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Abstract.  This paper presents the convected material frame approach to study the nonlinear behavior of
inelastic frame structures. The convected material frame approach is a modification of the co-rotational
approximation by incorporating an adaptive convected material frame in the basic definition of the
displacement vector and strain tensor. In the formulation, each discrete element is associated with a local
coordinate system that rotates and translates with the element. For each load increment, the corresponding
strain-displacement and nodal force-stress relationships are defined in the updated local coordinates, and
based on the updated element geometry. The rigid body motion and deformation displacements are
decoupled for each increment. This modified approach incorporates the geometrical nonlinearities through
the continuous updating of the material frame geometry. A generalized nonlinear function is used to
derive the inelastic constitutive relation and the kinematic hardening is considered. The equation of
motion is integrated by an explicit procedure and it involves only vector assemblage and vector storage in
the analysis by assuming a lumped mass matrix of diagonal form. Several numerical examples are
demonstrated in close agreement with the solutions obtained by the ANSYS code. Numerical studies show
that the proposed approach is capable of investigating large deflection of inelastic planar structures and
providing an excellent numerical performance.

Key words: convected material frame approach; explicit finite element analysis; inelastic frame struc-
tures.

1. Introduction

Large displacement analysis of elastic structures has been extensively studied. Many researchers
presented explicit algorithms for finite element analysis. Belytschko and Hsieh (1973), Belytschko
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et al. (1977) formulated the frame elements by using the traditional co-rotational approach.
Belytschko and Marchertas (1974) formulated the three-dimensional plate element following a
similar approach. Hsiaet al. (1987) presented the large rotations of spatial beam structures. They
removed the restriction of small rotations of space frames by using a co-rotational procedure and
incremental-iterative methods. Crisfield (1990) proposed a co-rotational formulation for three-
dimensional beams in which both the internal force vector and tangent stiffness matrix are
consistently derived from the adopted strains. The adopted strains related to conventional small-
deflection beam theory but were embedded in a continuously rotating frame. Rice and Ting (1993)
proposed an approach of updated geometry to develop a plane frame analysis procedure. However,
their element stiffness is obtained by a direct stiffness approach and Castigliano’s theorem. Hence,
the formulation is restricted to prismatic frame elements and linearly elastic materialseMé#ng
(1998) formulated a general curved elastic frame element based on a convected material frame
approach, and developed a general explicit algorithm for the analysis of flexible structures subjected
to large geometry changes. This approach is a modification of the co-rotational approximation by
incorporating an adaptive convected material frame in the basic definition of the displacement
vector and strain tensor. Recently, Hsitoal. (1999) developed a consistent co-rotational total
Lagrangian finite element for the geometrically nonlinear dynamic analysis of spatial Euler beam
with large rotations but small strain. Element deformations and element equations are defined in
terms of element coordinates, which are constructed at the current configuration of the beam
element. In conjunction with the co-rotational formulation, the higher-order terms of nodal
parameters in element nodal force and stiffness matrix are consistently dropped.

Researchers also have extensively studied the structures with nonlinear materialst @&ng
(1980) adopted the traditional co-rotational approach and bi-linear constitutive relation to analyze
the large deflection of the plane frame. Yang and Saigal (1984) studied the static and dynamic
response of beam with bi-linear material and large deflection. Dafalis (1987, 1988) analyzed the
kinematics and kinetics at large elastoplastic deformations within the framework of a general
macroscopic constitutive theory with tensorial structure variables. The important coupling between
kinematics and kinetics had been introduced by defining the meaning of the co-rotational and
corodeformational rates of the structure variables. Wang. (1995) proposed a numerical model
to study the large deflection of an elastoplastic cantilever. They divided the deformed axis into a
number of small segments and assumed each segment to be approximated as a circular arc.
Recently, Mamagharet al. (1996) developed an elastoplastic finite element formulation for beam-
columns to analyze the structural steel members under cyclic loading. They used the modified
approximate updated Lagrangian description of motion to study the geometrical nonlinearity. The
two-surface plasticity model is employed for material nonlinearity.

The convected material frame approach (Wahgl 1998) is applied in this study to investigate
the geometrical nonlinearity of inelastic frame structures. The inelastic constitutive relation is
derived by using a generalized nonlinear function and the kinematic hardening is adopted to account
for the Bauschinger effect. In the following, the formulation of the explicit finite element method
based on a convected material frame approach is presented first. The algorithm is then verified by
comparing the numerical solutions with the results obtained by the ANSYS code (1998) of the finite
element method, and the nonlinear behavior of an inelastic frame is fully studied.



