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Vibration control of laminated composite plates using 
embedded smart layers

J.N. Reddy† and S. Krishnan‡

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123, U.S.A.

Abstract. Analytical solutions and finite element results of laminated composite plates with smart
material layers embedded in them are presented in this study. The third-order plate theory of Reddy is
used to study vibration suppression characteristics. The analytical solution for simply supported boundary
conditions is based on the Navier solution procedure. The velocity feedback control is used. Parametric
effects of the position of the smart material layers, material properties, and control parameters on the
suppression time are investigated. It has been found that (a) the minimum vibration suppression time is
achieved by placing the smart material layers farthest from the neutral axis, (b) using thinner smart
material layers have better vibration attenuation characteristics, and, (c) the vibration suppression time is
larger for a lower value of the feedback control coefficient. 

Key words:  analytical solutions; composite plates; finite element solutions; third-order plate theory;
vibration control.

1. Introduction

1.1 Background 

The phrase smart structural system refers to a wide variety of active material and passive
structural systems (Newnham 1993). For instance, a sufficiently general system is a composite
(beam, plate, shell, or any other fundamental form) with embedded or surface mounted piezoelectric
or electrostrictive patches, or even layers of active materials in a laminated system Fig. 1. The
literature contains many definitions of smart and intelligent structures. According to Newnham’s
definition, the structures with surface mounted or embedded sensors and actuators that have the
capability to sense and take corrective action are referred to as smart structures. The feedback
circuitry linking sensing and actuating is external to the sensor and actuator components. In fact,
this precisely distinguishes a smart structural system from an intelligent structural system. Intelligent
structural systems involve smart components in which the functions of sensing, feedback control,
and actuating are all integrated. This type of system finds applications in aircraft wings, helicopter
rotors, weapon systems, automobiles, and so on. 

Two of the basic elements of a smart structural system are actuators and sensors. These sensors
and actuators may be either mounted on the flexible passive structure or embedded inside it. The
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sensing and control of flexible structures are primarily performed with the help of discretely placed
sensors and actuators. 

There are a number of materials that have the capability to be used as a sensor or an actuator or
both a sensor and actuator. A few examples of such materials that could be integrated with a
structure to make it smart are piezoelectric materials, magnetostrictive materials, electrostrictive
materials, shape memory alloys, and electro-rheological fluids. Among these materials, piezoelectric
and magnetostrictive materials have the capability to serve as both sensors and actuators.
Piezoelectricity (Maugin 1988) is a phenomenon in which some materials develop polarization upon
application of strains. This phenomenon is observed in materials that have a non-centrosymmetric
crystal structure. Examples of piezoelectric materials are Rochelle salt, quartz, and the most popular
one, Lead Zirconate Titanate or PZT (Pb (Zr,Ti) O3). Piezoelectric materials exhibit a linear
relationship between the electric field and strains for low field values (up to 100 V/mm). However,
the relationship is nonlinear for large fields, and the material exhibits hysteresis (Uchino 1986).
Furthermore, piezoelectric materials show dielectric aging and hence lack reproducibility of strains,
i.e., a drift from zero state of strain is observed under cyclic electric field conditions (Cross and
Jang 1988).

Bailey and Hubbard (1985) and Crawley and Luis (1987) demonstrated the feasibility of using
piezoelectric actuators for free vibration reduction of cantilever beams. A self-sensing active
constrained damping layer treatment for a Euler-Bernoulli beam was studied by Yellin and Shen
(1996). Baz et al. (1990) have investigated vibration control using shape memory alloy actuators
and their characterization. Anders et al. (1991) have analytically demonstrated their control of sound
radiation from shape memory alloy hybrid composite panels. By changing the elastic properties of
the host structure, Choi et al. (1990) demonstrated the vibration reduction effects of electrorheological
fluid actuators in a composite beam. 

