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Free vibration analysis of Reissner plates 
by mixed finite element

Nihal Eratl † and A. Yalçin Aköz‡

Faculty of Civil Engineering, Istanbul Technical University, 80626 Maslak-Istanbul, Turkey

Abstract. In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out
by mixed finite element method based on the Gâteaux differential. New boundary conditions are
established for plates on Pasternak foundation. This method is developed and applied to numerous
problems by Aköz and his co-workers. In dynamic analysis, the problem reduces to the solution of a
standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation.
The element has four nodes and bending and torsional moments, transverse shear forces, rotations and
displacements are the basic unknowns. The element performance is assessed by comparison with
numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic
analysis. Shear locking effects are tested as far as h/2a = 10−6 and it is observed that REC32 is free from
shear locking.
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1. Introduction

The Reissner-Mindlin theory provides more reliable representation of structural behavior (Reissner
1946, Mindlin 1951). Those theories that include the effects of transverse shear deformations
eliminate the inaccuracies of the classical Kirchhoff-Love theory. A considerable number of
publications are concerned with the problem of the free vibration of plates. Theoretical studies are
based on various methods, such as, the finite difference method, the Rayleigh-Ritz method, the
finite element method, the Lagrangian multiplier method, the finite strip method, the superposition
method and others.

Because of its versatility, finite element method founds a great application in engineering field.
The great majority of results for flexural vibration of plates are based on Kirchhoff plates theory
that ignore the transverse shear deformation. Its requirement of C1 continuity causes substantial
difficulties and also it introduces errors since the effects of transverse shear are ignored and inertia
terms are also neglected. This theory overestimates the plate frequencies. For simply supported
rectangular plates comparison studies show that classical theory solutions are significantly in error
for all modes of the plates. The errors increase with the increasing thickness (Srinivas et al. 1970,
Lee and Reissmann 1969, Hughes et al. 1977). An improved thick plate theory, which includes the
effects of transverse shear and rotary inertia, were presented by numerous authors, for example,
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Reissner (1946) and Mindlin (1951). Hughes et al. (1977) based on Mindlin theory, which require
C0 continuity has developed a very efficient form of the bilinear four-node element (S1). Hinton and
Bicanic (1979) have performed free vibration analysis with this element. C0 continuity causes a
problem called shear locking when the plate thickness approaches zero. Various modifications of
formulation as well as numerical tricks have been introduced in order to overcome this problem
such as reduced/selective integration (Cook 1972, Zienkiewicz et al. 1971, Pugh et al. 1978,
Paswey and Clough 1971) and Discrete Kirchhoff-Mindlin element (Kat l  1993a, b, Batoz and
Lardeur 1989). Belytschko suggests a method to remove zero-energy (kinematics) mode by
perturbing the stiffness by stabilization matrix (Belytschko et al. 1981). The theory’s requirement
for free parameters may be a disadvantage. Recently Eratl  and Aköz 1997 have obtained an
element for thick plates using Gâteaux approach, which eliminates shear locking.

In this study, assuming Reissner plate theory and Pasternak foundation, a new element is
developed. Having the field equations, one needs a method to reach a functional. Hu-Washizu and
Hellinger-Reissner principles or weak formulation are very popular approaches, which provide
functionals that are essential for finite element formulation Reddy (1993). Aköz and his co-workers
(Aköz 1985, Aköz et al. 1991 used Gâteaux differential approach first time 1991, Omurtag and
Aköz 1992, Aköz and Uzcan (Eratl ) 1992, Omurtag and Aköz 1993, Omurtag and Aköz 1994,
Eratl  (Uzcan) 1995, Omurtag et al. 1997, Özçelikörs and Aköz 1993, Aköz and Kadioglu 1996,
Aköz and Eratl  2000, Aköz and Özütok 2000, Eratl  2000) to obtain a functional. Although,
Hellinger-Reissner and Gâteaux method can produce the same functional, it is believed that Gâteaux
approach has some advantages over Hellinger-Reissner or Hu-Washizu approaches, which has the
following nice properties:

1. All field equations are enforced to the functional by systematic way.
2. Boundary conditions can be constructed.
3. Potential test provides accuracy checking of field equations.

