
8P 0 7 5 0.0406 0.0079 5.1622 0.0006 0.0004
0.9 6 5 0.0555 0.0147 3.7807 0.0005 0.0003
$,(0) = - *Fcog 0.2)(i1=1,2 4)
20 0.9 23 14 0.0339 0.0046 7.4572 0.0013 0.0017
3¢° 0.9 16 11 0.0326 0.0059 5.5349 0.0012 0.0014
40° 0.9 13 9 0.0307 0.0063 4.8673 0.0011 0.0012
45° 0.9 12 9 0.0294 0.0061 4.7934 0.0011 0.0012
6 0.9 11 8 0.0281 0.0058 4.8673 0.0011 0.0012
7 0.9 10 7 0.0248 0.0045 5.5349 0.0009 0.0008
8P 0.9 11 6 0.0205 0.0028 7.4572 0.0008 0.0006
8P 0.9 12 5 0.0146 0.0010 14.0149 0.0006 0.0004

Moreover, the values of the wave numbers corresponding to the the dynamic critical loads, increase,
also. The difference between the wave numbers corresponding to the dynamic and static critical
loads increase as the loading speed increases (Table 4).

When the elasticity moduli vary together with the density in the thickness direction, the effect on
the dynamic critical load is higher than when the density is kept constant, whereas, that on the
dynamic factor is less. Table 5 shows such resultgifgr=—-e°"¥ cos (2.1). When the density is
kept constant and only the elasticity moduli are changed, if the variation function is negative, the
increase in the difference betwempandny may also contribute to the loss of stability of the shell
(Table 5).

As seen from Table 6, the results of the present work have been compared with the theoretical-
experimental and purely experimental results of Sachenkov and Klementev (1980) for an homogeneous
elastic conical shell subject to an external pressure varying linearly with time and a good match has
been observed.
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Table 3 Variation of the critical dynamic load and dynamic factor aviimd¢;(Q)(y= 3C°, B=a + 1, P, =200 MPa/§)

Q=<  $Q=-¢ 9,0 =-""cog 0.8)
u=0 (i=1,2,4),u=09 (i=1,2,4),u=0.9 (=1,2,4),u=0.9
a Pd (MPa) Ky Pd (MPa) Ky Pd (MPa) Ky Pd (MPa) Ky
1.0 0.0906 2.0387 0.0890 2.1112 0.0857 2.1920 0.0361 4.7756
2.0 0.0093 0.2089 0.0091 0.2151 0.0086 0.2205 0.0027 0.3684
3.0 0.0034 0.0756 0.0033 0.0777 0.0031 0.0791 0.0009 0.1145
4.0 0.0020 0.0440 0.0019 0.0451 0.0018 0.0458 0.0005 0.0607

Table 4The variation of the critical parameters at different loading speedd (5= 2)

§=0 $:(0) = €*Mcog 2.6) (=1, 2,4),u=0.9
y  Po(MPa/s) ng ng Pd(MPa) Ky Net Ny Pd (MPa) Ky
3 200 11 10 0.0906 2.0387 11 12 0.0521 3.2217
470 11 12 0.1388 3.1253 11 15 0.0798 4.9388
650 11 13 0.1633 3.6754 11 16 0.0939 5.8080
60° 200 7 6 0.0688 2.0387 7 8 0.0396 3.2217
470 7 8 0.1055 3.1253 7 9 0.0607 49388
650 7 9 0.1241 3.6754 7 10 0.0713 5.8080

Table 5The variation of the critical parameters with the elasticity moduli and density
(=1, B= 2, Po= 200 MPa/sp,(q) = —*cog 2.1))

(i=1,24) (=1,2) (=)

Pd(MPa) u ng ng PJ(MPa)  Kg Ne Ny Pd(MPa) Ky e Na Pd(MPa) Kg

3¢ 0 11 10 0.0906 20387 11 10 0.0906  2.0387 11 10 0.0906  2.0387
09 11 12 0.0521 32217 11 14 0.0721  4.4574 11 8  0.0655 1.4735

45 0 9 7 0.0818 1.7656 9 7 00818 1.7656 9 7 0.0818 1.7656
09 8 9 0.0471 2.7901 8 10 0.0651  3.8602 9 6 0.0592 1.2761
60° 0 7 6 0.0688 2.0382 7 6 0.0688 2.0387 7 6 0.0688 2.0387
09 7 8 0.0396 3.2217 7 9 0.0547 4.4574 7 5 0.0497 1.4735

