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Abstract. A new method for solving the uncertain eigenvalue problems of the structures with interval
parameters, interval finite element method based on the element, is presented in this paper. The
calculations are done on the element basis, hence, the efforts are greatly reduced. In order to illustrate the
accuracy of the method, a continuous beam system is given, the results obtained by it are compared with
those obtained by Chen and Qiu (1994); in order to demonstrate that the proposed method provides safe
bounds for the eigenfrequencies, an undamping spring-mass system, in which the exact interval bounds
are known, is given, the results obtained by it are compared with those obtained by aRi(1999),

where the exact interval bounds are given. The numerical results show that the proposed method is
effective for estimating the eigenvalue bounds of structures with interval parameters.
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1. Introduction

The numerical analysis of the structural dynamics characteristics is usually performed for
specified structural parameters conditions. However, in most practical situations, the structural
parameters are uncertain, for example, the inaccuracy of measurements, errors in manufacture, etc.
Therefore, the concept of uncertainty plays an important role in the investigation of various
engineering problems. The most common approach to the uncertain problems is to model the
structural parameters as a random vector. Under this circumstance, all information about the
structural parameters is provided by the joint probability density function (or distribution function)
of the structural parameters. Unfortunately, the probabilistic approaches are not able to deliver the
reliable results at the required precision without sufficient experimental data to validate the
assumptions made regarding the joint probability densities of the random variables or functions
involved.

At present, the majority of scientists and engineers studying problems containing uncertainty
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utilize stochastic models. They do it not because the uncertain phenomena actually have a stochastic
nature. In many cases, this ‘stochastization’ (or ‘randomization’) is the result of an established
scientific stereotype. According to Kuntzevichi and Lychak (1992), the assumption of stochastic
nature of the uncertainty can not be accepted at least in two cases: (1) when the volume of a priori
experimental data on the nature of the uncertain factors is so small that it does not allow the
conclusion on the availability of stable statistic characteristics; (2) when it is known a priori that the
uncertainty basically can not be considered to be produced by some probabilistic mechanism.

Since the mid-sixties, a new method called interval analysis has appeared. Moore (1979) and his
co-workers, Alefeld and Herzberger (1983) have given the pioneering work. Application of interval
analysis for some engineering problems was facilitated by H. U. Koylweigal. (1995), A. D.
Dimarogonas (1995), O. Dessoméizal. (2001), S. Nakagiri and N. Yoshikawa (1996). In terms of
mathematics, linear interval equations, nonlinear interval equation and interval eigenvalue problems
have been resolved partly. But due to the algorithm complex, it is difficult to apply their results into
the practical engineering. Recently, Chen, Qiu and Elishakoff (1994, 1995, 1996, 1999) have used
interval set models in the study of the static response and eigenvalue problems of structures with
bounded uncertain parameters. In their study, using the interval analysis and matrix perturbation,
several important results have been obtained. However, these results are based on the assumptions
that AK, Af are preselected in the equatid(o)U =f (a) andAK, AM are also preselected in the
equationK(a)u= AM(a)u. In general, if the stiffness coefficiedksand the mass coefficients; are
the linear function of the parameters, it can be obtained by using the interval algorithm, if the
stiffness coefficients; and the mass coefficients; are the nonlinear function of the parameters,
the difficulties for calculatind; andm; arise. Therefore, it is very important to present an effective
interval eigenvalue analysis method for structures with interval parameters. In this paper, based on
the conventional finite element method, we will discuss the interval finite element for the
eigenvalue analysis of structures with interval parameters by using the interval analysis. The results
of the proposed method are compared with those obtained by Chen and Qiu (199),afiu
(1999).

2. Mathematical backgrounds

In structural analysis and design, some structural parameters have errors or uncertainties which are
caused by manufacture, installation, measurement or computation. Therefore, it is very important to
predict the errors resulted from the above mentioned uncertainties in the structural design. In
interval mathematics, the errors or uncertainties are always denoted by intervals. From this point,
we define interval parameters first.

