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Continuous and discontinuous contact problem for a
layered composite resting on simple supports

Ahmet Birincit and Ragip Erdol*

Civil Engineering Department, Karadeniz Technical University, 61080, Trabzon, Turkey

Abstract.  The frictionless contact problem for a layered composite which consists of two elastic layers
having different elastic constants and heights resting on two simple supports is considered. The external
load is applied to the layered composite through a rigid stamp. For values of the resultant compressive
force P acting on the stamp vertically which are less than a critical \Rjuand for small flexibility of

the layered composite, the continuous contact along the layer - the layer and the stamp - the layered
composite is maintained. However, if the flexibility of the layered composite increases and if tensile
tractions are not allowed on the interface, for P, a separation may be occurred between the stamp
and the layered composite or two elastic layers interface along a certain finite region. The problem is
formulated and solved for both cases by using Theory of Elasticity and Integral Transform Technique.
Numerical results forP, separation initiation distance, contact stresses, distances determining the
separation area, and the vertical displacement in the separation zone between two elastic layers are given.

Key words : continuous contact; discontinuous contact; separation; integral equation; elastic layer; rigid
stamp; theory of elasticity; fourier transform.

1. Introduction

The contact problems in solid mechanics involving elastic layers have attracted the attention of
several researchers due to its application to a great variety of important structures of practical
interest. Foundation grillages, pavements in roads and runways, rolling mills, railway ballast, beams
resting on supports or stamps and foundation beams are some example of the contact problems.

The general methods of the contact problems may be found in the works of Hertz (1895), Galin
(1961) and Uffliand (1965). The contact problems are examined using different methods, some of
which are complex variables (Muskhelishvili 1958) and Fourier transform techniques (Sneddon
1972). Problems involving contact between an elastic layer or a layered composite and a foundation
which may be either elastic or rigid have been very widely studied with improvements in computer
technology. The continuous and discontinuous contact problem between an elastic layer and a rigid
half-plane for the case of a single load in tension is analyzed by Civelek and Erd83a&). The
discontinuous case of the same problem for the single load in compression is examined by the same
researchers (1976). The frictionless contact problem for an infinite elastic layer lying on a horizontal
rigid plane is examined by Civelek, Efdogamd Cakoglu (1978), and the same problem is also
analyzed by Cakoglu (1979) in the case of elastic rather than rigid half-plane. Similar contact
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problem is also examined by Qaiglu and Cakoglu (1991) in the case of symmetrical distributed
loads and an elastic semi-infinite plane. A tensionless contact without friction between an elastic
layer and elastic foundation is studied by Gegit (1980) and the same researcher (1981, 1986)
analyzed axisymmetric contact problem for an elastic layer and elastic foundation and an
axisymmetric contact problem for an elastic half space indented by an elastic semi-infinite circular
cylinder. The general axisymmetric double contact problem for an elastic layer pressed against a
half space by an elastic stamp is investigated by Civelek and Erdd§ad). Gecit and Yag

(1986) examined the contact problem for an infinite elastic layer resting on two rigid horizontal flat
support, and the frictionless contact problem between a rigid stamp and a layered composite resting
on simple supports is studied by Birinci and Erddl (1999).

In the present study, the continuous and discontinuous contact problem of a layered composite
which consists of two elastic layers having different elastic constants and heights is investigated.
The layered composite resting on two simple supports is subjected to a concentrateel hyad 2
means of a rigid rectangular stamp of which width & R is assumed that all surfaces are
frictionless. The continuous contact problem between the elastic layered composite and the rigid
stamp and between two elastic layers is examined until initial separation occurs stated contact
surfaces along. In this case, the contact stress distribution, initial separation loads and distances are
investigated for various dimensionless quantities. The discontinuous contact occurs either between
the rigid stamp and the layered composite or between two elastic layers. Should applying external
load P) be bigger than the initial separation lodd,) the separation occurs between two elastic
layers. Also, the separation may occur between the rigid stamp and the layered composite
depending on the flexibility of the layered composite. In the case of the discontinuous contact, the
stress distribution along the contact surface, the initial and end distances of the separation, and
vertical displacement difference between two elastic layers in the separation zone are investigated
for various dimensionless quantities. Finally, numerical results are analyzed and conclusions are
drawn.

2. General expressions for stresses and displacements
In the absence of body forces, the two dimensional Navier equations may be written as in the

following form for considered an infinite layered composite consisting of two elastic layers and
resting on simple supports in Fig. 1.

2 + 2K 0 PY; | OVi[L
uiD Ui+Ki_1dXDdX + ayErol (1a)
O+ 2 O ML, (=, 9), (1b)

ki—loylox = oyl

whereuy, andy; are thex andy-components of the displacement vectgrand k; (i=1, 2) represent
shear modules and constants of the elastic layers, respeckye@—v;)/(1+v;) for plane stress
and k;=3-4v; for plane strainv; is the Poisson’s ratio of layer. Subscfipll, 2) indicates the
values related to the layer.