Large displacement analysis of inelastic frame structures by convected material frame apd®éach

2. Formulation of the convected material frame approach

The convected material frame approach (Wahgl 1998) is a modification of the co-rotational
approximation by incorporating an adaptive convected material frame in the basic definition of the
displacement vector and strain tensor. In the formulation, each discrete element is associated with a
local coordinate system. For each load increment, the local coordinate system assumes a new
orientation and the element geometry also assumes a new shape. The corresponding strain-
displacement and nodal force-stress relationships are defined in the updated local coordinates, and
based on the updated element geometry. The rigid body motion and deformation displacement are
decoupled for each increment. The nonlinearities associated with the large geometrical changes are
incorporated in the analysis through the continuous updating of the material frame geometry. By
assuming a lumped mass matrix of diagonal form, the explicit finite element analysis involves only
vector assemblage and vector storage.

2.1 Coordinates

Referring to Fig. 1(a), the traditional co-rotational approach decomposes the displacement history
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Fig. 1 (a) Schematic description of the traditional co-rotational approach
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Fig. 1 (b) Schematic description of the convected material reference frame
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into three stages (Rice and Ting 1993): (1) the initial geométy the reference time= 0, (2) the

current deformed geometmyat timet = nAt, (3) the convected geometly  at the same time as in
stage 2. This approach is based on the premise that each element has its own local cordinate |,
which rotates and translates with the element throughout its load-displacement history. The rigid
body motion is represented by tematrix. The convected material frame approach is a modified
co-rotational approach, and adopts the updated geometry. Its displacement history of a body
subjected to large displacement is decomposed into four stages Fig. 1b: (1) the initial g&@netry

the reference timeé=0, (2) the convected material reference fraxmat time t=nAt, (3) the
deformed body geometry’ at timet' = (n+ 1)At , and (4) the convected geometty  at tilne

The convected geomet® s related to the deformed body georietry by a pure €dtation

2.2 Kinematics

Fig. 2 shows a segment of a curved frame element under loading. The &faBéh the radius
of curvatureR, andthecentral angleld describe the element material geometrgt timet, while
sectionE'F'G'H’, R", andd@’ describe the element convected geomeétry atttime

The frameelement is assumed to follow the Bernoulli-Euler beam theory. The thickness and width
of the frame element are small compared to the element length. The effect of Poisson’s ratio is
negligible, and the dimensions of the cross section remain unchanged. When the geometry changes
from x to the x' , a plane cross section of the element remains to be a plane. In addition, it is
assumed that the strain for each load increment is small, but total strain can be large.

Referring to Fig. 2, the axial strain in the fib@D’ can be written as

— k 7<'Convected geometry (x')
’ ) Material geometry (x)

/

Fig. 2 Kinematics for normal strain
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-4

where

co=[i+ %gds

cp =+ s

The frame thickness is assumed to be small compared to the radius of curvature, or

£ can then be simplified as
€ LEm + YAK (2)

where €, is a uniform normal strain due to the change of the element lengihk @nthe change

of the element curvature. Specific forms &f d@idare obtained by neglecting the higher order
terms.
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where i and?® are the longitudinal and transverse displacements in the convected coordinates
(Fig. 3).

Fig. 4 shows a typical frame element, whstiigs the length measured; and a, the nodal slopes
of the reference geometr§; and 8, the slope changek, and| the lengths of the elemeit, andl,
and the distances between nodes. The change of distance between two end nodes alofg -axis
and the changes of end slopes of the eletieand 8,, are the independent nodal displacements.

The displacements are expressed in terms of the nodal displacements and written as

' =L(s)A (5)

0 = Ny(S)A + Ny(s) 6, + Ny(s) 6, 6)
where
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Fig. 3 (b) Kinematics jgr curvature variation-comparison of a segmenaimd X' with removal of rigid-body
displacement iru™  direction only
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Fig. 4 Comparison of a curved frame element

L(s) = Tcos(a, + 6)

3
S S .
Ni(s) = 5 3% + 2|—3 sSin(a, + 6)

Substituting Egs. (5) and (6) into Egs. (3) and (4), the normal $traend the change of curvature
Ak are thus expressed as

A
Em=[Ls+NyJ/R Ny/R Ny/R]| 6,
6,
A
=[Bo1 Boz Bogl 0,
6,
= B! de @)
A
Ak = [Ny/RP =Ny oo+ L /R No/R-N, s No/R-N5 ]| 61
6,
A
=[Bi1 Brz Bys]| 61
6,
(8