Let a = (ay, O ..., ay)' be a structural parameter vector with bound errors or uncertainties, where

a0a; = [a7 -Aa;, a7 +Aaj]
then

ala' =[a“-Aa, a+Aa] 1)

where
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a®=(a" af, ...af)
Aa = (Aay, Ay, ..., Aay)"

Let a and @ be the lower and upper bound vectors of the structural parameter ajector
respectively. The bound and uncertain parameter vectors are called interval parameters.

Before we can proceed to treat static response of structures with interval parameters and interval
loads, we need to introduce some results in interval analysis (Moore 1979).

In interval mathematics, a subset of real numlisersf the form py, a] ={t, a1 < t < ay|ay,
a, R} is called a closed real interval or an interval, denotecKby [ X, X], where X andX
are the lower and upper bounds, respectively. The set of all closed real intervals is dehn@ped by

The mid-point and uncertainty (or maximum error) of an inte/adre defined as

X +X
XC - ( 2 _) (2)
and B
ax=& ;)—( ) 3
respectively.

A symmetric interval means an intervéll in which X =-X .
We represent an-dimensional interval vector as

XI — (Xlla le, I an )T (4)

The set of alh-dimensional interval vectors is denotedItfy).
Similarly, the mid-vector and uncertainty of an interval vector can be defined as

XC — (X]_Ca XZCa - XnC)T (5)
and
AX = (AXy, AX, = AX)T (6)

whereX;© andA X, are given by Egs. (2) and (3) respectively.

A matrix whose elements are interval parameters is called an interval matrix and denoted by
A'=[A, A], where A is a matrix composed of the lower bounds of intervalspand is a matrix
composed of the upper bounds of the intervals. The set of all interval matrices is denoted by
[(R™M). The mid-matrix and uncertainty of an interval matixare given as

c_(A+A) c _ (3 + &)
A == or T
and
A—A i + ai
aa=BZB o g (Bt E)
where 2 J 2

A°=(aj) and AA=(Lg)

An arbitrary intervalX' 0 I(R) can be written as the sum of its mid-pgintand a symmetric
interval AX' = [-AX, AX] = AX [-1, 1], i.e.
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X'=Xc+AX! )
Similar expressions exist for the interval vector and interval matrixAFei (R™") we have
A'=AC+AA' 8)

where
AA'=[-AA, AA]

These basic quantities will play an important role in the following discussions.
Let f be a real-valued function of real variables, X, -, X;. An extension of means that an

interval value functionF of n interval variablesX, X;', - X., for all x OX| (=1, 2, n)
possesses the following property
F([X1, Xa], [X2, X, 5 X Xa]) = F (X0, X2, ", Xn) 9

Given a rational expression in real variables, we can replace the real variables by the corresponding
interval variables and replace the real arithmetic operations by the corresponding interval arithmetic
operations to obtain a rational interval function which is a natural extension of the real rational
function.

Let X' =[x, X] and Y' =[y, y] be interval numbers, respectively, thgn+Y', X' -Y' X'xY!
and X'/Y' are defined by the following formulas:

X'4Y'=[x, %]+ [y, y1=[x+Y, X+V] (10)
X'=Y'=[x, x]-[y, y]=[x -y] (11)
X'x Y'=[x, x] x [y, y] = [min(x Oy, x 0y, X O, XD)‘/) maxQ<Dy x Ly, x Ly, xy )] (12)

DXl o 11

e aCE R a2)
X' Y = [max(x, y ), ming, y )] (14)
XU Y= [max(x, ¥ ), min®, y )] (15)

3. Matrix perturbation for eigenvalue analysis

We consider the generalized eigenproblem
Ko Ug = /\0MOU0 (16)

where Ko and Mg are, respectively, the stiffness matrix and mass matrix of the finite element
assemblage), is the eigenvalue angj is the eigenvector.