For the case in which gravity forces are considered, the displacements areughanav;,, and
if gravity forces are not considered, the displacements are showp @sdvy,, and total field of
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displacements may be expressed as,
U = Uin t+ Ui, (2a)
Vi = Vip + Vip. (2b)

Observing thatx=0 is a plane symmetry, it is sufficient to consider the problem in the region
0< x< o only. Using the symmetry consideration, the following expressions may be written

ui(X,y)==Ui(—x.y), (3a)
Vi(x,y)=vi(—x,y), (3b)
Un(xy)=2 7 @ (a.y)sin(ax)da, (30)
Vin(x,y)=2 7 Wi(a.y)cos(ax)dar, (3d)

where ®; and¥; i€l, 2) functions are inverse Fourier transformsi andyv;, respectively. Taking
necessary derivatives of Egs. (3c) and (3d), and substituting them into Egs. (1a) and (1b), and
solving second order differential equations, the following expressions may be obtained for
displacements

Uih(X,Y)z%.[f: [(Ai+Biy)e @ +(Ci+Diy)e”]sin(ax)da, (4a)

Vin(X,y)=% fo A+EK'+Y%3} W{—C+ y%D}e rroq ax)da, (4b)

where A, B, C; andD; (i=1, 2) are unknown constants which will be determined from boundary
conditions of the problem. Using Hooke’s law and Eq. (4), the components of the stress without
gravity forces may be expressed as follows:

2Mfflxh(xy)—njm ﬁa(msy)— }‘“y+{a(ci+Diy)+%Di}e“yECOS(aX)daa (5a)

5 OmOW=2 [ E{a(msy)—l Kig }-"y{a(cwy)—l K }“ygcos(ax)da, (5b)

1 _2+0 Ki=1.] o K=l ] vl
Z_MTixyh(XaY)—}[ﬁ E_I:G(Ai"'Biy)"'TBi:le y+|:a(Ci+Diy)_TDi:|e y%&n(ax)da' (5¢)

The components of the displacement and the stress for the case which gravity forces existing are
given by (Al) and (A2) in the Appendix.

3. Continuous contact case

A layered composite consisting of two elastic layers of which heights and elastic properties are



20 Ahmet Birinci and Rag Erdol
T y

s

\ X2, H2.V2 +—a—F—a—+ @ ) lfll2
| % h
Ki, U1, V1 O > by
l i) X

TP TP

7 b A b A

Fig. 1 Geometry of continuous contact case for the layered composite

different, resting on simple supports and subjected to a concentrated load with a magnitude 2P by
means of a rigid stamp on its top surface, shown in Fig. 1, will be analyzed. Particularly, the initial
separation loadA{;) and point X;;) where the elastic layers will be separated from each other, the
distribution of the contact pressure between two elastic layers and under the stamp until the
occurrence of the initial separation will be examined.

In this case, the continuous contact problem must be solved under the following boundary
condition:

Touy(X,h)=0, (0 x< ), (6a)
o (%h1)=0, (0sx<w) (6)
Tlxy(Xahl):Oi (OSX<°°)1 (GC)
O2y(X,h1)=01y(X,hy), (0<sx< ), (6d)
T14y(X,0)=0, (0 x< ), (6e)
01,(x,0)=—PJ(x-b), (6f)
SIV(ch)-vi(xh)]=0,  (0sx<e), (69)
0_
P 0ica o
dix[vz(x,h)]:o, (0<x<a), (6i)

in which subscripts 1 and 2 indicate related to the elastic layer 1 and the elastic layer 2,
respectivelya, b, p(xX) and &x) are the half-width of the rigid stamp, the width of the support, the
unknown contact pressure under the rigid stamp and Dirac delta function, respectively.

If a separation occurs between the elastic layers or the rigid stamp and the layered composite, this
will give rise to a discontinuous contact position and the following results for former solution will
no longer be valid and new solution will be attained for the latter case.

By making use of boundary conditions (6a-B, B;, C; and D; (i=1, 2) constants may be
calculated in terms gi(x), and by substituting the values of these constants into Eqg. (6i), after some
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routine manipulations, and using the symmetry condifp@)=p(—x), one may obtain the following
singular integral equation fq(x).

r {tlx Li(x, t)} p(tdt=Flo(x), (ca<x<a), @

where the kernelk(x, t) andkx(X) are given by (A3) and (A4) in Appendix. In (7), the kerkék,
t) is bounded in the closed intervah< (x,t)<a , and the index of the integral equation is +1
(Erdogan and Gupta 1972). The equilibrium condition of the problem is written as,

fa p(t)dt=2P. 8)

