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Abstract. This paper presents the convected material frame approach to study the nonlinear behavior of
inelastic frame structures. The convected material frame approach is a modification of the co-rotational
approximation by incorporating an adaptive convected material frame in the basic definition of the
displacement vector and strain tensor. In the formulation, each discrete element is associated with a local
coordinate system that rotates and translates with the element. For each load increment, the corresponding
strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and
based on the updated element geometry. The rigid body motion and deformation displacements are
decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through
the continuous updating of the material frame geometry. A generalized nonlinear function is used to
derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of
motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in
the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are
demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show
that the proposed approach is capable of investigating large deflection of inelastic planar structures and
providing an excellent numerical performance.

Key words: convected material frame approach; explicit finite element analysis; inelastic frame struc-
tures.

1. Introduction

Large displacement analysis of elastic structures has been extensively studied. Many researchers
presented explicit algorithms for finite element analysis. Belytschko and Hsieh (1973), Belytschko
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et al. (1977) formulated the frame elements by using the traditional co-rotational approach.
Belytschko and Marchertas (1974) formulated the three-dimensional plate element following a
similar approach. Hsiao et al. (1987) presented the large rotations of spatial beam structures. They
removed the restriction of small rotations of space frames by using a co-rotational procedure and
incremental-iterative methods. Crisfield (1990) proposed a co-rotational formulation for three-
dimensional beams in which both the internal force vector and tangent stiffness matrix are
consistently derived from the adopted strains. The adopted strains related to conventional small-
deflection beam theory but were embedded in a continuously rotating frame. Rice and Ting (1993)
proposed an approach of updated geometry to develop a plane frame analysis procedure. However,
their element stiffness is obtained by a direct stiffness approach and Castigliano’s theorem. Hence,
the formulation is restricted to prismatic frame elements and linearly elastic materials. Wang et al.
(1998) formulated a general curved elastic frame element based on a convected material frame
approach, and developed a general explicit algorithm for the analysis of flexible structures subjected
to large geometry changes. This approach is a modification of the co-rotational approximation by
incorporating an adaptive convected material frame in the basic definition of the displacement
vector and strain tensor. Recently, Hsiao et al. (1999) developed a consistent co-rotational total
Lagrangian finite element for the geometrically nonlinear dynamic analysis of spatial Euler beam
with large rotations but small strain. Element deformations and element equations are defined in
terms of element coordinates, which are constructed at the current configuration of the beam
element. In conjunction with the co-rotational formulation, the higher-order terms of nodal
parameters in element nodal force and stiffness matrix are consistently dropped.

Researchers also have extensively studied the structures with nonlinear materials. Tang et al.
(1980) adopted the traditional co-rotational approach and bi-linear constitutive relation to analyze
the large deflection of the plane frame. Yang and Saigal (1984) studied the static and dynamic
response of beam with bi-linear material and large deflection. Dafalis (1987, 1988) analyzed the
kinematics and kinetics at large elastoplastic deformations within the framework of a general
macroscopic constitutive theory with tensorial structure variables. The important coupling between
kinematics and kinetics had been introduced by defining the meaning of the co-rotational and
corodeformational rates of the structure variables. Wang et al. (1995) proposed a numerical model
to study the large deflection of an elastoplastic cantilever. They divided the deformed axis into a
number of small segments and assumed each segment to be approximated as a circular arc.
Recently, Mamaghani et al. (1996) developed an elastoplastic finite element formulation for beam-
columns to analyze the structural steel members under cyclic loading. They used the modified
approximate updated Lagrangian description of motion to study the geometrical nonlinearity. The
two-surface plasticity model is employed for material nonlinearity.

The convected material frame approach (Wang et al. 1998) is applied in this study to investigate
the geometrical nonlinearity of inelastic frame structures. The inelastic constitutive relation is
derived by using a generalized nonlinear function and the kinematic hardening is adopted to account
for the Bauschinger effect. In the following, the formulation of the explicit finite element method
based on a convected material frame approach is presented first. The algorithm is then verified by
comparing the numerical solutions with the results obtained by the ANSYS code (1998) of the finite
element method, and the nonlinear behavior of an inelastic frame is fully studied.
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2. Formulation of the convected material frame approach

The convected material frame approach (Wang et al. 1998) is a modification of the co-rotational
approximation by incorporating an adaptive convected material frame in the basic definition of the
displacement vector and strain tensor. In the formulation, each discrete element is associated with a
local coordinate system. For each load increment, the local coordinate system assumes a new
orientation and the element geometry also assumes a new shape. The corresponding strain-
displacement and nodal force-stress relationships are defined in the updated local coordinates, and
based on the updated element geometry. The rigid body motion and deformation displacement are
decoupled for each increment. The nonlinearities associated with the large geometrical changes are
incorporated in the analysis through the continuous updating of the material frame geometry. By
assuming a lumped mass matrix of diagonal form, the explicit finite element analysis involves only
vector assemblage and vector storage. 