=B/ de
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2.3 Principle of virtual work

A structural system in the deformed geomeiy , at tithe (n+ 1)At , is said to be in
equilibrium if it satisfies the virtual work formulation

oU = W (9a)
or
> dUe=) W, (9b)

where U is the internal workW the external work, an@& the number of elements. The total
displacements are separated into the rigid-body displacements and the deformation displacements.
Because the internal virtual work due to a virtual rigid-body motion is zero, the internal virtual
work can then be expressed as

dU=oU’=) aug
e
AT A
= z [y, 08 & dV (10)
where ¢ is the normal strain along the longitudinal direction,@nd  the total longitudinal stress.
A ~m ~
og=0 +0 (12)
where g is thetress at the material frame geometry, and the stress increment tiooxh .
o' = E€ = E(En+ VAK) (12)
whereE = E(g;) is the tangent modulus, and it is a function of transverse coordipates

E(e) = 2| =1'(¢) 13)

where f(€) is a generalized nonlinear function used to derive the inelastic constitutive relation.
For a Bernoulli-Euller beam, the cross-sectional area is assumed to be unchanged throughout the
deformation process. The internal work for each element is then
Ax T
OUg = 8(de) [ {(BoP"+B,M;) +

[(f, EdA)BoBg + ([, EY’dA)B,B/]d. +

[(J, EYAA(BoB! + B,Bg)]de} ds (14)
or
fax
SU% = 5(de) fe =[0A 38, 36,]| fny, (15)

my;
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where

P"=[, 0" dA (16a)
M = [, "y dA (16b)
fo=fo+Afe+ fo (16¢)
fe'= [, (BoP™+B,MJ)ds (16d)
A fe = Rede

={[. [(J, EdA)BoB; + ([, EY’dA)B,B/]ds} d. (16e)
£ ={ L[, EVdA(BoB, + B,BJ)lds} de (16f)

The integration in Eqg. (16) concerning the tangent modElss) is performed by the Gaussian
quadrature method in this study.
The element masses are lumped at the nodes. Each node is assumed to be in dynamic equilibrium
while each element is in static equilibrium. The static equilibrium yields
ic\1>< = _’f\ZX
fly = (r’hlz + r’]:]22)/|n
’f\2y = _’f\ly (17)
The full internal force and deformation displacement vectors for each element are

2int, T

(fe))' = [fix fiy My, fox f2y My, (18a)
(de)" =[di diy 61, dox dby 62,]
=[0 06, A 0 6] (18b)
The internal virtual work is thus given as
U=y Ul = ) (5de) fe= Y (5d)" " (19)
Using the transformation matrik betweerx and x’ , one obtains

de = Td,
Then

SU = Z adl £, (20)
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where
2 int

feim - TT fe

is the internal nodal force vector for the element written in the global coordinates. The
transformation matrix has the same form as the one given in the traditional co-rotational approach.

cosf sind 0 0 0O O
—sin@ cosf 0 0 0O O

T= 0 0 1 0 0O O
0 0O O co¥ sinB O

0 0O O —si@ cosf O

| 0 0 O 0 0 1

where@ is the angle between global aXsand the convected coordinate axis
The external virtual work is

SW = Z (3df &'~ 3deMedle)

= Z (3d7f &= 3dIT TM.T do)

= Z ody(f '= M d) (21)
where
[ ] M, 0 0 0 0 O
fiy 0 My 0 0 0 O
mZ
fZth fl ,Me: O O I]_z ,\O 0 0
2x 0 0 0 My 0 O
fay 0 0 0 0 My 0
L My, | L 0O 0 0 0 O Ix]
with

9 9 9 9 1
My =My = Moy = My = épAl
N " 1
li, =1, :lel(AI2+12|Z)

P = mass density

The principle of virtual work yields
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Z ddifit = Z 3di(f &' =M de) (22)
If one introduces a global assembled nodal displacement vbdtowr above equation becomes
5dTEZ fo'g= 5dT§ fZX%—édTi M o (23)
Sincedd is arbitrary, the equation of motion in global coordinates yields
Md = F&—F™ (24)
where

M = Z M,, F'= Z £ and F™ = Z fint

2.4 Explicit time integration
For a diagonal mass mati, the acceleration of thjeth degree of freedom is
d = 2 (F_ =123 25
J_MJ(J_J) J_ ) &y 1n ( )
wheren is the number of the unknowns.
To find the quasi-static solution through a dynamic relaxation procedure, a damping force may be
added.
Md- — I:ext_Fint_dep (26)
The damping force may be written by assuming a standard Rayleigh damping
F™=cd = (aM + BK)d

in which a and 8 are constantsndK is the global stiffness matrix. In this study, since the global
stiffness matrix is not available in the formulatighis assumed to be zero. Or