2. The field equations for Reissner plates on elastic foundations

2.1 Reissner plate

Reissner plate theory includes the transverse shear effects and field equations are given in Eq. (1).
For more information one can refer literature (Panc 1975). The positive directions of internal forces
are illustrated in Fig. 1 and the geometric parameters such as w, Ωx, ∂ w/∂ x are shown in Fig. 2.
The governing equations of Reissner plate are
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(1b)

(1c)

2.2 Pasternak foundation

In the Pasternak model, a shear interaction between the spring elements exists. The reaction-
deflection relation of Pasternak model is given as;

(2)

where k is spring coefficient and Gf is shear coefficient of foundation (see Fig. 3 and Pasternak
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Fig. 1 Internal forces

Fig. 2 Definition of deformation state
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1954 as well). If Gf is neglected, Pasternak model reduces to Winkler model. If we substitute
expression (3)

(3)

for lateral load q in Eq. (1), we obtain

(4a)

(4b)

. (4c)

q−kw+Gf w,xx w,yy+( )

∂Mx

∂x
----------

∂Mxy

∂y
------------ Qx–+ 0=

∂Mxy

∂x
------------

∂My

∂y
---------- Qy–+ 0=

∂Qx

∂x
---------+

∂Qy

∂y
---------+q−kw+Gf w,xx w,yy+( ) = 0

∂Ωx

∂x
--------- 12

Eh3
---------– Mx µMy–( ) = 0

∂Ωy

∂y
--------- 12

Eh3
---------– My µMx–( ) = 0

∂Ωx

∂y
--------- + 

∂Ωy

∂x
---------− 12

Gh3
---------Mxy = 0

Ωx + 
∂w
∂x
-------− 6

5Gh
-----------Qx = 0

Ωy + 
∂w
∂y
-------− 6

5Gh
-----------Qy = 0
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as the governing equations of a Reissner plate on a Pasternak foundation.
In obtaining Eq. (4b), the effect of σz on the bending moments were ignored because of the terms

relating this effect is small comparing with remaining terms. Otherwise these field equations would
not pass the Gâteaux potential test as we will see later. The necessity of the neglection of these
terms can be detected only by Gâteaux differential approach and it is an evidence of the power of
the method as stated in the introduction. If we had used Hellinger-Reissner, Hu-Washizu or weak
formulation theories we could have not recognized incompatibility of this term.

3. The functional

Having field equations one needs a method to obtain the functional. Although Hu-Washizu or
Hellinger-Reissner principles are popular methods to establish a functional, we believe that Gâteaux
differential method is more suitable for this aim. Since this method was extensively used and
explained in other studies, for the sake of simplicity, the basic steps and definitions will be
summarizes briefly.

First, the field Eq. (4) is put in operator form Q, which is given in Appendix II. Gâteaux
derivative of an operator is defined as

(5)

where τ is a scalar. To obtain the boundary conditions, all boundary conditions are written in
symbolic form as follows:

Dynamic boundary conditions;

,

(6)

and geometric boundary conditions;

,

(7)

where M, Q, Ω, w are the moment, force, rotation and deflection vectors, respectively. Quantities
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Fig. 4 Rectangular element (REC32)
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with hat are known values on the boundaries. Explicit form of the boundary conditions will be
obtained after the following variational manipulations. A necessary and sufficient condition that Q
be potential is (Oden and Reddy 1976)

(8)

where parantheses indicate the inner products. If the operator Q is potential, then the functional
corresponding the field equations is given by (Oden and Reddy 1976)

(9)

where s is a scalar quantity. Explicit form of the functional corresponding to the field equations (Eq.
4) is

(10)

The parenthesis with σ and ε subscripts indicate the dynamic and the geometric boundary
conditions respectively and explicit expressions of boundary conditions are:

(11a)

(11b)

A very interesting point is that the properties of foundation effect the boundary condition (Eq.
11a). As far as the author’s knowledge, this boundary condition is not present in the literature.