2.1 Coordinates 

Referring to Fig. 1(a), the traditional co-rotational approach decomposes the displacement history

Fig. 1 (a) Schematic description of the traditional co-rotational approach

Fig. 1 (b) Schematic description of the convected material reference frame
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into three stages (Rice and Ting 1993): (1) the initial geometry X at the reference time t = 0, (2) the
current deformed geometry x at time t = n∆ t, (3) the convected geometry  at the same time as in
stage 2. This approach is based on the premise that each element has its own local coordinate ,
which rotates and translates with the element throughout its load-displacement history. The rigid
body motion is represented by the Q matrix. The convected material frame approach is a modified
co-rotational approach, and adopts the updated geometry. Its displacement history of a body
subjected to large displacement is decomposed into four stages Fig. 1b: (1) the initial geometry X at
the reference time t = 0, (2) the convected material reference frame x at time t = n∆ t, (3) the
deformed body geometry  at time , and (4) the convected geometry  at time .
The convected geometry  is related to the deformed body geometry  by a pure rotation Q.

2.2 Kinematics 

Fig. 2 shows a segment of a curved frame element under loading. The section EFGH, the radius
of curvature R, and the central angle dθ describe the element material geometry x at time t, while
section , and  describe the element convected geometry  at time .

The frame element is assumed to follow the Bernoulli-Euler beam theory. The thickness and width
of the frame element are small compared to the element length. The effect of Poisson’s ratio is
negligible, and the dimensions of the cross section remain unchanged. When the geometry changes
from x to the , a plane cross section of the element remains to be a plane. In addition, it is
assumed that the strain for each load increment is small, but total strain can be large.

Referring to Fig. 2, the axial strain in the fiber  can be written as

x̂
x̂

x′ t′ = n 1+( )∆t x̂′ t′
x̂′ x′

E′F′G′H′, R′ dθ ′ x′ t′

x′

C′D′

Fig. 2 Kinematics for normal strain
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(1)

where

The frame thickness is assumed to be small compared to the radius of curvature, or

 and  << 1,

 can then be simplified as

(2)

where  is a uniform normal strain due to the change of the element length, and ∆k is the change
of the element curvature. Specific forms of  and ∆k are obtained by neglecting the higher order
terms.

(3)

(4)

where  and  are the longitudinal and transverse displacements in the convected coordinates
(Fig. 3). 

Fig. 4 shows a typical frame element, where s is the length measured, α1 and α2 the nodal slopes
of the reference geometry, θ 1 and θ 2 the slope changes, l0 and l the lengths of the element, lm and ln
and the distances between nodes. The change of distance between two end nodes along -axis ∆,
and the changes of end slopes of the element θ 1 and θ 2, are the independent nodal displacements. 

The displacements are expressed in terms of the nodal displacements and written as

(5)
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Fig. 3 (a) Kinematics for mid-plane strain-comparison of a segment in x and x′

Fig. 3 (b) Kinematics for curvature variation-comparison of a segment in x and  with removal of rigid-body
displacement in  direction only

x′
ûd
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Substituting Eqs. (5) and (6) into Eqs. (3) and (4), the normal strain  and the change of curvature
∆k are thus expressed as

(7)

(8)

L s( ) = 
s
l
---cos α2 θ2+( )

N1 s( ) = 3
s2

l
2

-----– 2
s3

l
3

-----+ 
  sin α2 θ2+( )

N2 s( ) = s 2
s2

l
----–

s
3

l2
-----+

N3 s( ) = 
s2

l
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T d̂e
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T d̂e

*

Fig. 4 Comparison of a curved frame element
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2.3 Principle of virtual work

A structural system in the deformed geometry , at time , is said to be in
equilibrium if it satisfies the virtual work formulation

(9a)

or

(9b)

where U is the internal work, W the external work, and e the number of elements. The total
displacements are separated into the rigid-body displacements and the deformation displacements.
Because the internal virtual work due to a virtual rigid-body motion is zero, the internal virtual
work can then be expressed as

(10)

where  is the normal strain along the longitudinal direction, and  the total longitudinal stress.