An ideal actuator, for distributed embedded application, must have high energy density, negligible
weight, and point excitation with a wide frequency bandwidth. Terfenol-D, a magnetostrictive
material, has the characteristics of being able to produce strains up to 2500 µm and energy density
as high as 25000 Jm−3 in response to a magnetic field. Goodfriend and Shoop (1992) reviewed the
material properties of Terfenol-D with regard to its use in vibration isolation. Anjanappa and Bi
(1994a, b) investigated the feasibility of using embedded magnetostrictive mini actuators for smart
structure applications, such as vibration suppression of beams. Bryant, Fernandez, and Wang (1993)
have presented results of an experiment in which rod of magnetostrictive Terfenol-D was used in

Fig. 1 Laminated composite plate with inserts of smart material layers
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the dual capacity of passive structural support element and an active vibration control actuator. A
self-sensing magnetostrictive actuator design based on a linear model of magnetostrictive
transduction for Terfenol-D was developed and analyzed by Pratt and Flatau (1995). Eda et al.
(1995) and Krishna Murty et al. (1997, 1998) proposed magnetostrictive actuators that take
advantage of ease with which the actuators can be embedded and remote excitation capability of
magnetostrictive particles as new actuators for smart structures. 

1.2 Present Study 

Vibrations or shape control of flexible structures is achieved with the help of actuators and a
control law. Many modern techniques have been developed in recent years to meet the challenge of
designing controllers that suit the function under some required conditions. There have been a
number of studies on vibration control of flexible structures using smart materials (Anjanappa and
Bi 1994a, b, Bryant, Fernandez, and Wang 1993, Pratt and Flatau 1995, Eda et al. 1995, Krishna
Murty et al. 1997, 1998, Reddy and Barbosa 2000). 

In this current work vibration control of laminated composite plates is studied using the third-
order plate theory of Reddy (Reddy 1984a, b, 1997), based on the formulation presented by Reddy
(1999a). The third-order shear deformation theory is used. A simple negative velocity feed back
control is used to actively control the dynamic response of the structure through a close-loop
control. The analytical solutions are developed for simply supported boundary conditions and a
displacement finite element model is used for a general plate. The effects of material properties,
lamination scheme, and placement of the smart material layer on vibration suppression are
investigated.

2. Theoretical Formulation

2.1 Introduction

The simplest equivalent single-layer theories are the classical laminate plate theory (CLPT) and
the first-order shear deformation theory (FSDT). These theories adequately describe the kinematics
of most laminated plates (Reddy 1997). However, for better inter-laminar stress distributions,
higher-order theories are used. One such theory is the third-order shear deformation plate theory of
Reddy (1984a, b, 1997, 1999b). In this section the complete derivation of the governing equations
of the third-order plate theory for laminated plates with embedded actuating layers and velocity
feedback control is presented.

Consider a symmetric laminated composite plate of n layers with the mth and the (n−m+1)st layers
being those made of a smart material that is capable of sensing and actuating. The remaining n−2
layers are made of the fiber-reinforced material that has a varying fiber orientation θ and
symmetrically disposed about the center of the plate. An illustration of a composite plate with smart
material inserts is shown in Fig. 1. The assumption of symmetric lamination scheme is necessary
only for the development of analytical solutions, and it can be removed for the finite element model
development. In the latter case the actuating layers can be replaced with patches and they can be
embedded throughout the structure as dictated by an optimization procedure. 

For the sake of completeness some of the key equations of the third-order plate theory and its
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finite element model are repeated here. For additional details, the reader may consult Reddy
(1999a).

2.2 Displacement and field

The displacement field for the third-order shear deformation theory (TSDT) is of the form 

(1)

where (u0, v0, w0) denotes the displacements of a point on the plane z=0,  denote the
rotations of a transverse normal about the y- and x-axes, respectively, and  

2.3 Constitutive relations

Each composite lamina of the plate is assumed to behave as an orthotropic material, with its
material axes oriented arbitrarily with respect to the laminate coordinates. The smart material layer
can be orthotropic, but taken to be isotropic in actual calculations. The constitutive equations of
each layer when referred to the laminate coordinates (x, y, z), are

{ }
(k)

{ } { }
{ } (2)

where  are the transformed stiffnesses,  are the transformed moduli of the actuating/sensing
material, which in the present study is taken to be a magnetostrictive material, and  are the
plane stress-reduced stiffnesses and  are the piezoelectric or magnetostrictive coupling moduli of
the kth lamina, if it is not a structural layer. The dij are the coupling coefficients that couple the
elastic structure with the smart material. Here θ is the angle measured counter-clockwise from the x-
coordinate to the x1-coordinate. For the structural part of the composite structure the electric field
intensity Hz should be excluded in Eq. (2). The coefficients  are known in terms of the
engineering constants of the kth layer (see Reddy 1999a, b).