Table 6 Comparison of critical parameters with those of Sachenkov and Klementeva39B@ #£ 2, P, = 225 MPa/s)

Theoretical-experimental Experimental Present wprk Q)
y P& (MPa) P (MPa) K P& (MPa) P{(MPa) Ky  PJ (MPa) P¢(MPa)  Kq
20° 0.0208 0.0837 4.0240 0.0200 0.0575 2.8800 0.0205 0.0806 3.9248

30 0.0269 0.0720 2.6755 0.0270 0.0726 2.6900 0.0266 0.0774 29131
ilog 0.0288 0.0699 2.4320 0.0300 0.0810 2.7000 0.0284 0.0728 2.5617
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5. Conclusions

The dynamic stability of an orthotropic elastic truncated conical shell, with elasticity moduli and
density varying continuously in the thickness direction, subject to a uniform external pressure which
is a power function of time, has been studied and general formulas have been obtained for the
critical parameters. The following conclusions have been drawn from the numerical analysis carried
out using the general formulas obtained from the analytical study:

(&) When the semi-vertex angjeof the conical shell increases, the values of the dynamic critical
load, the critical time and the critical impulse decrease. Furthermore, the static critical load and
dynamic factor get lower for 2& y< 45° and higher for 4% y< 8(°.

(b) When the power of timey, in the external pressure expression increases, the effect of nonho-
mogeneity on the dynamic critical load increases, whereas, that on the dynamic factor
decreases.

(c) When the variation of the elasticity moduli and the density are given by linear, quadratic and
exponential functions, it is observed that the effect of this nonhomogeneity on the critical parameters
is relatively more for the exponential functions. Furthermore, when the variation function is
negative the conical shell gets more unstable.

(d) When the elasticity moduli and the density vary continuously in the thickness direction, the
effect on the dynamic critical load is higher than when the density is kept constant, whereas, the
effect on the dynamic factor is less.

(e) An increase in the loading spdegdcauses the dynamic critical load, the dynamic factor and the
wave number corresponding to the dynamic critical load to increase, also.

(f) When the density is kept constant and only the elasticity moduli are changed, for negative varia-
tion functions and with materials having high degrees of anisotropy, the difference befween
andny increases.

These observations have shown that the effects of the variations of the elasticity moduli, the
power a, the semi-vertex anglg and the loading speeH, on the critical parameters of the
problem in the heading, are rather important.
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Appendix

The coefficientsy;, by andc;, (i,j =1, 2, 3, 4) and.;, (, j

A.H. Sofiyev and O. Aksogan

are defined as follows:

Notation
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_ A 1 2 _.1 1 2 _ .1
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Csp = A3absp+ 2835 bui=azly, b=—aple, bis=(ana—anazs)lo,

_ 0.1 1.0y -1 _ 0,4 _ .0, 0.1 1 0y -1
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_ 0.1 1.0y -1 4,0 _ 1,.0 _.0.0 _0_0
D4 = (8z181—82811) Lo, D31=1ags, Ds=—2839833, Lo=a1822—az:812,
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Elasticity moduli of the homogeneous orthotropic materials

=1, 2) appearing in some equations in this paper
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Elasticity moduli of the homogeneous isotropic materials

Shear moduli of the homogeneous materials

Strain components on the middle surface of the conical shell

Stress Function

Thickness of the shell

Dynamic factor

Internal moments per unit length of the cross-section of the shell
Internal forces per unit length of the cross-section of the shell
Membrane forces prior to buckling

Wave number in the circumferential direction

Wave number corresponding to the static critical load

Wave number corresponding to the dynamic critical load

Static critical load

Dynamic critical load

Loading speed

Static external pressure

Average radii of the small and large bases of the conical shell
Curvilinear coordinate system on the middle surface of the conical shell
The coordinate axis through the vertex on the curvilinear middle surface of the cone
The angle of rotation around the longitudinal axis starting from a radial plane
The inclined distances of the bases of the cone from the vertex

Time

Critical time

Displacement of the middle surface in the inwards normal direction
Power of time in the external pressure expression

Curvatures of the middle surface

Strains in the curvilinear coordinate directions

Semi-vertex angle of the cone

Dimensionless time parameter

Density of the homogeneous materials

Poisson’s ratios of the homogeneous orthotropic materials

Poisson’s ratios of the homogeneous materials

Elasticity moduli and densities variation coefficient

A parameter that depends on the geometry of the shell

Stress components

Variation functions of the elasticity moduli and densities

Time dependent amplitudes

The coordinate axis in the inwards normal direction of the middle surface of the cone