For the dynamic analysis the functional given by Eq. (10) is valid only by letting [q, w] = 1/2ρω2[w,w]
as far as the harmonic solutions are required.

3. Mixed finite element matrix

If a four-nodded rectangular element (Fig. 4) with a parent shape function 
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is used, the element matrix can be obtained explicitly as;
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(13)

where,

and

The explicit form of the submatrices [K1]r, [K2]r, [K3]r, [K4]r, [K5]r and some necessary
mathematical manipulations are given in the Appendix II.

From the boundary conditions given in the functional, the boundary conditions matrix is obtained
as;

(14)

where,

[S] = −Gf [s3]r−Gf [s4]r.

Details and explicit forms of submatrices [si]r, i = 1,Î, 4 are given in Appendix II. Finally the
mixed finite element for Reissner plate resting on Pasternak foundation becomes,
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4. Dynamic analysis

The problem of determining the natural vibration frequencies of a structural system reduces to the
solution of a standard eigenvalue problem,

[K]−ω2[M] = 0, (16)

where [K] is the system matrix, [M] is the mass matrix for the entire domain and ω is the natural
angular frequency of the system. The explicit form of Eq. (16) is

(17)

where {F} = { M Q Ω} T, {w} are moments, shear forces, rotations and displacement vectors,
respectively. Elimination of {F} from Eq. (17) gives

(18)

where

(19)

and [K*] is the condensed system matrix of the problem. If there is no foundation, then [K22] = 0.
The element mass matrix is based upon consistent mass formulation as,

[m] = ρ h [K1]r. (20)

where h is the plate thickness, ρ is the mass density and [K1] r is given in Appendix II.

5. Numerical examples

Free vibration of plates has been investigated intensively in literature and an excellent review is
given for free vibration of plates in (Leissa 1969). In order to check the performance of the new
method, various problems are solved and results are compared with some existing studies in the
literature (Omurtag et al. 1997, Leissa 1969 & 1973, Bardell 1991, Yuan and Miller 1988, Yuan and
Miller 1992). Example problems will display properties of the new element for plate vibration.

The following dimensions and numerical properties of plate are considered for all problems:

L=2a=2b=10m, h=0.15m, E=25GPa, n=0.15, ρ =24 kN/m3.

5.1 Convergence test

Convergence refers to the accuracy of solution as the number of elements in the mesh is
increased. The convergence test is performed for simply supported plate of which dimensions and
material properties are cited above. The calculation is accomplished for the different mesh Ωh,
beginning with 2×2 elements in the complete plate and the element numbers increased as the
sequence 3×3, 4×4, ..., n×n. Fig. 5 shows plots of first three frequency parameters versus number of
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elements.
The error in the energy norm satisfy the inequality (Reddy 1993)

e ≤ c hp (21)

where c is a constant, h is the characteristic length of element. p is called the rate of convergence. p
depends on the derivative of w in the functional and the degree of polynominals k used to
approximate w. Therefore, the error can be reduced by reducing the size of elements. This reduction
is called h-convergence. In order to provide the means to quantitatively estimate the error in
approximate solution, the numerical results is plotted in the axes log(h) versus log(e) in Fig. 6.
Inspection of Fig. 6 shows that data is well interpolated since we have straight lines on log-log plot.
This numerical experiments verify the error Eq. (21) and also the rate of convergence p for the first
three frequency parameters (ϖ = ωL2 ) as p1 = 4, p2 = 4.27, p3 = 4.28. To establish Fig. 6, we
utilized the knowledge of the exact solution value of ϖ. An error estimation procedure can be
obtained without knowing the exact solution on mesh refinements. N1, N2, e1, e2 are the numerical
solutions and errors, respectively corresponding h1, h2 mesh size. They satisfy e1+N1=e2+N2

equality. If h1= h2/2, then quantitative error estimate is (Baker and Pepper 1991)

(22)

This error estimate is valid on Ω provided the numerical solutions N1 and N2 lie on the convergence
line where k is the order of polynomial.