It should be noted that perturbation theory studies the behavior of a system subjected to small
changes in its design variables. Therefore, if the system is represented by Eqg. (16), the problem
becomes that of determinilgandu whenK, and M, exhibits perturbations of the forky + AK,
and My +AM. Perturbation analysis is based on the solution of the original system. So, the
eigenvalue problem of the perturbed system is as follows

(Ko + AK)(uio + Aug) = (Ao + AA) (Mg + AM ) (U0 + Auy) (17)
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where

A=A+ Ao+ A+ -

AUg=Uqg + U+ Ug+ -

673

(18)
(19)

k=1, 2,---, p. p is the number of degree of freedom. Substituting Eqs—(18) into Eq. (17), we
can obtain the following equations (Chen 1993)

A = (Uko) "A Kuiko = Ako(Uko) T AMuyo

wherek=1, 2,---, p

4. Interval finite element method for structures with interval parameters

(20)

In this section, via the beam structures, we will consider the interval denotation of the structural
element stiffness matrix and mass matrix when the structural parameters vary in some intervals.
The stiffness matrix and mass matrix of the beam element can be respectively denoted by

EiA

o I
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Supposing that the cross-section of the beam is rectangle, whose héightvidth is B;, one has

A =BH; andl; = BiHiS/12. If E;, p, Bi andH; are interval variables; i.e5; = EC€ + AEeq, p=p°+

Apes, B =B°+ABe, H;=HC+AHe; Ignoring the terms of higher order, using the natural
interval extension of the real function and the Taylor expansion for the stiffness coefficients of the
beam element, the interval stiffness matrix and mass matrix of the beam element can be respectively

written as follows:

Ki(E', B!, H') = Ki(ES, B, H) + JE,
C C C C C C
o HUEBL L) (g g7y + ZUELBLHD ()it
C C C
= K(EC, BE, HO) + ZUELBL A ppe,
JE,
C C C C C C
+ aKI(EId!BBII ’ Hi ) ABie|2 + aKI(EIa!HBll ’ Hi ) AHieiS (23)
dMi icl BIC! HIC
Mi(a', B, H') = Mi(p, B H®) + (e D, ) (Pl = p°)
aMI IC! Blcl HIC dMI IC! Blcl HIC
dMi iC! Blcl HIC
= Mi(pS B, H®) + (pd _ )Apiem
o
C C C C C C
+ aMI(pld!BBll ’ Hi ) ABie|2 + dMI(pld!HBII ’ Hi ) AHie|3 (24)
where
IK(ES, BS, HY) _
JE, -
| BCHE —B°HC |
=T 0 0 3 0 0
BO(HD)®  BY(HY) BS(HS® BE(HH®
O 3 2 O 3 2
L oL L. 2L
3 3 3 3
o BIHD) BI(HD)  ,  cBI(HD) BX(H])
2L2 3L, 212 6L;
—BHE BCHE (25)
» 0 0 L 0 0
—B(HO)® -BS(H) BE(HD)® —BE(HY)
0 3 2 O 3 2
L; 2L Li 2L
o BIHD® BIHD)' ,  -BIHD® BE(HY’
2L? 6L, 2L? 3L
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Generally speaking, the interval stiffness matrix and mass matrix of the element of the structures
with interval parameters can be respectively expressed as

K(a") =K(a)+3 Db (31)

Ma')=M(a") +3 [Flaae] @2
where
a' =[a-Aa, a© +Ad]
a®=(a%, a5..., a%)
Aa = (Aaq, Aa,..., Aay), & =[-1, 1]

The stiffness matrix and mass matrix of the structure are assembled by using the element stiffness
matrix

K(a) = Z Ki(a) (33)

M(a) = Zl Mi(a) (34)
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Using the natural interval extension, and substituting the Egs. (31) and (32) into the Egs. (33) and
(34), we can obtain

K(a') = Z Ki(a')
Z [K(a )+Z DK 'AaJeUD]
=K(a )+Z Z 'Aa o (35)
M(a') = Z M;(a')