F™ = aMd 27)

The assumption off to be zero is only for the purpose of convenience to obtain the quasi-static
solutions, and there is no physical meaning. The explicit time integration method is adopted to solve
the equation and a second order central difference formulation is used as the time integration
technigue.

o 2 [Oae2ng-tpext_pinty , 2 _[2-altpn,
div1 = oA UM T (FP=F™) + ot g A (28)

Note that using Eqg. (28), the displacements+afit are calculated by using the mass values and
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the external and internal forces of the previous time step. An important simplification can be
introduced by assuming a diagonal mass matrix. All the calculation in Eq. (28) involves vector
operation only.

To start the solution process to calculdted-; is needed and it is given as

d_, = dg-Atdo + %Atzdo (29)
wheredo can be found as
do = M7 (F5X~Fg"'~aMdo) (30)

The explicit time integration is conditionally stable. Its time increment has to be smaller than a
limit to avoid the calculations becoming divergent. For multi-degrees of freedom system, the critical
time step proposed by Hughessal (1978, 1979) is given by

2

max

At< (31)

where @™ is the maximum frequency of the element. Without going through rigorous studies, the
approximated maximum element frequency suggested by Saha and Ting (1983) for the axial mode
of vibration is

=7 [ (32)
and for the flexural mode of vibration is
El 12
max _ 2 z |:J1
W™ =n nZDpAI“D (33)

whereA is the element cross-section arféahe Young's modulusp the mass density,the element
length, I, the moment of inertia about the major axis of vibration, rand..2.

3. Numerical examples and discussion
Example 1. Cantilever beam with a tip load

The proposed numerical model is verified by comparing the numerical solutions with the results
obtained by the ANSYS BEAM 23 2-D plastic elements (1998). Fig. 5 shows the geometry,
constitutive relation, and load history of the tip-loaded cantilever beam. The numbers of elements
and nodes are 20 and 21, respectively. The damping coefficient #00.0 se¢. The Young’s
modulus isE; =10.6x 10* ksi (7.3034x 10 MPa), the slope of the linear work hardening is
E,=10.6x 107 ksi (7.3034x 10° MPa), the yield stress ig, = 198.75 ksi (1.3694 10° MPa), and
the mass densitp is 2.589x 1072 Ib-sedin* (2.76794x 10 kg/nT). The relation of tip vertical
displacement versus load is presented in Fig. 6. It is found that the numerical solutions agree well
with those of Yuet al (1989) and the results obtained by the ANSYS code.
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Fig. 5 A tip-loaded cantilever beam

Example 2. Rigid frame subjected to a quasi-static horizontal load

A rigid frame subjected to a static horizontal load is then studied. The geometry, constitutive
relation, and load history of a rigid frame are shown in Fig. 7. The cross-section of the member is
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Fig. 6 Load-deflection relation of a tip-loaded cantilever beam
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Fig. 7 A rigid frame subjected to a static horizontal load

taken to bel-section with width 6 in (15.24 cm), depth 6 in (15.24 cm), flange thickness 0.5 in
(1.27 cm), and web thickness 0.25 in (0.635 cm). The numbers of elements and nodes are chosen as
18 and 19, respectively. The damping coefficientais 1000.0 se¢. The Young's modulus is

E; =10.6x 10° ksi (7.3034x 10 MPa), the slope of the linear work hardeningis 2.53x 10° ksi

(1.7431x 10" MPa), the yield stress is,=52.0 ksi (358.28 MPa), and the mass dengitjs

2.589x 107 Ib-sed/in® (2.76794x 10° kg/n?). The relation of horizontal displacement versus load is
presented in Fig. 8. It is found that the numerical results also agree satisfactorily with the results
obtained by the ANSYS code. The deformed shape of this frame is shown in Fig. 9. One can
observe the characteristic of large displacement and its agreement with the result obtained by
ANSYS code.

Example 3. Rigid frame subjected to a dynamic horizontal load

A rigid frame subjected to a dynamic horizontal load is further investigated. The geometry,
constitutive relation, and load history of a rigid frame are shown in Fig. 10. The kinematic
hardening is adopted to account for the Bauschinger effect. The humbers of elements and nodes, the
Young’s modulus, the slope of the linear work hardening, the yield stress, and the mass density are
the same as the previous one. The relation of horizontal displacement versus time is presented in
Fig. 11. It is also found that the numerical results agree satisfactorily with the results obtained by
the ANSYS code.