2.4 Equations of motion

The equations of motion of the third-order plate theory are
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(3)

where

(4)

and (Nxx, Nyy, Nzz) denote the total in-plane force resultants, (Mxx, Myy, Mzz) the moment resultants,
and (Pxx, Pyy, Pzz) and (Rx, Ry) denote the higher-order stress resultants. 

The stress resultants {N} and {M} associated with the smart layers are defined by 

(5)

2.5 Velocity feedback control

Considering velocity proportional closed-loop feedback control, the magnetic field intensity H is
expressed in terms of coil constant I(x, y, t) as 

H(x, y, t)=kcI(x, y, t) (6)

and I(x, y, t) is related to the velocity  by 

I(x, y, t)=c(t) (7)

where kc is the coil constant, which can be expressed in terms of the coil width bc, coil radius rc,
and number of turns nc in the coil by

(8)
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and c(t) is the control gain. In this study the control gain is assumed to be constant. Hence it is
represented as c.

3. Analytical Solution

The equations of motion Eq. (3) can be expressed in terms of displacements (u0, v0, w0 ϕx, ϕy) by
substituting for the force and moment resultants in terms of the displacements. Due to the
assumption of symmetry of the composite laminated plate, u0, and v0 are uncoupled from the
bending deflections. Hence, it is sufficient to consider only the bending equations. For simply
supported rectangular plates, it is possible to obtain the Navier solutions. The simply supported
boundary conditions can be expressed as

ϕx(x, 0, t)=0, ϕx(x, b, t)=0, ϕy(0, y, t)=0, ϕy(a, y, t)=0,
w0(x, 0, t)=0, w0(x, b, t)=0, w0(0, y, t)=0, w0(a, y, t)=0
(x, y, t)=0, (a, y, t)=0, (x, 0, t)=0, 0(x, b, t)=0 (9)

The boundary conditions can be satisfied by the following expansions of the displacements:

w0(x, y, t)= Wmn(t) sin αx sin βy

ϕx(x, y, t)= Xmn(t) cos αx sin βy

ϕy(x, y, t)= Ymn(t) sin αx cos βy (10)

where α=mπ/a, β=nπ/b. The coefficients (Wmn, Xmn, Ymn) are unknowns to be determined. The
loads are also expanded in double Fourier series 

(x, y, t)= (t) cos αx sin βy

(x, y, t)= (t) sin αx cos βy

Mxx Mxx Myy Myy
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Fig. 2 Geometry and coordinate system used for the Navier solution
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(x, y, t)= (t) cos αx sin βy

(x, y, t)= (t) sin αx cos βy (11)

where, for example, the coefficients are defined by 

 sin αx sin βydxdy

 sin αx sin βydxdy

 sin αx sin βydxdy

 sin αx sin βydxdy (12)

Substituting the expansions (12) into the governing equations expressed in terms of the generalized
displacements, we obtain
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Ĉ33 0 0
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Ŝ35=A44β−c1 F̂22β3+ F̂12+2F̂66( )α2β
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 [ ]

=β�33,�33=−

(14)

For vibration control, the solution of the ordinary differential equations in Eq. (13) are obtained in
the form

(15)

and obtain, for non-trivial solution, the result

(16)

where 

(17)

for i, j=3, 4, 5. This equation gives three sets of eigenvalues. The lowest one corresponds to the
transverse motion. The eigenvalues can be written as λ=−αd+iωd, so that the damped motion is
given by

(18)

In arriving at the last solution, the following initial conditions are used:
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4. Finite element model

The nodal variables of the third-order theory are ( ), where  are
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functions of  and Hermite interpolation function for w0 are used for the formulation of the
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(20)

where  denote the Lagrange interpolation functions and  are the Hermite interpolation
functions. The four nodal values associated with w0 are

(21)

The finite element model is of the form
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5. Results and discussion

