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Abstract.  During the last several years, research activity on non-tubular bonded joints has concentrated
on the effects of normal stress, bending moments and shear. Nevertheless, in certain situations, the
structure may be subjected to twisting moments, so that the evaluation of its dynamic behaviour to
torsional vibrations becomes of great importance even though evaluations of such loading conditions is
entirely lacking in the literature. The aim of this article is to show that torsional natural frequencies of the
non-tubular joint can be evaluated by determining the roots of a determinantal equation, derived by taking
advantage of some analytical results obtained in a previous paper dealing with the analysis of the state of
stress in the adhesive. Numerical results related to clamped-free and clamped-clamped joints complete the
article.
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1. Introduction

Adhesively bonded joints have long been recognized as attractive alternatives to conventional
mechanical joining techniques, due to a greater uniformity in load distribution as well as a reduced
weight and processing case. Furthermore, they do not require holes and the load is distributed over
a larger area than for mechanical joints. Moreover, they are excellent electrical and thermal insulators.
However, bonded joints are very sensitive to the adherend geometry, the quality of surface
treatment, the service temperature, humidity and other environmental conditions. 

Considerable research in this area has been conducted regarding the torsion of adhesively bonded
tubular joints but only recently non-tubular bonded structures under torsion have also been studied.

Since the two pioneer papers (Goland et al. 1994), (Lukbin et al. 1956), tubular joints subject to
torsion have been studied from many different points of view. Theoretical approaches have been
validated both experimentally (Reddy et al. 1993), (Kim et al. 1992) (Gent et al. 1982), (Choi
1994) and numerically (Choi 1944), (Hipol 1984), (Rao et al. 1994) and the the importance of
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bonded joints in composite structures has been widely emphasized (Reddy et al. 1993), (Hipol
1984), (Graves et al. 1981), (Nayebhashemi et al. 1997). Fracture mechanics has been used to solve
the problem of the joint's strength in the case of brittle collapse with static (Reddy et al. 1993),
(Gent et al. 1982), (Lee et al. 1992) or fatigue loading (Reddy et al. 1993), (Gent et al. 1982),
(Choi, 1994), (Nayebhashemi et al. 1997). The non-linear and viscoelastic adhesive's behavior have
been considered in (Choi 1944), (Lee et al. 1992), (Lee et al. 1995), (Alwar et al. 1976), (Medri
1988), (Zhou et al. 1993), and only recently also the dynamic analysis for tubular bonded joints has
been addressed (Rao et al. 1994), (Ko et al. 1995).

In contrast only recently have non tubular bonded joints been studied. The old gap in the literature
about non tubular adhesive bonded joints can perhaps be explained by noting that these kind of
joints are not designed to withstand a torsional moment, which can thus induce a non-shearing
stress state in the adhesive of such joints. In fact, it is well known that adhesives are by nature less
effective when subjected to normal stresses (as illustrated by the differences encountered when
attempting to separate two pieces of adhesive tape by applying tensile or shear stresses). Though
this is likely to be the major reason that little work has been done with non-tubular joints, it cannot
be considered a justification. During its service life, in fact, a non-tubular adhesive bonded joint can
find itself called upon to withstand accidental torsional loading: as the joint is not designed for this
type of characteristic of internal reaction (the joint should be designed to tensile loading), even
modest torsional loads can prove to be critical. 

The indicated old lack of work on non-tubular joints motivated the investigation presented in
Pugno (1998, 1999), Pugno et al. (2000a & 2000b).

In (Pugno et al. 2000b) a non-tubular joint subjected to torsion was studied from a theoretical
point of view, and the mathematical model was validated numerically through a three dimensional
finite element analysis. In that article the predominant stress and strain fields in the adhesive as well
as the torsional moment transmission section by section along the overlap are emphasized.

In (Pugno 1999) the non-tubular joint, streamlined for uniform torsional strength (UTS), is
considered: starting from a non-tapered joint, the optimization is achieved by chamfering the edges,
which are in any case not involved in the stress flow induced by the load for which the joint should
be designed. The resulting optimized joint shape is thus both lighter and stronger (both analysis and
optimization were carried out also for tubular bonded joints in (Pugno et al. 2000a).

The brittle collapse of the joint was investigated in (Pugno et al. 2001). The stability of brittle
crack propagation and the size effects on mechanical collapse behaviour, as well as the ductile-
brittle transition, were analyzed. Experimental measurements of failure loads under torsion for non-
tubular bonded joints agree satisfactorily with the theoretical predictions.

In this article the dynamic behaviour of bonded joints, with particular reference to the non-tubular
type, is analyzed. A parametric study illustrating the influence of several characteristic variables on
the torsional natural frequencies is presented. Finally, a comparison between torsional natural
frequencies predicted by the proposed procedure and FEM simulations has been performed,
demonstrating that theoretical and numerical results agree satisfactorily. 