ρ/D

e1 = 
N1 N2–

22k 1–
------------------

Fig. 5 Frequency parameters of S-S-S-S plate for different meshes
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5.2 The validity limits of Kirchhoff plate theory and shear locking

The plate thickness effects the behavior of the plate. If the plate thickness increases, the transverse
shear gains importance on the plate behavior. For example, it is well known that if transverse shear
is neglected, results overestimate the plate frequency in the literature (Yuan and Miller 1988, Yuan
and Miller 1992). It is accepted that whenever a plate is relatively thick. i.e., the ratio of h/2a is
greater than 0.05 and shear deformation theories must be considered such as Reissner, Mindlin
theories. Otherwise shear deformations are negligible. The comparison of first frequency variations
for plates with different supporting conditions S-S-S-S, C-C-C-C, S-C-S-C and for different plate
thicknesses in Fig. 7 helps to create a criterion for the validity limits of Kirchhoff plate theory.
Dependency of vibration frequencies on plate thicknesses is presented in Table 1 for different
supporting conditions.

One of the important problems encountered in finite element method is shear locking phenomena
for which as plate thickness decreases plate behaves more rigidly than actually it does. Bhashyam
and Gallagher (1984) reported that they can not obtain reliable result below to h/2a=0.005. Using
REC32, frequency parameter has been obtained as ϖ11=19.734 for simply supported rectangular
plate having thickness-to-length ratio h/2a=10−3

ý 10−6. Although this thickness is meaningless in
the physical viewpoint, in order to demonstrate the performance of REC32, we determined the
frequency parameters for such a thin plate.

Fig. 6 Error analysis for frequency parameters of S-S-S-S plate
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5.3 All edges supported

The three cases having S-S-S-S, C-C-C-C and S-C-S-C edges are considered in the following
dimensions and material properties of the plate for each case; h=0.15 m, E=25 GPa, ν=0.15,

Fig. 7 Validity limits of Kirchhoff plate theory for different edge conditions

Table 1 Dependency of vibration frequencies on plate thickness for different edge conditions

h/2a
ϖ11

S-S-S-S
ϖ11

C-C-C-C
ϖ11

S-C-S-C

0.0001 19.734 36.208 30.257
0.0005 19.734 36.046 28.883
0.0010 19.734 36.031 28.932
0.0050 19.730 35.996 28.941
0.0100 19.720 35.972 28.924
0.0150 19.703 35.932 28.893
0.0200 19.679 35.875 28.851
0.0300 19.612 35.715 28.733
0.0400 19.522 35.496 28.571
0.0500 19.411 35.221 28.368
0.0600 19.282 34.895 28.128
0.0700 19.139 34.524 27.854
0.0800 18.983 34.111 27.551
0.0900 18.819 33.664 27.224
0.1000 18.647 33.188 26.875
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L=2a=2b=10 m, ρ=24 kN/m3. The first four frequency parameters (ϖ = ω L2 ) for each of
these plates are presented in Tables 2-4 respectively. Inspection of tables show that frequency
parameters obtained by REC32 is a little smaller than given compared studies (Omurtag et al. 1997,
Leissa 1969). This difference in the results is expected, because frequency parameters are obtained
employing two different plate theories. The contour lines and mode shapes of ω11, ω12, ω21, ω22 are
shown in Figs. 8-10.

5.4 Completely free plate

Validity of formulation in this study can be checked for completely free plates (F-F-F-F). The
non-zero three frequency parameters (ϖ = ω L2 ) for F-F-F-F are presented in Table 5. The
contour lines and mode shapes of non-zero frequency parameters are shown in Fig. 11. Results are
obtained using 9×9 elements.