5.1 Introduction 

The reason for using magnetostrictive material in this work is to satisfy the requirement of smart
material actuators to have high energy density, negligible weight, and point excitation with a wide
frequency bandwidth. A typical magnetostrictive actuator consists of two identical magnetostrictive
rods held between two end plates made of magnetic material (Ni-Fe) alloy. The surrounding
magnetic coils drive each Terfenol-D rod separately. The rods can be pre-stressed using Belleville
disk springs and a screw located between the two rods. The Belleville disk springs are non-linear in
nature providing a deflection range over which the preload is maintained constant. The two end
plates serve two purposes: they provide (1) a means to preload the rods and (2) a least resistance
path for the magnetic flux generated by the coils. The coils are so energized that the magnetic flux
generated by them add up to make the actuator most efficient. By this method both the forward and
return flux paths will be performing useful work. Terfenol-D has the characteristics of being able to
produce strains up to 2500 µm, which is of an order of magnitude superior to the current generation
of piezeceramic materials, and also has an energy density as high as 25000 Jm−3. The material
properties of Terfenol-D are listed in Table 1. 

Four different kinds of the elastic composite materials are used. CFRP [composite fiber reinforced
polymer], Gr-Ep (AS) [graphite-epoxy], Gl-Ep [glass epoxy], Br-Ep [boron epoxy]. The structural
properties of these materials are listed in Table 2.

5.2 Numerical solutions

Using the analytical solutions and finite element models developed in Sections 3 and 4, numerical
studies are carried out. In particular, the following parametric studies were carried out to determine
the effect on the frequency and vibration suppression time:

(1) The effect of the position of the smart material layer.
(2) The thickness of the smart material layer and the elastic composite layer. 
(3) The material properties of the elastic layer.

Table 1 Terfenol-D material properties

Em [GPa] ρm [Kg m−3] Dk [10−8 mA−1] υm

26.5 9250 1.67 0

Table 2 Engineering material properties of various composite materials

Material E1

[Gpa]
E2

[GPa]
G13

[GPa]
G23

[GPa]
G12

[GPa] ν12
ρ

[Kg m−3]

CFRP
Gr-Ep(AS)
Gl-Ep
Br-Ep

138.6
137.9
53.78

206.9

8.27
8.96

17.93
20.69

4.96
7.20
8.96
6.90

4.96
6.21
3.45
4.14

4.12
7.20
8.96
6.90

0.26
0.30
0.56
0.30

1824
1450
1900
1950
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The vibration suppression time is defined as the time required to reduce the uncontrolled vibration
amplitude to one-tenth of its initial amplitude. Various values of the vibration suppression time ratio
Ts (suppression time divided by the maximum suppression time) are obtained as the distance
between the magnetostrictive layers and the neutral axis is varied. The vibration suppression time
ratio can be shown to be , where hm is the thickness of the magnetostrictive layer and zm

is the distance between the mid-plane of the magnetostrictive layer and the mid plane of the plate.
Studies involving different lamination schemes, layer thickness, and control gain values have also
been carried out. 

To obtain the frequencies and the damping parameter, Eq. (23) should be solved. Eq. (23) can be
expressed as 

(27)

which can be rewritten as

(28)

or  where . This system is then solved using Mathcad, a mathematical

software tool to obtain the eigenvalues, which are then used to determine the solution (18).

5.3 Effect of lamina material properties 

The influence of lamina material properties on the amplitude of vibration and vibration
suppression times has been studied and the results are tabulated. Table 3 lists the inertial coefficients
of the different lamination schemes used. The lamination scheme used in all the materials is [±45/
m/0/90]S. This lamination scheme means that the laminated plate consists of 10 laminae, the fiber
orientation being [+45/−45/m/0/90/90/0/m/−45/45]. Here m stands for the magnetostrictive material
layer and the subscript “S” stands for symmetric.

Table 4 contains the frequencies ωd and damping coefficient αd obtained using different composite
materials. Fig. 3 shows the plots of vibration suppression characteristics of composite plates made
up of different materials. It is observed that materials having almost same E1/E2 ratios have similar

Ts=hm/2zm

S[ ] U{ }+ C[ ] U·{ }+ M[ ] U··{ }=0

0 M[ ] 
 M[ ] C[ ] 

U··{ }
U·{ }

+ M[ ]– 0 
 0 S[ ] 

U·{ }
U{ } = 0{ }

A[ ] Y·{ }+ B[ ] Y{ }=0 U·{ }
U{ } = Y{ }

Table 3 Inertial coefficients of different lamination schemes

Material Laminate I0 

[kg m−2]
I2 (10−4) 
[kg m−1]

I4 (10−9)
[kg m3]

