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Free vibration analysis of Reissner plates
by mixed finite element

Nihal Eratht and A. Yalgin Akoz*

Faculty of Civil Engineering, Istanbul Technical University, 80626 Maslak-Istanbul, Turkey

Abstract. In this study, free vibration analysis of Reissner plates on Pasternak foundation is carried out
by mixed finite element method based on the Géteaux differential. New boundary conditions are
established for plates on Pasternak foundation. This method is developed and applied to numerous
problems by Ak6éz and his co-workers. In dynamic analysis, the problem reduces to the solution of a
standard eigenvalue problem and the mixed element is based upon a consistent mass matrix formulation.
The element has four nodes and bending and torsional moments, transverse shear forces, rotations and
displacements are the basic unknowns. The element performance is assessed by comparison with
numerical examples known from literature. Validity limits of Kirchhoff plate theory is tested by dynamic
analysis. Shear locking effects are tested as fav2as= 10° and it is observed that REC32 is free from

shear locking.
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1. Introduction

The Reissner-Mindlin theory provides more reliable representation of structural behavior (Reissner
1946, Mindlin 1951). Those theories that include the effects of transverse shear deformations
eliminate the inaccuracies of the classical Kirchhoff-Love theory. A considerable number of
publications are concerned with the problem of the free vibration of plates. Theoretical studies are
based on various methods, such as, the finite difference method, the Rayleigh-Ritz method, the
finite element method, the Lagrangian multiplier method, the finite strip method, the superposition
method and others.

Because of its versatility, finite element method founds a great application in engineering field.
The great majority of results for flexural vibration of plates are based on Kirchhoff plates theory
that ignore the transverse shear deformation. Its requireme@t obntinuity causes substantial
difficulties and also it introduces errors since the effects of transverse shear are ignored and inertia
terms are also neglected. This theory overestimates the plate frequencies. For simply supported
rectangular plates comparison studies show that classical theory solutions are significantly in error
for all modes of the plates. The errors increase with the increasing thickness (Stiraak970,

Lee and Reissmann 1969, Hugltsal. 1977). An improved thick plate theory, which includes the
effects of transverse shear and rotary inertia, were presented by numerous authors, for example,
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Reissner (1946) and Mindlin (1951). Hughetsal (1977) based on Mindlin theory, which require

C° continuity has developed a very efficient form of the bilinear four-node element (S1). Hinton and
Bicanic (1979) have performed free vibration analysis with this elen@ntontinuity causes a
problem called shear locking when the plate thickness approaches zero. Various modifications of
formulation as well as numerical tricks have been introduced in order to overcome this problem
such as reduced/selective integration (Cook 1972, Zienkieatical. 1971, Pughet al. 1978,
Paswey and Clough 1971) and Discrete Kirchhoff-Mindlin elementi (Kat | 1993a, b, Batoz and
Lardeur 1989). Belytschko suggests a method to remove zero-energy (kinematics) mode by
perturbing the stiffness by stabilization matrix (Belytsclgtoal. 1981). The theory’s requirement

for free parameters may be a disadvantage. Recentlyi Eratl and Ak6z 1997 have obtained an
element for thick plates using Gateaux approach, which eliminates shear locking.

In this study, assuming Reissner plate theory and Pasternak foundation, a new element is
developed. Having the field equations, one needs a method to reach a functional. Hu-Washizu and
Hellinger-Reissner principles or weak formulation are very popular approaches, which provide
functionals that are essential for finite element formulation Reddy (1993). Akdz and his co-workers
(Akdz 1985, Akozet al 1991 used Gateaux differential approach first tit881, Omurtag and
Akdz 1992, Akdz and Uzcan (Eratl ) 1992, Omurtag and Akoz 1993, Omurtag and Akdz 1994,
Erath (Uzcan) 1995, Omurtagt al. 1997, Ozcelikors and Akdz 1993, Akdz and Kadioglu 1996,
Akoz and Eratl 2000, Akdz and Oziitok 2000, Hratl 2000) to obtain a functional. Although,
Hellinger-Reissner and Gateaux method can produce the same functional, it is believed that Gateaux
approach has some advantages over Hellinger-Reissner or Hu-Washizu approaches, which has the
following nice properties:

1. All field equations are enforced to the functional by systematic way.

2. Boundary conditions can be constructed.

3. Potential test provides accuracy checking of field equations.

2. The field equations for Reissner plates on elastic foundations

2.1 Reissner plate

Reissner plate theory includes the transverse shear effects and field equations are given in Eq. (1).
For more information one can refer literature (Panc 1975). The positive directions of internal forces

are illustrated in Fig. 1 and the geometric parameters sueh @3 Jdw/dx are shown in Fig. 2.
The governing equations of Reissner plate are
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2.2 Pasternak foundation

In the Pasternak model, a shear interaction between the spring elements exists. The reaction-
deflection relation of Pasternak model is given as;

p= kW—Gf(W,xx + W,yy) (2)

wherek is spring coefficient and; is shear coefficient of foundation (see Fig. 3 and Pasternak
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Fig. 3 Interaction of plate-elastic foundation

1954 as well). IfGs is neglected, Pasternak model reduces to Winkler model. If we substitute
expression (3)

q_kW+Gf(W,xx + W,yy) (3)
for lateral loadq in Eqg. (1), we obtain
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as the governing equations of a Reissner plate on a Pasternak foundation.

In obtaining Eq. (4b), the effect of, on thebending moments were ignored because of the terms
relating this effect is small comparing with remaining terms. Otherwise these field equations would
not pass the Gateaux potential test as we will see later. The necessity of the neglection of these
terms can be detected only by Gateaux differential approach and it is an evidence of the power of
the method as stated in the introduction. If we had used Hellinger-Reissner, Hu-Washizu or weak
formulation theories we could have not recognized incompatibility of this term.

3. The functional

Having field equations one needs a method to obtain the functional. Although Hu-Washizu or
Hellinger-Reissner principles are popular methods to establish a functional, we believe that Gateaux
differential method is more suitable for this aim. Since this method was extensively used and
explained in other studies, for the sake of simplicity, the basic steps and definitions will be
summarizes briefly.

First, the field Eq. (4) is put in operator for@, which is given in Appendix Il. Gateaux
derivative of an operator is defined as

dQ(u, 1) = @1“0,,:—“3) , (5)

=0
where 7 is a scalar. To obtain the boundary conditions, all boundary conditions are written in
symbolic form as follows:
Dynamic boundary conditions;

>

M-M =0,

Q-Q=0 (6)
and geometric boundary conditions;

-w-w =0,

0-Q=0 7)

whereM, Q, Q, w are the moment, force, rotation and deflection vectors, respectively. Quantities

A
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Fig. 4 Rectangular element (REC32)
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with hat are known values on the boundaries. Explicit form of the boundary conditions will be
obtained after the following variational manipulations. A necessary and sufficient conditid@ that
be potential is (Oden and Reddy 1976)

[MQ(y, y).y 0= WQ(yy ).y (8)

where parantheses indicate the inner products. If the opépaisrpotential, then the functional
corresponding the field equations is given by (Oden and Reddy 1976)

I(y) = [ [Q(sy).ylds, 9)
0

wheres is a scalar quantity. Explicit form of the functional corresponding to the field equations (Eq.
4)is

1(y) = [Qu (@ + W,)] +[Q(Qy +W )] + M2, ] +[M,,Q, ] +[M,,Q, ]

+[M

xy?