5.5 Natural frequency of plate on elastic foundation

In order to demonstrate the efficiency of REC32 elements, numerical results are presented for

ρ/D

ρ/D

Table 2 Frequency parameters ϖ for a S-S-S-S plate (b/a = 1)

Frequency
Parameters Leissa 1969 Omurtag et al.

1997 REC32

ϖ 11 19.738 19.911 19.703

ϖ 12 49.349 50.112 49.069

ϖ 21 49.349 50.112 49.069

ϖ 22 78.958 80.090 78.354

Table 3 Frequency parameters ϖ for a C-C-C-C plate (b/a = 1)

Frequency
Parameters

Leissa
1969

Omurtag et al.
1997 REC32

ϖ 11 35.999 36.018 35.931

ϖ 12 73.405 74.497 73.823

ϖ 21 73.405 74.497 73.823

ϖ 22 108.237 108.949 110.14W

Table 4 Frequency parameters ϖ for a S-C-S-C plate (b/a = 1)

Frequency
Parameters

Leissa
1969

Bardell
1991 REC32

ϖ 11 28.946 28.950 28.893

ϖ 12 54.743 54.740 54.531

ϖ 21 69.320 69.330 69.658

ϖ 22 94.584 94.590 95.222
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series of problems involving free vibration of rectangular plates on Pasternak foundation for
different foundation coefficients (k, Gf) and various support conditions.

First, calculations were performed for Winkler foundation that is k = 100000 kN/m3, Gf = 0 and a
uniform plate, dimensions L=2a=2b=10 m, h=0.15 m. We assume E=25 GPa, ν=0.15 and ρ=24
kN/m3. We determined the natural frequency parameters ϖ11, ϖ12, ϖ22 associated with transverse
deflection w for simply supported (S-S-S-S) and clamped supported (C-C-C-C). All frequency

Fig. 8 The contour line and mode shape of ω11, ω12, ω21, ω22 for S-S-S-S
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parameters are obtained using the 9×9 elements mesh for complete plate. 
Second, calculations were performed for Pasternak foundation that is k=100000 kN/m3, Gf =120

MPa. All the other parameters are the same with Winkler foundation. Results are tabulated in Tables
6-7.

Third, the effect of variation of k on the frequency is inspected. This problem is solved only for
the simply supported plate. In this problem Gf is kept constant (Gf = 120 GPa). Results are shown in
Fig. 12.

The last, the effect of variation of shear modulus Gf on the foundation is inspected. This problem
is also solved only for the simply supported plate. In this problem k is kept constant as k=100000
kN/m3. Results are shown in Fig. 13.

Inspection of Figs. show that:

· The variation of k on the frequency parameters has similar effects for the Winkler and Pasternak
foundation.

· Gf effects the frequecy parameters more than k does.

Fig. 9 The contour line and mode shape of ω11, ω12, ω22 for C-C-C-C
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6. Conclusions

In this study, REC32 is developed to analyze free vibration of Reissner-Mindlin plates on
Pasternak foundation. Eight independent variables such as displacement, rotations, shear forces,
bending and twisting moments are free parameters and linear interpolation functions satisfy the
continuity and completeness requirements. The explicit expression for rectangular plate (REC32) is

Fig. 10 The contour line and mode shape of ω11, ω12, ω22 for S-C-S-C

Table 5 Frequency parameters ϖ for a F-F-F-F plate (b/a = 1)

Non-Zero Frequency
Parameters

Leissa
1969

Bardell
1991 REC32

1 13.473 13.468 12.861
2 19.596 19.596 19.549
3 24.270 24.270 24.157
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Fig. 11 The contour lines and mode shapes of free plate

Table 6 Frequency parameters ϖ of S-S-S-S plate on foundation (b/a = 1)