I6 (10−14)
[kg m5]

CFRP

Gr-Ep(AS)
Gl-Ep
Br-Ep

[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S
[m/904]S

[m/04]S

[±45/m/0/90]S
[±45/m/0/90]S
[±45/m/0/90]S

33.09
33.09
33.09
33.09
33.09
30.10
33.70
34.10

2.461
3.352
4.540
4.540
4.540
2.196
2.514
2.550

2.907
4.600
8.521
8.521
8.521
2.471
2.995
3.054

04.508
07.084
17.171
17.171
17.171
03.696
04.674
04.782
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vibration suppression characteristics. 
Since the classical laminate plate theory (CLPT) and the first-order shear deformation theory

(FSDT) are mere special cases of the third-order shear deformation theory (TSDT), it is possible to
obtain solutions of the CLPT and FSDT as special cases from the formulations presented herein. A
comparison of the eigenvalues obtained using the three theories is presented in Table 5. It is
observed that the CLPT gives higher frequencies of vibration. This is expected, as the CLPT theory
renders the plate stiffer compared to the other two theories. 

5.4 Effect of the position of the smart material layer

The suppression times for a CFRP laminate are studied and the results are presented in Table 6.
The thickness of the lamina he is taken to be 5 mm and the thickness of the smart material layer hm

is taken to be 2 mm. The natural frequencies and the damping coefficients for different lamination
schemes are obtained. The maximum deflections Wmax of the composite plate and the suppression

Table 4 Damping coefficients and frequencies for different materials (he=1 mm, hm=1 mm)

Material Laminate −αd±ωd

[rad s−1]

CFPR
Gr-Ep(AS)
Gl-Ep
Br-Ep

[±45/m/0/90]S
[±45/m/0/90]S
[±45/m/0/90]S
[±45/m/0/90]S

6.543 ±254.791
7.242 ±264.513
6.475 ±187.462
6.320 ±309.998

Fig. 3 Effect of material properties on vibration suppression
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times have been calculated. Here zm denotes the positive distance from the center of the laminate to
the center of the smart layer.

Fig. 4 shows the plots of fundamental mode of vibration versus time for various laminates. It is
observed that as the smart material layer is moved farther from the mid-plane the suppression time
decreases. This is due to the fact that the moment applied by the actuation of the smart material on
the structure is more as the smart material is moved away from the mid-plane. Fig. 5 shows the
effect of moving the smart material layer away from the mid-plane on the vibration suppression
time. It is observed that the vibration suppression time does not show appreciable change when the
distance of the smart material layer from the mid-plane is reduced from 0.021 m to 0.011 m, but

Table 5 Comparison of the eigenvalues obtained through CLPT, FSDT, and TSDT (he=1 mm, and hm=1 mm)

Material Laminate −αd±ωd [rad s−1]
 CLPT

−αd±ωd [rad s−1]
 FSDT

−αd±ωd [rad s−1]
 TSDT

CFRP [±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S

 1.318±259.311
 3.956 ±258.482

 6.591 ±255.376
 9.231 ±241.059
 11.865 ±221.872

1.317 ±259.160
3.952 ±257.723
6.587 ±254.823
9.224 ±240.724

11.861 ±221.418

1.372 ±258.812
3.983 ±257.157
6.543 ±254.791
9.402 ±240.543

11.981±221.275

Table 6 Suppression time ratio for different CFRP laminates (he=5 mm and hm=2 mm)

Laminates zm

(m) −αd ±ωd
Wmax

(10−3 m)
t at 

Wmaxy/10 Ts

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S

0.001
0.006
0.011
0.016
0.021

 1.531
12.261
25.983
39.719
53.650

1286.781
1085.873
1072.518
1006.792
905.857

0.7689
0.8213
0.8024
0.8298
0.9673

1.4350
0.2411
0.1309
0.0898
0.0685

1.0000
0.1660
0.0909
0.0625
0.0476

Fig. 4 Vibration suppression characteristics for different CFRP laminates (he=5 mm, hm=2 mm)
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then increases by almost an order of magnitude when the smart material layer is moved from
0.011 m to 0.001 m from the mid-plane. This is due to the non-linearity caused by the zm term in
the definition of Ts.