Qy,x] _E_Gh:.;{ [Mvax] +[ Mvay] _ZIJ[ Mx’My] +2( 1+ M)[Mxy!Mxy]}

_%ﬁ{ [QuQ +[Q,,Q]} +[ag,w] + %k[w,w] + %Gf[(w,x +w,),w]

~[(w=%),Q1~[(Q - Q),M]~[w,Q]o~[M,Q].. (10)

The parenthesis witto and ¢ subscripts indicate the dynamic and the geometric boundary
conditions respectively and explicit expressions of boundary conditions are:

[Q,W] = [((Qx - GfW,x) ny + (Qy - GfW,y)ny)fw]f (lla)
[M,Q] = [(Myn,+M,,n,),Q,] + [(M,,n,+M,n,),Q,]. (11b)

xy' 'x
A very interesting point is that the properties of foundation effect the boundary condition (Eqg.
11a). As far as the author’s knowledge, this boundary condition is not present in the literature.
For the dynamic analysis the functional given by Eq. (10) is valid only by lefting ¥ 1/2 par[w,w]
as far as the harmonic solutions are required.
3. Mixed finite element matrix
If a four-nodded rectangular element (Fig. 4) with a parent shape function

W =31+ EE)(1+nn), &=+l no=+l =1, 4 (12)

is used, the element matrix can be obtained explicitly as;
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M, M, M,y Q, Q, w9 Q
o l l l l [ l
-nlKil, ylKil, 0 0 0 0 [Kz]rT 0
—nlKyd, 0 0 0 0 0 [Ky/
~¥IKy], O 0 0 [Ksl/ [Ka/
[K], = —vlKid, 0 [Ky [KyJ], O
—¥s[ Ky, [Ks]:— 0 [K4],
[K] O 0
0 0
i 0 | (13)
where,
Vi = 12N, v, = 2UIER’, v, = 24( 1+ p)/ER®, y, = 12( 1+ p)/5Eh, y = 6u/5Eh,
and

[K] = K[Ky], + Gi[Ky], + GKe],.

The explicit form of the submatriceKy|;, [K2],, [Ks];, [K4lr, [Ks]; and some necessary

mathematical manipulations are given in the Appendix II.
From the boundary conditions given in the functional, the boundary conditions matrix is obtained

as;
MMM, Q. Q w Q Q
A

0 0 00 0 07Js] O
0000 0 0 [s]
0 0 0 0 [s], [s,
[Klsc: = 0 0fsl 0 0
0 [s], O O
Symmetrical [S], O 0
0 o
0 ] (14)

where,
[9 = -Gt s3] =Gt [s4]-

Details and explicit forms of submatrices],[ i =1,-, 4 are given in Appendix Il. Finally the
mixed finite element for Reissner plate resting on Pasternak foundation becomes,

[k] = [k]r + [k]BCr- (15)
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4. Dynamic analysis

The problem of determining the natural vibration frequencies of a structural system reduces to the
solution of a standard eigenvalue problem,

[K]-wM] =0, (16)

where K] is the system matrixM] is the mass matrix for the entire domain ands the natural
angular frequency of the system. The explicit form of Eq. (16) is

K K F 0
[ 11]T[ 12] _wz{o O} }E:%{ }E (17)
(K] [Ky] 0 [M] wig H®0g
where F}={M Q Q}", {w} are moments, shear forces, rotations and displacement vectors,
respectively. Elimination ofR} from Eq. (17) gives

([K'1-a[M]){w} ={ 0}, (18)
where

[K'] = [Kaal ~[Kyol Tl ' [Kyal, (19)

and K] is the condensed system matrix of the problem. If there is no foundation Kihpn (.
The element mass matrix is based upon consistent mass formulation as,

(M= p h [Ky]:. (20)
whereh is the plate thicknesp, is the mass density anldy], is given in Appendix II.

5. Numerical examples

Free vibration of plates has been investigated intensively in literature and an excellent review is
given for free vibration of plates in (Leissa 1969). In order to check the performance of the new
method, various problems are solved and results are compared with some existing studies in the
literature (Omurtaget al. 1997, Leissa 1969 & 1973, Bardell 1991, Yuan and Miller 1988, Yuan and
Miller 1992). Example problems will display properties of the new element for plate vibration.