Large displacement analysis of inelastic frame structures by convected material frame apdré@ch

X-displacement of node A (cm)

0.0 30.0 60.0 90.0 120.0
100.0 L \ \ T PR
//
P - 400.0
80.0 /
_ vt - 320.0
& L =
Z 60,0 // <
§ ad 2400 o
< /// &
£ 40.0 - 4 =
2 - 160.0 5
= /‘ A &
% — — - ANSYS BEAM 23 clement (1998) | — -
20.0 /‘ ,,’, present study - 80.0
? 2N ¥ )
|
¢
0.0 4 ‘ : L 0.0
0.0 10.0 20.0 30.0 40.0 50.0

X-displacement of node A (in.)

Fig. 8 Load-deflection relation of a rigid frame subjected to a static horizontal load
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Fig. 9 Deformed shape of a rigid frame subjected to a static horizontal load

Y-coordinate (¢cm)



150

Yaw-Jeng Chiou, Yeon-Kang Wang, Pang-An Hsiao and Yi-Lung Chen

P Node A

l I
|
' £ L —
| 120 in [ | &
| (3048 comrh ¢ [

o o lh
k
¢, R
- -aE
- -
120 i, (304.8 ) Matenial properites and parameters
tor exampls 3:
(@b Ciesmelry bh=h=600m (1524cm)
il i, =05n (127cm)
] B g i = 0250 (D635cm)
‘ii?ﬁlg: H - mmwr_ Mo, of elements =18
b " (AS4KN | No. of nodes =19
| K t T Tims{sen ) Time step Ar= 10*10 sec.
_l_ o b er = (1) sec™

(b} Constitutive relation

{ch Load history

E, = 106% 10" ksi (7.303* 10" Mpa)
E, = 2.53*10°ksi(7.3034* 10 Mpa)

Fig. 10 A rigid frame subjected to a dynamic horizontal load
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Fig. 11 Displacement-time relation of a rigid frame subjected to a dynamic horizontal load
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Fig. 12 A nonlinear rigid frame subjected to static horizontal and vertical loads

Example 4. Rigid frame subjected to quasi-static horizontal and vertical loads

The numerical model for static and dynamic responses of nonlinear inelastic frame structures is
thus verified. A rigid frame with nonlinear material is then investigated. The geometry, constitutive
relation, and load history of the rigid frame are shown in Fig. 12. The numbers of elements and
nodes are taken to be 18 and 19, respectively. The damping coefficiernt 880.0 sec. The
nonlinear constitutive relation is

1

0 = 6406 Ksi (34a)
or
o = 4.41x 10¢"* MPa (34b)
The relations of the horizontal displacement of node 7 versus load and the vertical displacement of
node 10 versus load are illustrated in Fig. 13. Fig 14 shows the obviously nonlinear deformed shape

of this frame. Referring to Figs. 13 and 14, it is also demonstrated that the present approach is
capable of simulating the large deflection of plane frame with nonlinear material.
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Fig. 13 Load-deflection relation of a nonlinear rigid frame
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Fig. 14 Deformed shape of a nonlinear rigid frame

4. Conclusions

A convected material frame approach for large deformation combined with the explicit finite
formulation is proposed to analyze the inelastic frame structures. This approach is a modification of
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the co-rotational formulation that has been implemented in many widely used computer codes. The
inelastic constitutive relation is derived by using a generalized nonlinear function and the kinematic
hardening is adopted. By assuming a lumped mass matrix of diagonal form, the explicit finite
element analysis involves only vector assemblage and vector storage. Through the numerical
verification with the solutions obtained by the ANSYS code (1998) and the investigation of
nonlinear inelastic frame, the convected material frame approach is shown to be accurate and
capable of investigating large deflection of inelastic frame structures. This numerical model is
proposed to be an alternative efficient approach for nonlinear analysis of inelastic frame structures.

The convected material frame approach has been developed for plane inelastic frame structures in
this study. The extension to develop three-dimensional frame elements should be relatively
straightforward. Further research to introduce the convected material frame approach for the large
deformation of two-dimensional or three-dimensional solid medium is recommended. Due to the
limitation of assuming large rotations and small deformations, the co-rotational approach applies
only to thin structures, such as beams, plates, and shells. By continuously updating the geometry,
the convected material frame approach should be able to handle very large geometry changes of
solids.
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