5.5 Effect of the lamina thickness

The vibration characteristics are obtained for the CFRP laminate with the fiber orientation of
[±45/0/90/m]S for different thicknesses of the lamina and smart material layers, while keeping the
control gain constant. The vibration frequencies, damping factors, suppression times, and the
suppression time ratios are presented in Table 7 for (he=1 mm, hm=1 mm), (he=5 mm, hm=2 mm),
and (he=5 mm, hm=5 mm). Also, see Fig. 6.

5.6 Effect of the feedback coefficient on suppression time

The value of the feedback coefficient c(t)kc influences the vibration suppression characteristics.
The study is performed on a CFRP laminate with thickness of the elastic layer to be 5 mm and the

Fig. 5 Vibration suppression times for CFRP laminates (he=5 mm, hm=2 mm)

Fig. 6 Effect of lamina thickness on vibration suppression
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thickness of the smart material to be 5 mm. Different lamination schemes are used and the position
of the smart material layer is varied. Two different values of the feedback coefficient are used: c(t)kc

=104 and c(t)kc=103. 
Plots of the variation of the vibration suppression time for different laminates and for two

Table 8 Suppression time ratio for two control gains for different CFRP laminates (he=5 mm and hm=5 mm)
a)

Laminate zm (m)
  c(t)kc=104

−αd ±ωd Wmax t Ts

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/45/0/90]S
[m/±45/0/90]S

0.0025
0.0075
0.0125
0.0175
0.0225

6.322
18.983
31.672
44.514
57.751

1252.58
1245.15
1230.98
1165.12
1071.83

0.7581
0.7493
0.7435
0.7549
0.7744

0.3702
0.1241
0.0752
0.0530
0.0418

1.0000
0.3333
0.2000
0.1429
0.1111

b)

Laminate zm (m)
  c(t)kc=103

−αd ±ωd Wmax t Ts

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/45/0/90]S
[m/±45/0/90]S

0.0025
0.0075
0.0125
0.0175
0.0225

0.632
1.894
3.173
4.450
5.774

1252.64
1245.21
1231.05
1165.24
1070.97

0.7612
0.7604
0.7682
0.8112
0.8524

3.5132
1.1779
0.7109
0.5031
0.3969

1.0000
0.3333
0.2000
0.1429
0.1111

Fig. 7 Effect of feedback coefficient on the suppression time. (1) [±45/0/90/m]S, (2) [±45/0/m/90]S, (3) [±45/
m/0/90]S, (4) [45/m/−45/0/90]S, (5) [m/±45/0/90]S

Table 7 Vibration suppression characteristics for CFRP laminate of orientation [±45/0/90/m]S

Thickness
 (mm) −αd

±ωd

(rad s−1)
Wmax

(10−3 m)
t (sec) at 
Wmax/10 

he=1, hm=1
he=5, hm=2
he=5, hm=5

1.372
1.531
6.322

258.812
1286.781
1252.580

3.8710
0.7689
0.7581

1.7720
1.4350
0.3702
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different values of the feedback control coefficient are presented in Fig. 7. It can be seen that the
suppression time increases when the value of the feedback coefficient decreases. This is expected
because the coefficients of the damping matrix decrease, thereby resulting in less damping.
However, from Table 8, it can be noted that there is no appreciable change in the natural frequency
of vibration for different lamination schemes when the value of the feedback coefficient changes. 

5.7 Effect of lamination scheme

The vibration suppression characteristics are studied for a number of lamination schemes. In
addition to the lamination schemes and different thickness of the elastic lamina and the smart
material lamina used earlier, composite plates with more number of layers and fiber orientations are
examined for vibration suppression. These results have been tabulated in Tables 9 and 10. Here
again the analysis has been done for different positions of the smart material layer, and the effect of
smart material layer position on the vibration suppression time is studied.