The following dimensions and numerical properties of plate are considered for all problems:

L=2a=2b=10m, h=0.15m,E=25GPa,n=0.15, p =24 kN/n?.
5.1 Convergence test

Convergence refers to the accuracy of solution as the number of elements in the mesh is
increased. The convergence test is performed for simply supported plate of which dimensions and
material properties are cited above. The calculation is accomplished for the differenQMmesh
beginning with X2 elements in the complete plate and the element numbers increased as the
sequence 8, 4x4, -, nxn. Fig. 5 shows plots of first three frequency parameters versus number of
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Fig. 5 Frequency parameters of S-S-S-S plate for different meshes

elements.
The error in the energy norm satisfy the inequality (Reddy 1993)

e<ch (1)

wherec is a constanth is the characteristic length of elemgnis called the rate of convergenge.
depends on the derivative of in the functional and the degree of polynominklsused to
approximaten. Therefore, the error can be reduced by reducing the size of elements. This reduction
is called h-convergence. In order to provide the means to quantitatively estimate the error in
approximate solution, the numerical results is plotted in the axes log(h) versus log(e) in Fig. 6.
Inspection of Fig. 6 shows that data is well interpolated since we have straight lines on log-log plot.
This numerical experiments verify the error Eq. (21) and also the rate of convepgiendbe first
three frequency parameters¥€ wL?./0/D) asp, =4, p, = 4.27, ps = 4.28. To establish Fig. 6, we
utilized the knowledge of the exact solution valueamf An error estimation procedure can be
obtained without knowing the exact solution on mesh refinemiptd,, e, e are the numerical
solutions and errors, respectively correspondmg h, mesh size. They satisfg+N;=e,+N,
equality. Ifh; = h,/2, then quantitative error estimate is (Baker and Pepper 1991)

o = = 22)

27 -1

This error estimate is valid dd provided the numerical solutiof andN, lie on the convergence
line wherek is the order of polynomial.
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Fig. 6 Error analysis for frequency parameters of S-S-S-S plate

5.2 The validity limits of Kirchhoff plate theory and shear locking

The plate thickness effects the behavior of the plate. If the plate thickness increases, the transverse
shear gains importance on the plate behavior. For example, it is well known that if transverse shear
is neglected, results overestimate the plate frequency in the literature (Yuan and Miller 1988, Yuan
and Miller 1992). It is accepted that whenever a plate is relatively thick. i.e., the rdtidadk
greater than 0.05 and shear deformation theories must be considered such as Reissner, Mindlin
theories. Otherwise shear deformations are negligible. The comparison of first frequency variations
for plates with different supporting conditions S-S-S-S, C-C-C-C, S-C-S-C and for different plate
thicknesses in Fig. 7 helps to create a criterion for the validity limits of Kirchhoff plate theory.
Dependency of vibration frequencies on plate thicknesses is presented in Table 1 for different
supporting conditions.

One of the important problems encountered in finite element method is shear locking phenomena
for which as plate thickness decreases plate behaves more rigidly than actually it does. Bhashyam
and Gallagher (1984) reported that they can not obtain reliable result belg2a+®.005. Using
REC32, frequency parameter has been obtainedy&s19.734 for simply supported rectangular
plate having thickness-to-length rati?a=10" + 10°°. Although this thickness is meaningless in
the physical viewpoint, in order to demonstrate the performance of REC32, we determined the
frequency parameters for such a thin plate.
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Fig. 7 Validity limits of Kirchhoff plate theory for different edge conditions

Table 1 Dependency of vibration frequencies on plate thickness for different edge conditions

W (] W

W2a S-S-S-S C-C-C-C S-C-S-C
0.0001 19.734 36.208 30.257
0.0005 19.734 36.046 28.883
0.001 19.734 36.031 28.932
0.005 19.730 35.996 28.941
0.01C 19.720 35.972 28.924
0.015 19.703 35.932 28.893
0.020 19.679 35.875 28.851
0.030 19.612 35.715 28.733
0.040 19.522 35.496 28.571
0.050 19.411 35.221 28.368
0.060 19.282 34.895 28.128
0.07C 19.139 34.524 27.854
0.080 18.983 34.111 27.551
0.090 18.819 33.664 27.224
0.100 18.647 33.188 26.875