2. Constitutive, compatibility and equilibrium equations in the bonding

Assuming linear elastic constitutive laws (Pugno et al. 2000a & 2000b) the equation of motion of
the overlap (Fig. 1), in a dynamic regime, can be written as:
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, (1)

where K* is the adhesive stiffness, given by:

,

, (2)

for a non-tubular and a tubular overlap respectively, with b the width of the cross section for the
non-tubular joint, R the radius of the adhesive surface in the tubular one and ha the thickness of the
adhesive layer.  is:

. (3)

Ea and Ga are the longitudinal and shear moduli of elasticity of the adhesive and νa its Poisson
ratio. Furthermore, in Eq. (1) θI (x, t) and θII (x, t) are the rotations of the two connected beams,
(ρIp)I the mass density times the polar moment of inertia of the first (I) beam, MI (x, t) its twisting
moment and ( ),x and ( ) represent derivatives with respect to the longitudinal coordinate and time
respectively.

The dynamic equilibrium equations for tubular and non-tubular joints respectively allow obtaining
the corresponding predominant stress and strain fields in the adhesive (Pugno et al. 2000a and
2000b) according to:

, (4)

,

where ∆θ(x, t)=(θI(x, t) − θII(x, t)).
By introducing

MI (x, t) = (GIt)IθI,x(x, t), (5)

with (GIt)I the shear elastic modulus times the factor of torsional rigidity (equal to Ip for tubular
joints) of the first beam, Eqs. (4) provide the predominant stress and strain fields in the adhesive

K∗ θI x t,( ) θII x t,( )–( ) MI x, x t,( ) ρI p( )Iθ··I x t,( )–=
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12ha
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*

Ea
* 1 νa–

1 νa+( ) 1 2νa–( )Ea=

·

τ x t,( ) K∗∆θ x t,( )
2πR2= γ x t,( ) τ x t,( )

Ga
=,

σy x z t, ,( ) K∗∆θ x t,( )12z
b3 εy x z t, ,( ) σy x z y, ,( )
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Fig. 1 Schematic view of the lap
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and Eq. (5) the torsional moment, varying section by section, transmitted along the overlap provided
that rotations θI and θII are known.

3. Evaluation of torsional natural frequencies

The equation of motion for torsional vibrations is derived in the case of the most common laps in
practical applications: the non-tubular and the tubular lap; it is sufficient to use the proper value for
K* to obtain the desired determinantal equation leading to torsional natural frequencies.

In order to derive the equations, and due to the different field equations that rule the torsional
vibrations in and outside the bonding region, it is necessary to divide both beams in two sections.
As a consequence, sections 1 and 2 of the first beam indicate the region out and inside the bonding
and, for the second beam, sections 3 and 4 indicate the region in and outside the bonding
respectively. Moreover, the twisting angle of every region i is called θi(x, t) (Fig. 1).

The equation of free torsional vibrations for these four regions can be obtained manupulating Eqs.
(1)− (5) and assuming that out of the adhesive, i.e., at sections 1 and 4, K * is equal to zero:

( ),x

( ) ,x

( ),x

( ),x (6)

where subscripts I and II  are related to properties of the first and of the second beam respectively. It
can be highlighted that in the first and the fourth equation, corresponding to regions outside the
bonding, the equilibrium between elastic and inertial forces is being considered. In the second and
third equations, corresponding to regions inside the bonding, the presence of the term related to the
variation in twisting moment due to the bonding acting as a distributed elastic spring is evident.

The previous differential equations require appropriate boundary conditions to allow to evaluate
natural frequencies of the bonded beams. In particular for every part of both beams it is necessary
to consider two boundary conditions, one at the left and the other at the right end. By calling 2c the
length of the lap and 2L the overall length of the joint having in the middle x=0 (Fig. 1), boundary
conditions at the left and right end are:

(7)

for free and

(8)

for clamped ends. The other boundary conditions allow the continuity of the twisting angle and of
its derivative, i.e., of the twisting moment, for both the first and the second beam:

,

. (9)
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In correspondence of both the ends of the lap the twisting moment must be zero, i.e., the first
derivative of the twisting angle must vanish:

. (10)

By assuming that geometrical and material properties are equal for the two connected beams and
that their cross section in constant along the axis, the four Eqs. (6) can be written as:

(11)

where ξ=(GIt)/(ρIp) while φi(x, t) and ζi have the following values:

(12)

By applying the principle of separation of variables, the solution of Eq. (11) can be written as:

(13)

so that Eq. (11) becomes:

(14)

where ω must be a constant. As a result, ψi(x) and γi(t) are given by:

ψi(x) = Ai sin (λix) + Bi cos (λix),
γi(t) = sin (ωt + Φ), (15)

where

. (16)

Moreover, according to (12) ζ1=ζ3=ζ4=0 so that λ1=λ3=λ4=λ, while it is set λ2=λ to simplify the
notation.