5.8 Variation of TS and � 31 for different laminates

The variation of the vibration suppression ratio TS and the normalized damping parameter 
(�31/�max) is studied for different positions of the smart material layer in the composite laminated
plate. The results are tabulated in Table 11, and plots are presented in Fig. 8. From the earlier

er=

Table 9 Suppression time ratio for different CFRP laminates (he=3 mm and hm=3 mm)

Laminates zm

(m) −αd ±ωd
Wmax

(10−3 m)
t at Wmax/10

(sec) Ts

[±45/0/90/±30/60/m]S

[±45/0/90/±30/m/60]S
[±45/0/90/30/m/−30/60]S
[±45/0/90/m/±30/60]S
[±45/0/m/90/±30/60]S
[±45/m/0/90/±30/60]S
[45/m/−45/0/90/±30/60]S
[m/±45/0/90/±30/60]S

0.0015
0.0045
0.0075
0.0105
0.0135
0.0165
0.0195
0.0225

3.423
8.541

14.278
19.871
25.728
31.432
37.194
42.873

1406.03
1279.65
1270.21
1256.32
1248.69
1238.85
1203.91
1162.04

0.7090
0.7461
0.7459
0.7463
0.7437
0.7422
0.7508
0.7611

0.6370
0.2134
0.1287
0.0912
0.0721
0.0580
0.0491
0.0437

1.0000
0.3333
0.2000
0.1428
0.1111
0.0909
0.0769
0.0666

Table 10 Suppression time ratio for different CFRP laminates (he=2.5 mm and hm=2.5 mm)

Laminates zm

(m) −αd ±ωd
Wmax

(10−3 m)
t at Wmax/10 

(sec) Ts

[±5/±60/0/90/±45/30/m]S

[±45/±60/0/90/±45/m/30]S
[±45/±60/0/90/45/m/−45/30]S
[±45/±60/0/90/m/±45/30]S
[±45/±60/0/m/90/±45/30]S
[±45/±60/m/0/90/±45/30]S
[±45/60/m/−60/0/90/±45/30]S
[±45/m/±60/0/90/±45/30]S
[45/m/−45/±60/0/90/±45/30]S
[m/±45/±60/0/90/±45/30]S

0.00125
0.00375
0.00625
0.00875
0.01125
0.01375
0.01625
0.01875
0.02125
0.02375

2.822
8.441
6.487

14.114
18.219
22.288
26.306
30.441
34.521
38.627

1671.43
1671.45
1121.87
1397.06
1393.13
1388.02
1373.02
1355.09
1330.32
1301.37

0.5992
0.5932
0.8557
0.7016
0.7015
0.6998
0.7011
0.7047
0.7112
0.7158

0.7140
0.2535
0.1933
0.1494
0.1275
0.1052
0.0881
0.0814
0.0713
0.0685

1.0000
0.3333
0.2000
0.1433
0.1111
0.0909
0.0769
0.0666
0.0588
0.0526
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discussions, the vibration suppression ratio decreases when the smart material is moved away from
the laminate. The normalized damping parameter increases as the smart material layer is moved
away from the neutral axis. This is explained by the increased damping that is achieved when the
smart material layer is moved away from the neutral axis. The variation is studied on a CFRP
laminate with the thickness of the elastic composite layer and the thickness of the smart material
layer being 1 mm. 

Fig. 8 Variation of TS and �31 with the position of the smart material layer

Fig. 9 Variation of time ratio with respect to distance from the neutral axis

Table 11 Suppression time ratio and �31 parameter for different CFRP laminates (he=1 mm, hm=1 mm)

Laminate zm (m) −αd ±ωd
Wmax

(10−3 m)
t (sec) at 
Wmax/10 TS −�31

Er=
−�31/�max

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S

0.0005
0.0015
0.0025
0.0035
0.0045

1.372
3.983
6.543
9.402

11.981

258.812
257.157
254.791
240.543
221.275

3.871
3.795
3.801
3.904
4.162

1.772
0.594
0.358
0.257
0.200

1.000
0.333
0.200
0.143
0.111

 4.425
13.285
22.131
30.982
39.833

0.111
0.334
0.556
0.778
1.000
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5.9 Effect of smart material layer position and the thickness of structural layers

Fig. 9 shows the effect of the position and thickness of the smart material layer and the thickness
of the composite material layers on the vibration suppression time ratio. From the figure it is
observed that thinner smart material layers result in better attenuation of the vibration. This is due to
a higher mass matrix that is caused by the large increase in the moment of inertia of the system
when thickness of the smart material layer is increased. This increase is because the smart material
layer has a density of almost five times to that of the composite material. 

5.10 Vibration suppression of different modes

The vibration suppression characteristics of the first five vibration modes of the composite plates
are also studied. Plots of deflection versus time are presented in Fig. 10. 