5.3 All edges supported

The three cases having S-S-S-S, C-C-C-C and S-Cefigeés are considered in the following
dimensions and material properties of the plate for each ba€el5 m, E=25 GPa,v=0.15,
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L=2a=2b=10 m, p=24 kN/n?. The first four frequency parameter®$ wL?./0/D) for each of

these plates are presented in Tables 2-4 respectively. Inspection of tables show that frequency
parameters obtained by REC32 is a little smaller than given compared studies (@tatta§97,

Leissa 1969). This difference in the results is expected, because frequency parameters are obtained
employing two different plate theories. The contour lines and mode shapgs ak,, w;;, w;, are

shown in Figs. 8-10.

5.4 Completely free plate

Validity of formulation in this study can be checked for completely free plates (F-F-F-F). The
non-zero three frequency parametems=(w L?./p/D) for F-F-F-F are presented in Table 5. The
contour lines and mode shapes of non-zero frequency parametessown in Fig. 11. Results are
obtained using %0 elements.

5.5 Natural frequency of plate on elastic foundation

In order to demonstrate the efficiency of REC32 elements, numerical results are presented for

Table 2 Frequency parameteosor a S-S-S-S platdfa= 1)

Frequency Omurtaget al.

Parameters Leissa 1969 1997 REC32
W1 19.738 19.911 19.703
W 1o 49.349 50.112 49.069
W 21 49.349 50.112 49.069
W 2, 78.958 80.090 78.354
Table 3 Frequency parametersfor a C-C-C-C platelfa=1)
Frequency Leissa Omurtaget al.
Parameters 1969 1997 REC32
w11 35.999 36.018 35.931
W 12 73.405 74.497 73.823
W 2 73.405 74.497 73.823
W 2 108.237 108.949 110.14
Table 4 Frequency parameteodor a S-C-S-C plateb(a= 1)
Frequency Leissa Bardell
Parameters 1969 1991 REC32
w11 28.946 28.950 28.893
W12 54.743 54.740 54.531
W 2 69.320 69.330 69.658

w2 94.584 94.590 95.222
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series of problems involving free vibration of rectangular plates on Pasternak foundation for
different foundation coefficientk,(Gy) and various support conditions.

First, calculations were performed for Winkler foundation th&t=s100000 kN/m, G;= 0 and a
uniform plate, dimensionk=2a=2b=10 m, h=0.15 m. We assumgE=25 GPa,v=0.15 and p=24
kN/m®. We determined the natural frequency paramei@is wi,, W, associated with transverse
deflection w for simply supported (S-S-S-S) and clamped supported (C-C-C-C). All frequency
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parameters are obtained using tk® @lements mesh for complete plate.

Second, calculations were performed for Pasternak foundation tkal@®9000 kN/m, G;=120
MPa All the other parameters are the same with Winkler foundation. Results are tabulated in Tables
6-7.

Third, the effect of variation df on the frequency is inspected. This problem is solved only for
the simply supported plate. In this probl&@nis kept constant@; = 120 GPa). Results are shown in
Fig. 12.

The last, the effect of variation of shear moduB4®on the foundation is inspected. This problem
is also solved only for the simply supported plate. In this proldesnkept constant as=100000
kN/m?. Results are shown in Fig. 13.

Inspection of Figs. show that:

- The variation ok on the frequency parameters has similar effects for the Winkler and Pasternak
foundation.