 (11)

where  is the stress at the material frame geometry, and  the stress increment from x to .

(12)

where E = E(ε j) is the tangent modulus, and it is a function of transverse coordinates . 

(13)

where  is a generalized nonlinear function used to derive the inelastic constitutive relation.
For a Bernoulli-Euller beam, the cross-sectional area is assumed to be unchanged throughout the

deformation process. The internal work for each element is then

(14)

or

(15)
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where

 (16a)

 (16b)

 (16c)

(16d)

(16e)

(16f)

The integration in Eq. (16) concerning the tangent modulus E(ε j) is performed by the Gaussian
quadrature method in this study.

The element masses are lumped at the nodes. Each node is assumed to be in dynamic equilibrium
while each element is in static equilibrium. The static equilibrium yields

 

(17)

The full internal force and deformation displacement vectors for each element are

(18a)

(18b)

The internal virtual work is thus given as

(19)
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where

 
is the internal nodal force vector for the element written in the global coordinates. The
transformation matrix has the same form as the one given in the traditional co-rotational approach.

where θ is the angle between global axis X and the convected coordinate axis .
The external virtual work is

(21)
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(22)

If one introduces a global assembled nodal displacement vector d, the above equation becomes

(23)

Since δ d is arbitrary, the equation of motion in global coordinates yields

(24)

where

2.4 Explicit time integration

For a diagonal mass matrix M, the acceleration of the j-th degree of freedom is

 j = 1, 2, 3, ..., n (25)

where n is the number of the unknowns.
To find the quasi-static solution through a dynamic relaxation procedure, a damping force may be

added. 

(26)

The damping force may be written by assuming a standard Rayleigh damping

in which α and β are constants, and K is the global stiffness matrix. In this study, since the global
stiffness matrix is not available in the formulation, β is assumed to be zero. Or

(27)

The assumption of β to be zero is only for the purpose of convenience to obtain the quasi-static
solutions, and there is no physical meaning. The explicit time integration method is adopted to solve
the equation and a second order central difference formulation is used as the time integration
technique.

(28)
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the external and internal forces of the previous time step. An important simplification can be
introduced by assuming a diagonal mass matrix. All the calculation in Eq. (28) involves vector
operation only.

To start the solution process to calculate d1, d−1 is needed and it is given as

(29)

where  can be found as

(30)

The explicit time integration is conditionally stable. Its time increment has to be smaller than a
limit to avoid the calculations becoming divergent. For multi-degrees of freedom system, the critical
time step proposed by Hughes et al. (1978, 1979) is given by

 (31)

where  is the maximum frequency of the element. Without going through rigorous studies, the
approximated maximum element frequency suggested by Saha and Ting (1983) for the axial mode
of vibration is

  (32)

and for the flexural mode of vibration is

  (33)

where A is the element cross-section area, E the Young’s modulus, ρ the mass density, l the element
length, Iz the moment of inertia about the major axis of vibration, and n = 1.2.

3. Numerical examples and discussion

Example 1. Cantilever beam with a tip load

The proposed numerical model is verified by comparing the numerical solutions with the results
obtained by the ANSYS BEAM 23 2-D plastic elements (1998). Fig. 5 shows the geometry,
constitutive relation, and load history of the tip-loaded cantilever beam. The numbers of elements
and nodes are 20 and 21, respectively. The damping coefficient is α = 400.0 sec−1. The Young’s
modulus is E1 = 10.6× 103 ksi (7.3034× 104 MPa), the slope of the linear work hardening is
E2 = 10.6× 102 ksi (7.3034× 103 MPa), the yield stress is σy = 198.75 ksi (1.3694× 103 MPa), and
the mass density ρ is 2.589× 10−3 lb·sec2/in4 (2.76794× 104 kg/m3). The relation of tip vertical
displacement versus load is presented in Fig. 6. It is found that the numerical solutions agree well
with those of Yu et al. (1989) and the results obtained by the ANSYS code. 
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Example 2. Rigid frame subjected to a quasi-static horizontal load

A rigid frame subjected to a static horizontal load is then studied. The geometry, constitutive
relation, and load history of a rigid frame are shown in Fig. 7. The cross-section of the member is