From the plots it can be seen that the vibration suppression time decreases very rapidly as mode
number increases. This is because the amplitude of vibration that has to be suppressed decreases as

Fig. 10 Suppression characteristics for different modes of vibration
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Table 12 Comparison of finite element with analytical results for a CFRP laminate (he=5 mm, hm=5 mm)

Laminate zm

 (m)
  Analytical  FEM [4×4]  FEM [2×2]

−αd± ωd −αd± ωd −αd± ωd

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S

0.0025
0.0075
0.0125
0.0175
0.0225

6.322 ±1252.58
18.983 ±1245.15
31.672 ±1230.98
44.514±1165.12
57.751 ±1071.83

6.287 ±1252.19
18.915 ±1244.75
31.618 ±1230.32
44.485±1164.73
57.697 ±1071.27

6.203 ±1251.87
18.884 ±1244.43
31.492 ±1229.81
44.231±1164.15
56.983 ±1070.65

Table 13 Vibration suppression characteristic for a fully clamped CFRP laminated plate he=5 mm, hm=5 mm

Laminates zm

(m) −αd ±ωd
Wmax

(10−3 m)
t at 

Wmax/10 (sec) Ts

[±45/0/90/m]S

[±45/0/m/90]S
[±45/m/0/90]S
[45/m/−45/0/90]S
[m/±45/0/90]S

0.0025
0.0075
0.0125
0.0175
0.0225

7.53
20.85
35.07
47.88
60.15

1898.61
1873.35
1855.91
1814.04
1765.29

0.4797
0.4739
0.4701
0.4885
0.5090

0.3419
0.1146
0.0691
0.0489
0.0387

1.0000
0.3330
0.2000
0.1429
0.1110

the mode number increases. The results have been obtained for a CFRP [±45/m/0/90]S composite
laminate with he=1 mm and hm=1 mm. Of course, similar trend should hold for other laminates.
Here the value of m= 1, and n takes the values 1, 2, 3, 4, 5.

5.11 Finite element results

Here the finite element developed herein is validated by comparing with the analytical solution,
and then results are obtained for a clamped laminate, for which no analytical solution is available.
The element used in the analysis is a 8-noded rectangular element. Three different discretizations
are used for the analysis, namely 2× 2, and 4× 4. The finite element results are compared with the
analytical results, for simply supported plates in Table 12. 

Next the same laminated plate but with fully clamped boundary condition, as an example, is
analyzed, as it does not allow analytical solution. Of course laminates with other boundary
conditions may be analyzed with the finite element method developed herein. The results are
obtained by using an 8-noded rectangular element with a 4× 4 mesh. Table 13 shows the results
obtained. The vibration suppression characteristics are shown in Fig. 11. The results presented here
are in agreement with those obtained for beams by Reddy and Barbosa (2000). 

6. Conclusions

Analytical solution for simply supported plates and finite element solutions of composite plates
with smart material layers embedded in them are presented in this study. The third-order plate
theory is used to study vibration suppression characteristics. The analytical solution is based on the
Navier solution procedure. The velocity feedback control is used. The displacement finite element
model is developed with eight degrees of freedom (w0, w0,x, w0,y, w0,xy, φx, φy) per node.
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The smart material used in this study to achieve vibration suppression of laminated composite
plates is the Terfenol-D magnetostrictive material. The vibration suppression characteristics of
laminated plates are studied for a number of different cases and the results are presented in tables
and figures. The behavior of composite plates with embedded magnetostrictive layers for different
kinds of structural material has been studied. The suppression characteristics have been found to be
similar for materials having similar E1/E2 ratios. The effect of placing the smart material layer at
various laminate positions with respect to the neutral axis of the plate has been studied. It has been
found that there is maximum vibration suppression when the smart material layers are placed
farthest from the neutral axis, which creates larger bending by the smart material layer. It has also
been found that using thinner smart material layers have better vibration attenuation characteristics.
The effect of using different values of the feedback coefficient has also been studied. It is observed
that for a lower value of the feedback coefficient the time taken to suppress the vibration is longer.
This is expected, as the amount of actuation done by the smart material layer onto the composite
plate is less as the feedback value is less. As pointed out by Yang and Huang (1998), placing
actuating/sensing layers symmetrically may not be the best choice to achieve optimal control of a

Fig. 11 Vibration suppression characteristics of fully clamped CFRP laminate
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structure.
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