- G; effects the frequecy parameters more thaoes.
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Table 5 Frequency parametevsor a F-F-F-F platelfa=1)

Non-Zero Frequency Leissa Bardell
Parameters 1969 1991

1 13.473 13.468 12.861

2 19.596 19.596 19.549

3 24.270 24.270 24.157

REC32

6. Conclusions

In this study, REC32 is developed to analyze free vibration of Reissner-Mindlin plates on
Pasternak foundation. Eight independent variables such as displacement, rotations, shear forces,
bending and twisting moments are free parameters and linear interpolation functions satisfy the
continuity and completeness requirements. The explicit expression for rectangular plate (REC32) is
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Fig. 11 The contour lines and mode shapes of free plate

Table 6 Frequency parametepof S-S-S-S plate on foundatiob/d = 1)

Frequency
Parasmeters

S

Omurtaget al. REC32 Omurtaget al.
1997 1997
Winkler Winkler Pasternak

REC32

Pasternak

W11
W 12
W 22

42.282 42.169 71.365
62.417 61.624 110.963
88.144 86.768 145.863

71.512
111.340
146.260




Free vibration analysis of Reissner plates by mixed finite element 293

Table 7 Frequency parametepsof C-C-C-C plate on foundatiot/6 = 1)

Frequency Omurtaget al. REC32 Omurtaget al. REC32
Parasmeters 1997 1997
S Winkler Winkler Pasternak Pasternak
w11 51.902 51.779 80.314 85.414
w 12 83.222 82.701 127.294 137.520
W 2 115.214 116.270 167.116 181.780

80 —

—@— Winkler
—4&— Pasternak

0 ' ] ' I ! I T {
o 10000 20000 30000 40000

k' /D

(a)

120 | / 160 — .

e 4»—//"""//‘./
J .
b —@— Winkler —@— Winkler
—4— Pasternak 120 — —&— Pasternak
80— @y B /
a_)ll
80 - ./

L
“ L B 40 T

° 10000 20000 30000 40000 0 10000 20000 30000 40000

k' /D /o

(b) (c)

Fig. 12 The effect of variation df on the frequency parameters for Winkler and Pasternak found@&tien (
120 MPa)

obtained. The performance of the elements has also been investigated through the representative
problems. From the numerical assessments of the element, the following remarks can be made:

- For the Reissner plate on Pasternak foundation, a new functional is obtained based on Gateaux
differential and new dynamic boundary conditions are established.

- In this functional, only the first order derivatives present therefore, bilinear shape functions are
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Fig. 13 The effect of variation @ on the frequency parameteks=(100000 kN/r)

used and a mixed finite element REC32 are obtained in an explicit form.

- REC32 avoids the shear locking and converges to the Kirchhoff solution as the plate thickness
decreases (REC32 is tested for as fan/2s=10°).

- REC32 provides accurate and stable solution.

- To assess the performance of REC32, S-S-S-S, C-C-C-C, S-C-S-C and F-F-F-F square plates are
solved. Frequencies of free vibration of plates are compared by theoretical results and excellent
agreement is achieved.

- The validity limits of Kirchhoff plate theory is tested and established that this limit is not
dependent only the ratio bf2a but also the supporting conditions.

- The free vibration analysis of thick plates resting on Pasternak foundation is performed and
reasonable results are obtained. Winkler foundation is obtained as a special case of Pasternak
foundation.

- The variation ok on the frequency parameters has similar effects for the Winkler and Pasternak
foundation.

- G; effects the frequecy parameters more thaoes.
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Appendix |

Notation

M, My, M,y : internal moment components

Qu Q : shear forces

q : distributed load

k, G : spring and shear coefficient of foundation, respectively

w : deflection of plate

Q. Q : cross-sectional rotation of plates abwaindy axes, respectively

2a,2b : dimensions of the rectangular element

h : thickness of plate

E,v,G, D : modulus of elasticity, Poisson’s ratio, shear modulus of elasticity and flexural rigidity of the
plate, respectively

I(y) : functional

[,] > inner product

[ ]e : geometric boundary condition

[ ]o : dynamic boundary condition

W : shape functions € 1, ..., 4 for REC32)

é&n : nondimensional coordinates of a master element

Ny, n, : directional cosines

(K] : rectangular finite element matrix

[Kils [s]r : submatrices of the rectangular finite elementy, ..., 4)