= .i {Mi(ac) + %M'Aa e”D}

=M(a )+Z ZD@GIAGJ i0 (36)
The eigenvalue equation in the finite element system becomes
K(a)u =AM(a)u (37)
subject to
a<ac<a

whereK(a) andM(a) are, respectively, the stiffness matrix and mass matnixxoh order,A andu
are, respectively, the eigenvalue and eigenveatoris the vector of the interval structural
parameters. Using the natural interval extension, we have

K(a")u=AM(a')u (38)
One views
n m
I _ oK O
AK' = 2, 2 EBa,Aa i
and

n m
(oM, 0
AM = ——AQ. g
.Z JZD‘MJ s

as an interval perturbation aroukd andM €, respectively. From the matrix perturbation as given
in the above section, we can obtain the interval extension of the eigenvalue
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Ak = Ao+ DA (39)
where
D= A = [DAy, AA] (40)
k=1, 2, p.
Al = (Uko)TAK 'Uo — AkO(ukO)TAM 'Uo
< oK oM,
= ( )TowalAa UkOelj Z ZAKO(UKO)T Aa UkOeu
i=1 |= =
n m )
= {( I )T(O;KIAO’ Uko — Ako(uko)TgM'Aa Uko}
i=1 =
n m )
- [ (Tho) G AT ~ Mo(ke) g Berioe, W[—l, 1 (41)
i=1 |=
n K, oM,
- [Z Y @) G Aditiio Aol g A Juko] (42)
i=1 |=
. n K, oM, |
= [21 3 |(@0) G Ao ~ Al Tio) G5 Ao (43)
iI=1 |=
Therefore, the upper and lower bounds of eigenvallvas, Aapd , are given by
)_\k = Ako + A/_\k (44)
and
Ak = Ao + DAy (45)

It should be noted that in the above formulas (42) and (43), the calculatiohd,for ~ AAand
are on the element basis, hence, the calculations are greatly simplified, and the over bar signifies
that the eigenvecto,, , contains only the components needed ftr #iement.

5. Numerical examples

In this section, two numerical examples will be given to illustrate that the proposed method is
effective for estimating the eigenvalue bounds of structures with interval parameters.

5.1 Example 1

Consider a continuous beam system shown in Fig. 1. The finite element model of the given
structure consists of 7 nodes and 6 elements. We suppose that the height and width of the cross-
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%1@ 2@3 @ 14 @ 5@6@76

| dm | 2111J dm L dm | 21m | dm
| I i X l |
Fig. 1 Continuous beam system with 7 nodes and 6 elements

section are 0.3 m and 0.2 m respectively; the Young’s modulus of the elenigrt 251x10' N/m?
the mass density for all the elementspis 7.8x10° kg/nt. The analysis results obtained by Chen
and Qiu (1994) are listed in Tables l1la, 2a and 3a; the results obtained by the present method are
listed in Tables 1b, 2b and 3b. In the tablds,the number of elements;is the number of modes;
A is the lower bound of thigh eigenvalue), is thekth eigenvaluej}, is the upper bound of the
kth eigenvalue; andA is the interval half width of thkth eigenvalue.
From the results listed in Tables, it can be seen that the present method is more available than that

Table 1a The lower and upper bounds of eigenvalues obtained by Chen and Qil%&wgil)l%opig

k Ak Ak /_\k AAk/Apl

1 0.827031E+05 0.836168E+05 0.845306E+05 0.117148E+02
2 0.174383E+06 0.176401E+06 0.178420E+06 0.258739E+02
3 0.920498E+06 0.931264E+06 0.942030E+06 0.138025E+03
4 0.516086E+07 0.525109E+07 0.534132E+07 0.115682E+04
5 0.143194E+07 0.145010E+07 0.146826E+07 0.232816E+03
6 0.849903E+07 0.858800E+07 0.867698E+07 0.114070E+04
7 0.192414E+08 0.199215E+08 0.206016E+08 0.871918E+04
8 0.629607E+08 0.677518E+08 0.725428E+08 0.614235E+05
9 0.439905E+08 0.459903E+08 0.479901E+08 0.256382E+05