By introducing expressions (15) into (12), it is possible to determine the corresponding expression
for θi(x, t):

(17)

where the four functions βi(x) are given by:
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( ),

( ),

. (18)

Finally, by introducing (17) into boundary conditions (7)− (10), a set of eight algebrical equations
depending on coefficients Ai and Bi is derived:

(19)

The first two equations of (19) can be rewritten as:

(20)

where nl and nr refer to the left and right end respectively and they are equal to 0 or 1 if the
corresponding end is whether free or clamped. As a result, the entire system of algebraic Eqs. (19)
can be rewritten as:

[M]{ X} = {0}, (21)

where matrix [M] is 

(22)

with

and λ*=λ/λ. Furthermore,

{X} Τ= [A2 A3 B1 B2 B3 B4].
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In order to obtain a non-zero solution, it is necessary to find the eigenvalues ωn so that:

det([M(ωn)]) = 0, (23)

i.e., the determinant of the matrix [M(ω)] is zero. Eigenvalues ωn are the natural torsional circular
frequencies of the bonded joint, with corresponding eigenvectors (or modeshapes) given by {Xn}.

4. Numerical examples

Numerical simulations have been performed to determine the trend of the fundamental natural
frequency of torsional vibrations of clamped-clamped and clamped-free beams connected with a
non-tubular joint with respect to some parameters of the junction.

The properties of the two equal aluminium beams connected with the single-lap joint are the
following: Young’s modulus of 7×1010 N/m2, Poisson ratio equal to 0.31, material density of 2700
kg/m3, width of the cross section b of 55 mm, height h of 3 mm, overall length of the joint 2L of
260 mm, moreover, the adhesive has a Young's modulus Ea of 2.9×109 N/m2, Poisson ratio νa=0.31
and thickness ha of 0.3 mm.

Figs. 2 and 3 are related to a clampled-free structure and show the frequency ratio f1/f10 where f1
is the fundamental torsional natural frequency of the joint while f10 is the first torsional natural
frequency of a single clamped-free beam with the properties previously listed and length of 260
mm. Fig. 2 illustrates the trend of the frequency ratio with respect to the Young’s modulus of the

Fig. 2 Trend of the fundamental frequency ratio vs Young's modulus of the adhesive (clamped-free joint, h
fixed to 3 mm)
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adhesive, showing that even for very stiff adhesives the frequency ratio is lower than 0.5. Moreover,
Fig. 3 shows that the frequency ratio decreases with increase in the length of the lap with a trend

Fig. 3 Trend of the fundamental frequency ratio vs length of the lap (clamped-free joint, h fixed to 3 mm)

Fig. 4 Trend of the fundamental frequency ratio vs Young’s modulus of the  adhesive (clamped-clamped joint,
h fixed to 3 mm)
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that is almost linear.
Figs. 4 and 5 show the frequency ratio for a clamped-clamped joint versus both the Young’s

modulus of the adhesive and the length of the lap. It is clear that the frequency ratio is both lower
than 0.5, as in the previous case, and less sensitive to variations of the Young’s modulus of the
adhesive with respect to a clamped-free joint. Furthermore, the trend of the frequency ratio versus
the length of the lap is similar to that shown in Fig. 2 even if it is more sensitive to the length of
the lap with respect to the clamped-free joint.

In Figs. 3 and 5 the effect of the thickness of the adhesive on the fundamental torsional natural
frequency of the joint is shown. In particular, it is evident that the frequency ratio has a very limited
sensitivity to variations in the thickness of the adhesive and it is almost zero for the clamped-
clamped joint. Moreover, in Figs. 2 and 4 the effect of the lap length 2c is shown: in general it is
evident that by increasing the length of the lap the fundamental torsional natural frequency is
reduced, mainly due to the increase of the overall mass of the joint.

Finally, results obtained by applying the procedure described in this article have been compared to
corresponding results derived by using a finite element model of the joint and the NASTRAN finite
element code. The joint has been discretized through brick elements and the comparison has been
performed by varying the Young’s modulus of the adhesive. Fundamental torsional natural

Fig. 5 Trend of the fundamental frequency ratio vs length of the lap (clamped-clamped joint, h fixed to 3 mm)

Table 1 Comparison with NASTRAN results for a clamped-free joint

Ea

[N/mm2]
f1 (NASTRAN)

[Hz]
f1 (present work)

[Hz]

270 333.3 323.0
2700 339.6 323.2
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frequencies for a joint with the previous properties and 2c = 20 mm are shown in Table 1,
demonstrating that corresponding results are in good agreement.

5. Conclusions

In this article torsional natural frequencies of non-tubular joints have been evaluated by
determining the roots of a determinantal equation. The latter has been written by deriving the
equation of motion of the joint for torsional vibrations and by imposing boundary conditions
allowing the continuity of both the twisting angle and of the twisting moment at every section of
the entire structure. The presence of the lap has been introduced in the equation of motion as a
‘distributed spring’ whose stiffness has been obtained in a previous article by analysing the state of
stress of the adhesive.

Some numerical simulations have been performed for a simple-lap joint and a given geometry so
as to illustrate the variation of the fundamental torsional frequency of the joint with respect to
changes of both the Young’s modulus and thickness of the adhesive and of the length of the lap. A
comparison between natural frequencies predicted by using the approach proposed in this article and
corresponding results obtained by using NASTRAN permitted to validate this procedure.
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