Frequency
Parasmeters

s

Omurtag et al.
1997

Winkler

REC32

Winkler

Omurtag et al.
1997

Pasternak

REC32

Pasternak

ϖ 11 42.282 42.169 71.365 71.512

ϖ 12 62.417 61.624 110.963 111.340

ϖ 22 88.144 86.768 145.863 146.260
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obtained. The performance of the elements has also been investigated through the representative
problems. From the numerical assessments of the element, the following remarks can be made:
· For the Reissner plate on Pasternak foundation, a new functional is obtained based on Gâteaux
differential and new dynamic boundary conditions are established. 

· In this functional, only the first order derivatives present therefore, bilinear shape functions are

Table 7 Frequency parameters ϖ of C-C-C-C plate on foundation (b/a = 1)

Frequency
Parasmeters

s

Omurtag et al.
1997

Winkler

REC32

Winkler

Omurtag et al.
1997

Pasternak

REC32

Pasternak

ϖ 11 51.902 51.779 80.314 85.414

ϖ 12 83.222 82.701 127.294 137.520

ϖ 22 115.214 116.270 167.116 181.780

Fig. 12 The effect of variation of k on the frequency parameters for Winkler and Pasternak foundation (Gf =
120 MPa)
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used and a mixed finite element REC32 are obtained in an explicit form.
· REC32 avoids the shear locking and converges to the Kirchhoff solution as the plate thickness
decreases (REC32 is tested for as far as h/2a=10-6).

· REC32 provides accurate and stable solution.
· To assess the performance of REC32, S-S-S-S, C-C-C-C, S-C-S-C and F-F-F-F square plates are
solved. Frequencies of free vibration of plates are compared by theoretical results and excellent
agreement is achieved.

· The validity limits of Kirchhoff plate theory is tested and established that this limit is not
dependent only the ratio of h/2a but also the supporting conditions.

· The free vibration analysis of thick plates resting on Pasternak foundation is performed and
reasonable results are obtained. Winkler foundation is obtained as a special case of Pasternak
foundation.

· The variation of k on the frequency parameters has similar effects for the Winkler and Pasternak
foundation.

· Gf effects the frequecy parameters more than k does.
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Appendix I

Notation

Mx, My, Mxy : internal moment components
Qx, Qy : shear forces
q : distributed load
k, Gf : spring and shear coefficient of foundation, respectively
w : deflection of plate 
Ωx, Ωy : cross-sectional rotation of plates about x and y axes, respectively
2a,2b : dimensions of the rectangular element
h : thickness of plate
E, ν, G, D : modulus of elasticity, Poisson’s ratio, shear modulus of elasticity and flexural rigidity of the

plate, respectively
I(y) : functional 
[ , ] : inner product 
[ , ]ε : geometric boundary condition
[ , ]σ : dynamic boundary condition
ψi : shape functions (i = 1, ..., 4 for REC32)
ξ, η : nondimensional coordinates of a master element
nx, ny : directional cosines
[k]r : rectangular finite element matrix
[Ki]r, [si]r : submatrices of the rectangular finite element (i = 1, ..., 4)
[k]BCr : boundary condition matrix of rectangular finite element
L : coefficient matrix
f : load vector
y : unknown vectors
[K], [M], [K*] : system matrix, mass matrix and condensed matrix vectors, respectively
[m] : mass matrix of element
ρ, ρ : mass density per unit volume and per unit area, respectively
ω, ϖ : natural angular frequency and frequency parameter, respectively.
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Appendix II

Operator form of the field equations Q = Ly − f :

(A.1)

where

(A.2)

Submatrices for quadrilateral element;

(A.3)

(A.4)

(A.5)

(A.6)

P11 0 0 0 0 0 P17 P18 0 0 0 0
0 0 0 P24 0 P26 1 0 0 0 0 0
0 0 0 0 P35 P36 0 1 0 0 0 0
0 P42 0 P44 P45 0 0 0 0 0 0 0
0 0 P53 P54 P55 0 0 0 0 0 0 0
0 P62 P63 0 0 P66 0 0 0 0 0 0