Table 1b The lower and upper bounds of eigenvalues obtained by the present @mmqé—op.g

k Ak Ak A Kk AAk/Apl

1 0.827806E+05 0.836168E+05 0.844530E+05 0.107201E+02
2 0.174637E+06 0.176401E+06 0.178165E+06 0.226156E+02
3 0.921951E+06 0.931264E+06 0.940576E+06 0.119393E+03
4 0.519858E+07 0.525109E+07 0.530360E+07 0.673217E+03
5 0.143560E+07 0.145010E+07 0.146460E+07 0.185910E+03
6 0.850212E+07 0.858800E+07 0.867388E+07 0.110103E+04
7 0.197223E+08 0.199215E+08 0.201207E+08 0.255404E+04
8 0.670742E+08 0.677518E+08 0.684293E+08 0.868612E+04
9 0.455304E+08 0.459903E+08 0.464502E+08 0.589619E+04
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Table 2a The lower and upper bounds of eigenvalues obtained by Chen and Qi@mgﬂ%b&%

k A A A AAJAB,

1 —-0.844067E+05 0.836168E+05 0.251640E+06 0.672094E+07

2 —-0.115475E+05 0.176401E+06 0.364350E+06 0.751796E+07

3 0.610549E+06 0.931264E+06 0.125198E+07 0.128286E+08
4 0.408864E+07 0.525109E+07 0.641354E+07 0.464980E+08
5 0.108613E+07 0.145010E+07 0.181406E+07 0.145587E+08
6 0.732812E+07 0.858800E+07 0.984788E+07 0.503952E+08
7 0.151984E+08 0.199215E+08 0.246446E+08 0.188923E+09
8 0.403200E+08 0.677518E+08 0.951835E+08 0.109727E+10
9 0.336919E+08 0.459903E+08 0.582887E+08 0.491937E+09

Table 2b The lower and upper bounds of eigenvalues obtained by the present @G}hedl—%—oBiE

k A Al A DA /DBy

1 0.752551E+05 0.836168E+05 0.919785E+05 0.334467E+06
2 0.158761E+06 0.176401E+06 0.194042E+06 0.705605E+06
3 0.838137E+06 0.931264E+06 0.102439E+07 0.372505E+07
4 0.472598E+07 0.525109E+07 0.577620E+07 0.210044E+08
5 0.130509E+07 0.145010E+07 0.159511E+07 0.580039E+07
6 0.772920E+07 0.858800E+07 0.944680E+07 0.343520E+08
7 0.179293E+08 0.199215E+08 0.219136E+08 0.796860E+08
8 0.609766E+08 0.677518E+08 0.745269E+08 0.271007E+09
9 0.413913E+08 0.459903E+08 0.505893E+08 0.183961E+09

Table 3a The lower and upper bounds of eigenvalues obtained by Chen and QiL%&HAQ#)—l%%HiE

k A A A AAJAH,

1 -0.906249E+06 0.836168E+05 0.107348E+07 0.123733E+08
2 —0.910929E+06 0.176401E+06 0.126373E+07 0.135916E+08
3 —0.777705E+06 0.931264E+06 0.264023E+07 0.213621E+08
4 0.810320E+05 0.525109E+07 0.104211E+08 0.646257E+08
5 —0.370507E+06 0.145010E+07 0.327070E+07 0.227576E+08
6 0.280822E+07 0.858800E+07 0.143678E+08 0.722473E+08
7 0.518493E+07 0.199215E+08 0.346580E+08 0.184207E+09
8 —-0.101795E+07 0.677518E+08 0.136521E+09 0.859621E+09
9 0.121954E+08 0.459903E+08 0.797852E+08 0.422436E+09

of Chen and Qiu (1994) for estimating the lower and upper bounds of eigenvalues, for example, if
AB; = (5/100) B;, the lower and upper bounds Af and A, are respectlvely\ =0.84406E + 05,