[Klscr : boundary condition matrix of rectangular finite element

L . coefficient matrix

f . load vector

: unknown vectors
[K], [M], [K'] : system matrix, mass matrix and condensed matrix vectors, respectively
[m] : mass matrix of element
pp : mass density per unit volume and per unit area, respectively
w, @ : natural angular frequency and frequency parameter, respectively.
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Appendix Il

Operator form of the field equatiofg= Ly —f :

P, O 0O O 0 OP;;Pg0 0 0 O|[w] [q]

0 0 0P, O0OPx 1 0O O 0 O 0]|Q, 0

0 0 0 OPxsPys O 1 0 0 0 0[] Q 0

0 P, 0O P,Ps0 0O O O O O Of|M, 0

0 0 PsiPy,Pss 0 0 O O 0 O OfM, 0

0 P,Pis 0 0Pz 0 O 0 0 0 Of|My | 0O

P, 1 0 0 0 OP,0 0 0 0 0[|Q, 0

P 01 0 0 0 O0Pz0 0 0 0||Q] |9

0O 0000 O0OOTOOTU OOTI1w|l |@Q

0 0000 OOOOTO O010/Q| |M

0 0000 OO OO O-100||M| |-0

0 0 00O OO 0-1000]Qf [-W (A1)

where
__ & ra __0 __0 __0 __0

Pll_ k+Gde2+Gfdy21 I317_ (?X’ PlS_ dy' P24_ (?X’ P26_ dy
2 d d 12 12

P = -2 Py=—2Z,P,=—-2, Py=-=5, P,=—=%

35 ay’ ox 42 x4 ER % Ehgll
2 12 12

P :—'P ===U, = ==

53 ay 54 Ehsu 55 ER

Pe2 = gy, Pes = 0_ax’ Pes = _Gl_|‘213

P71:d£x, P77:_5%1, PSl:diy’ Pss:_%1 (A-Z)

Submatrices for quadrilateral element;

4ab/9 4ab/18 4ab/18 4abl36

[ Wbda | 4818 4abl9  4abi36 4ablig

(Kile=J Yii0A= | 4ayig aabi36 dablo 4abiis
4ab/36 4ab/18 4ab/l8 4abi9 (A3)

[-b/3 -b/6 —bI3 b6
_ (W, x| b6 —b/3 —b/6 —bI3
[(Kele =[5 UdA= 1 b3 o6 b3 br6
| b/6 b3 b6 bi3 (A4)

[—a/3 —w/3 —a/6 —al6
(W yao| W3 ¥3 a6 a6
[(Ksle =[5y A= | Sjs “als —ai3 a3

a6 a6 a3 a3 (A5)
b/3a b/6a —b/3a —b/6a
[K.] :j%%dA: b/6a b/3a —b/6a —b/3a
= ox ox ~b/3a —b/6a b/3a bl6a

—b/6a —b/3a b/6a b/3a (A.6)
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a/3b —a/3b a/6b —a/6b
[Ke, = [ 24 gp - |-a/3b a/3b —aléh a/6h
ST oy oy aléb —a/6b a/3b —a/3b
~a/6b a/6b —a/3b a/3b (A7)

—2b/3 -b/3 0 0
(5], =|~P3 2053 0 0
' 0 0 20/3 bi3
0 0 b/i3 2b/3 (A.8)

—2a/3 0 -a/3 o0
(5] =| 0 23 0 a3
"“|-a/3 0 -2a/3 0
0 a3 o0 2a/3 (A.9)

b/3a b/éa —b/3a —b/6a
[s], = b/éa b/3a —bl6a —b/3a
" |-b/3a —b/6a b/3a bi6a
|—b/6a —b/3a b/6a b/3a | (A.10)

a/3b —a/3b aléb —a/6b
(s = |~&3b &3b —a6b &b

"~ | a/6b —a/6b a/3b —a/3b
—a/6b a/6b —a/3b a/3b (A.11)