P71 1 0 0 0 0 P77 0 0 0 0 0
P81 0 1 0 0 0 0 P88 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1– 0 0
0 0 0 0 0 0 0 0 1– 0 0 0

w
Ωx

Ωy

Mx

My

Mxy

Qx

Qy

w
Ω
M
Q

 = 

q
0
0
0
0
0
0
0
Q̂
M̂
Ω̂–
ŵ–

P11 = −k+Gf
∂2

∂x2
-------- + Gf

∂2

∂y2
--------,  P17 = − ∂

∂x
-----, P18 = − ∂

∂y
-----, P24 = − ∂

∂x
-----, P26 = − ∂

∂y
-----

P35 = − ∂
∂y
-----, P36 = − ∂

∂x
-----, P42 = − ∂

∂x
-----, P44 = − 12

Eh3
---------, P45 = − 12

Eh3
---------µ

P53 = ∂
∂y
-----, P54 = 12

Eh3
---------µ,  P55 = − 12

Eh3
---------

P62 = ∂
∂y
-----, P63 = ∂

∂x
-----,  P66 = − 12

Gh3
---------

P71 = ∂
∂x
-----, P77 = − 6

5Gh
-----------, P81 = ∂

∂y
-----, P88 = − 6

5Gh
-----------

K1[ ]r  =  
A

 

∫ ψiψ jdA = 

4ab/9 4ab/18 4ab/18 4ab/36
4ab/18 4ab/9 4ab/36 4ab/18
4ab/18 4ab/36 4ab/9 4ab/18
4ab/36 4ab/18 4ab/18 4ab/9

K2[ ]r  =  
A

 

∫ ∂ψ i

∂x
--------ψjdA = 

b– /3 b– /6 b– /3 b– /6
b– /6 b– /3 b– /6 b– /3
b/3 b/6 b/3 b/6
b/6 b/3 b/6 b/3

K3[ ]r  =  
A

 

∫ ∂ψ i

∂y
--------ψjdA = 

a– /3 a– /3 a– /6 a– /6
a/3 a/3 a/6 a/6
a– /6 a– /6 a– /3 a– /3
a/6 a/6 a/3 a/3

K4[ ]r  =  
A

 

∫ ∂ψ i

∂x
--------

∂ψ j

∂x
--------dA = 

b/3a b/6a b/3a– b/6a–
b/6a b/3a b/6a– b/3a–
b/3a– b/6a– b/3a b/6a
b/6a– b/3a– b/6a b/3a



298 Nihal Eratli and A. Yalçin Aköz

(A.7)

 

(A.8)

 

(A.9)

 

(A.10)

 

(A.11)

K5[ ]r  =  
A

 

∫ ∂ψ i

∂y
--------

∂ψ j

∂y
--------dA = 

a/3b a/3b– a/6b a/6b–
a/3b– a/3b a/6b– a/6b
a/6b a/6b– a/3b a/3b–
a/6b– a/6b a/3b– a/3b

s1[ ]r  = 

2b/3– b/3– 0 0
b/3– 2b/3– 0 0
0 0 2b/3 b/3
0 0 b/3 2b/3

s2[ ]r  = 

2a/3– 0 a/3– 0
0 2a/3 0 a/3
a/3– 0 2a/3– 0
0 a/3 0 2a/3

s3[ ]r  = 

b/3a b/6a b/3a– b/6a–
b/6a b/3a b/6a– b/3a–
b/3a– b/6a– b/3a b/6a
b/6a– b/3a– b/6a b/3a

s4[ ]r  = 

a/3b a/3b– a/6b a/6b–
a/3b– a/3b a/6b– a/6b
a/6b a/6b– a/3b a/3b–
a/6b– a/6b a/3b– a/3b