A1 =0.25164E& + 06, A, ==0.11547% + 05, A, =0.36435B8+06 obtained by Chen and Qiu (1994),

and the correspondlng results obtained by the present method, are = OE7B2551A;, =
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Table 3b The lower and upper bounds of eigenvalues obtained by the present ﬁletthl—O—OHiD
k A Ak Ak AAJAHy
1 0.501701E+05 0.836168E+05 0.117064E+06 0.418084E+06
2 0.105841E+06 0.176401E+06 0.246962E+06 0.882007E+06
3 0.558758E+06 0.931264E+06 0.130377E+07 0.465632E+07
4 0.315065E+07 0.525109E+07 0.735153E+07 0.262555E+08
5 0.870059E+06 0.145010E+07 0.203014E+07 0.725049E+07
6 0.515280E+07 0.858800E+07 0.120232E+08 0.429400E+08
7 0.119529E+08 0.199215E+08 0.278901E+08 0.996074E+08
8 0.406511E+08 0.677518E+08 0.948525E+08 0.338759E+09
9 0.275942E+08 0.459903E+08 0.643864E+08 0.229952E+09

0.91978% + 05, 42 =0.15876FE + 06, A, =0.19404F + 06. These results indicate that if the
interval range of the structural parameters is large, the method proposed by Chen and Qiu (1994)
can not be used and the present method can be still used to estimate the lower and upper bounds of
eigenvalues of structures with interval parameters. The reason is tli tkethe increment of the

global stiffness matrix in the approach presented by Chen and Qiu (1994), and the corresponding
calculations of the present method are done on the element basis, thus simplifying the complex
interval algorithm and ensuring the reliability of the algorithm.

5.2 Example 2

Fig. 2 is an undamping spring-mass system with 5 nodes and 5 degrees of freedom. Its physical
parameters are as follows)y =30.0kgy =27.0k§, =27.0kg, =25.Mkg,  =18.0 kg;
ki =2010.0 N/m,k; =1825.0 N/mk§ =1615.0 N/rk;  =1410.0 Nk§,  =1205.0 N/m. The
uncertain parameters are in the following:

Case |

kj_l = kj_C + 10.0% &y, kzl = kzc + 25.0% en, k3| = k3c +15.0x% ey,

k5| = k5c + 5.0x ey

m,-' = ij +1.0X% &y,
"=k + 10.0x g,

Case Il
rnjI - ij + BmceAa kjl - ij + BkjceA

wheree, = [-1, 1], B is a small parameter. The results obtained by aDial. (1999) are listed in
Tables 4a, 5a, 6a and 7a; and the corresponding ones obtained by the present method are listed in
Tables 4b, 5b, 6b and 7b. Whekdas the number of modesjk is the lower bound of kite

i ey k3 ks s

Fig. 2 Undamping spring-mass system with 5 nodes and 5 degrees of freedom
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Table 4a The lower and upper bounds of eigenvalues obtained by tle¢ &i(999) (Case I)

Xiaowei Yang, Suhuan Chen and Huadong Lian

k A A WAk-2,)

1 0.585810E+01 0.650204E+01 0.643932E+00
2 0.420293E+02 0.463088E+02 0.427947E+01
3 0.988564E+02 0.108689E+03 0.983262E+01
4 0.158052E+03 0.173778E+03 0.157262E+02
5 0.209514E+03 0.230084E+03 0.205696E+02

Table 4b The lower and upper bounds of eigenvalues obtained by the present method (Case 1)

k A Ak WAk A, )

1 0.584486E+01 0.648760E+01 0.642740E+00
2 0.419423E+02 0.462137E+02 0.427141E+01
3 0.986593E+02 0.108475E+03 0.981541E+01
4 0.157740E+03 0.173442E+03 0.157013E+02
5 0.209149E+03 0.229691E+03 0.205423E+02