Fig. 5 A tip-loaded cantilever beam

Fig. 6 Load-deflection relation of a tip-loaded cantilever beam
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taken to be I-section with width 6 in (15.24 cm), depth 6 in (15.24 cm), flange thickness 0.5 in
(1.27 cm), and web thickness 0.25 in (0.635 cm). The numbers of elements and nodes are chosen as
18 and 19, respectively. The damping coefficient is α = 1000.0 sec−1. The Young’s modulus is
E1 = 10.6× 103 ksi (7.3034× 104 MPa), the slope of the linear work hardening is E2 = 2.53× 103 ksi
(1.7431× 104 MPa), the yield stress is σy = 52.0 ksi (358.28 MPa), and the mass density ρ is
2.589× 10−3 lb·sec2/in4 (2.76794× 104 kg/m3). The relation of horizontal displacement versus load is
presented in Fig. 8. It is found that the numerical results also agree satisfactorily with the results
obtained by the ANSYS code. The deformed shape of this frame is shown in Fig. 9. One can
observe the characteristic of large displacement and its agreement with the result obtained by
ANSYS code. 

Example 3. Rigid frame subjected to a dynamic horizontal load

A rigid frame subjected to a dynamic horizontal load is further investigated. The geometry,
constitutive relation, and load history of a rigid frame are shown in Fig. 10. The kinematic
hardening is adopted to account for the Bauschinger effect. The numbers of elements and nodes, the
Young’s modulus, the slope of the linear work hardening, the yield stress, and the mass density are
the same as the previous one. The relation of horizontal displacement versus time is presented in
Fig. 11. It is also found that the numerical results agree satisfactorily with the results obtained by
the ANSYS code. 

Fig. 7 A rigid frame subjected to a static horizontal load
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Fig. 8 Load-deflection relation of a rigid frame subjected to a static horizontal load

Fig. 9 Deformed shape of a rigid frame subjected to a static horizontal load
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Fig. 10 A rigid frame subjected to a dynamic horizontal load

Fig. 11 Displacement-time relation of a rigid frame subjected to a dynamic horizontal load
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Example 4. Rigid frame subjected to quasi-static horizontal and vertical loads

The numerical model for static and dynamic responses of nonlinear inelastic frame structures is
thus verified. A rigid frame with nonlinear material is then investigated. The geometry, constitutive
relation, and load history of the rigid frame are shown in Fig. 12. The numbers of elements and
nodes are taken to be 18 and 19, respectively. The damping coefficient is α = 800.0 sec−1. The
nonlinear constitutive relation is 

(34a)

or

(34b)

The relations of the horizontal displacement of node 7 versus load and the vertical displacement of
node 10 versus load are illustrated in Fig. 13. Fig 14 shows the obviously nonlinear deformed shape
of this frame. Referring to Figs. 13 and 14, it is also demonstrated that the present approach is
capable of simulating the large deflection of plane frame with nonlinear material.

σ = 640ε
1
2
---

 ksi

σ = 4.41 103× ε1/2 MPa

Fig. 12 A nonlinear rigid frame subjected to static horizontal and vertical loads
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4. Conclusions

A convected material frame approach for large deformation combined with the explicit finite
formulation is proposed to analyze the inelastic frame structures. This approach is a modification of

Fig. 13 Load-deflection relation of a nonlinear rigid frame

Fig. 14 Deformed shape of a nonlinear rigid frame
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the co-rotational formulation that has been implemented in many widely used computer codes. The
inelastic constitutive relation is derived by using a generalized nonlinear function and the kinematic
hardening is adopted. By assuming a lumped mass matrix of diagonal form, the explicit finite
element analysis involves only vector assemblage and vector storage. Through the numerical
verification with the solutions obtained by the ANSYS code (1998) and the investigation of
nonlinear inelastic frame, the convected material frame approach is shown to be accurate and
capable of investigating large deflection of inelastic frame structures. This numerical model is
proposed to be an alternative efficient approach for nonlinear analysis of inelastic frame structures.

The convected material frame approach has been developed for plane inelastic frame structures in
this study. The extension to develop three-dimensional frame elements should be relatively
straightforward. Further research to introduce the convected material frame approach for the large
deformation of two-dimensional or three-dimensional solid medium is recommended. Due to the
limitation of assuming large rotations and small deformations, the co-rotational approach applies
only to thin structures, such as beams, plates, and shells. By continuously updating the geometry,
the convected material frame approach should be able to handle very large geometry changes of
solids.
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