Table 5a The lower and upper bounds of eigenvalues obtained by tle¢ &i(1999)
(Case 11,=0.05)

k A Ak W(Ak —A )

1 0.557897E+01 0.681531E+01 0.123634E+01
2 0.398801E+02 0.487178E+02 0.883769E+01
3 0.937035E+02 0.114469E+03 0.207653E+02
4 0.149820E+03 0.183021E+03 0.332011E+02
5 0.198523E+03 0.242517E+03 0.439941E+02

Table 5b The lower and upper bounds of eigenvalues obtained by the present method
(Case 1I,6=0.05)

k A Ak WAk A, )

1 0.554961E+01 0.678286E+01 0.123325E+01
2 0.396702E+02 0.484858E+02 0.881561E+01
3 0.932103E+02 0.113924E+03 0.207134E+02
4 0.149032E+03 0.182150E+03 0.331182E+02
5 0.197478E+03 0.241362E+03 0.438839E+02

Table 6a The lower and upper bounds of eigenvalues obtained by tieé &i(1999)

(Case 1I,6=0.10)

k A, A WA — A)

1 0.504510E+01 0.753651E+01 0.249141E+01
2 0.360638E+02 0.538731E+02 0.178093E+02
3 0.847367E+02 0.126582E+03 0.418453E+02
4 0.135484E+03 0.202389E+03 0.669054E+02
5 0.179525E+03 0.268180E+03 0.886544E+02
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Table 6b The lower and upper bounds of eigenvalues obtained by the present method
(Case 1I,=0.10)

k A » W(Ac-A,)

1 0.493299E+01 0.739948E+01 0.246649E+01
2 0.352624E+02 0.528936E+02 0.176312E+02
3 0.828536E+02 0.124280E+03 0.414268E+02
4 0.132473E+03 0.198709E+03 0.662364E+02
5 0.175536E+03 0.263304E+03 0.877679E+02

Table 7a The lower and upper bounds of eigenvalues obtained by tle¢ &i(1999)

(Case II,=0.15)

k A A WA-A,)

1 0.455765E+01 0.834255E+01 0.378490E+01
2 0.325794E+02 0.596350E+02 0.270556E+02
3 0.765496E+02 0.140120E+03 0.635706E+02
4 0.122393E+03 0.224035E+03 0.101642E+03
5 0.162180E+03 0.296862E+03 0.134682E+03

Table 7b The lower and upper bounds of eigenvalues obtained by the present method
(Case II,=0.15)

k A Ak WA-A,)

1 0.431636E+01 0.801610E+01 0.369974E+01
2 0.308546E+02 0.573014E+02 0.264468E+02
3 0.724969E+02 0.134637E+03 0.621402E+02
4 0.115914E+03 0.215268E+03 0.993546E+02
5 0.153594E+03 0.285246E+03 0.131652E+03

eigenvalue;A, is the upper bound of #ta eigenvalue; anm/(ﬂk—g\k) is the interval width of the

kth eigenvalue.

From the results listed in tables, it can be seen that the present method is the same effective as
one in Qiuet al. (1999) for estimating the lower and upper bounds of eigenvalues when the interval
range of the structural parameters is not large. The results indicate that the proposed method

provides safe bounds for the eigenfrequencies.

6. Conclusions

Using the interval analysis method, a new method, the interval finite element method, which is on
the element basis and matrix perturbation, to solve uncertain eigenvalue problems of the structures
with interval parameters is presented. The calculations of the present method are done on the
element basis, thus, the calculations are greatly simplified and the reliability of the algorithm is
ensured. The present method has been applied to a continuous beam and an undamping spring-mass
system with interval parameters. The numerical results show that the proposed approach is more
effective than that of Chen and Qiu (1994) and the same effective as one eff @i(1999). It
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should be noted that although the method is based on the beam structures, if one replace matrix
differentiation with matrix sensitivity, it can be used to estimate the lower and upper bounds of the
eigenvalues of the plates and shells.
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