In order to investigate the separation between two elastic layers, the contaargixgdsg needs
to be evaluated. Substituting the valuesAgfB;, C; andD; (i=1, 2) as evaluated in terms jfix)
into (5b), after some algebra manipulations, the contact stress is found to be,

0,(x. 1) ==Pag o7 [ k(X DP(DAt-TEKa(x), (0 x <), ©)

where p andg, are gravity acceleration and mass density of the layer 2, respectively. The kernels
ks(X, t) andks(X) are given by (A5) and (A6) in Appendix.
To simplify the numerical analysis, the following dimensionless quantities are introduced:

x=a, t=an, ky(§="828 g(n)= KAL), A= oo (10a-¢)
Substituting from (10), Egs. (7), (8) and (9) may be expressed as,
. |7+ Ratem]aman=ieg@) (-1<¢<1), (112)
21 g(mdn=2, (11b)
o). 118 0 xang(man-29,  (0sx<e) (110)

Noting that the index of the integral Eq. (11a) is +1, its solution may be expressed as;

2,—1/2

9(m=G(n)(1-n") (-1<n<1), (12)

where G(n) is bounded in interval{1<n <1 ). Then, using the appropriate integration formula
(Erdogan and Gupta 1972), Egs. (14a) and (14b) are replaced by

> vx/{ﬁ%k@,ni)JG(ni)%Tkz(fj), (j=1, .n-1), (132)

Ry W=7, (130)
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where
WimWmot— W=t (i=2, ....n-1) (14a)
=We=5tn-1y WiThoT
n=cosi—= 1t} (i=1, ...,n), (14b)
g=cod FA=10 (j=1, ...,n-1). (14c)

The unknownsa(r), (i =1, ...,n), are determined from the system of Egs. (13a) and (13b). By
using (12), substituting the results into (11c), and using a Gaussian integration formula, the contact
stressoy(x, hy) is evaluated.

It should be observed that the integral Eq. (11a) is valid provided the contact stress obtained from
(11c) is compressive everywhere. For given values/lnf b/h, hi/h and elastic properties of the
layers by evaluating the contact stress, one may obtain both the logat{®y) at which the
interface separation starts between two elastic layers and the corresponding critical load.factor (
This factor is related to the separation Iéadby

P

/\C,=m. (15)

4. Discontinuous contact case

The discontinuous contact may occur in two cases. Firstly, while there is the continuous contact
between two elastic layers, the separation may occur between the rigid stamp and the layered
composite. Secondly, while there is the continuous contact between the rigid stamp and the layered
composite, the separation may occur between two elastic layers. Let us examine two cases,
respectively.

4.1 The discontinuous contact between the rigid stamp and the layered composite

The discontinuous contact between the rigid stamp and the layered composite may also occur in
two cases. Depending on the flexibility of the layered composite, the separation between the stamp
and the layered composite starts from eittreld symmetry axis (Fig. 2a) or the edges of the rigid
stamp (Fig. 2b).

4.1.1 The case of the separation starting from on the symmetry axis

The boundary conditions of the continuous contact case is valid for this case except for the fact
that O<x<a) and &4<x<ow ) in Egs. (6h) and (6i) must be replaced foyx a ) and
(0 x<f,a<x<wm), respectively. Therefore, the integral Eq. (7) for the continuous contact case
become as following form for this case.

[ [t%(—t_ix%k}(x,t)}p(t)dt:—Ekz(x), (f<x<a), (16)

where the kernek*l(x,t) is given by (A7) in the Appendix. The equilibrium condition (8) may be
expressed as follows for this case:
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Fig. 2 The discontinuous contact between the rigid stamp and the layered composite

[; p(Hdt=P. (17)
Defining the following dimensionless quantities,

and making use of Egs. (10c, d), the integral Eg. (16) and the equilibrium condition (17) may be
written as follows:

1 1 a—f +
L A “ oot on k) g(nydn=-k(8),  (-l<&<1),  (19a)
a—f
%ﬁlg(’?)d”ﬂ- (19b)

The separation starts pf =f and the contact between the rigid stamp and the layered composite
will be smooth at this point and will be infinite at the end of the stamp. Therefef, vanishes
and consequently, the index of the integral Eq. (19a) will be zero {Erd@yah Gupta 1972).
Hence, the solution will be in the following form

a(M=G(m@+m"A1-n)™?,  (-1<n<1), (20)

where againG(n) is bounded in interval{1<n<1 ). The use of Gauss-Chebyshev integration
formula (Erdoganand Ratwani 1974) reduces Egs. (19a) and (19b) to

n 1 1  a-f -«
S w ot "o anklEm) 6(n)=-T(E),  (=L..m). (21a)

| MGt
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E;—;fz wG(n)=t (21b)
where
w=AE =, ), (22a)
nizco%:;ll (=1, ..n), (22b)
gizco%—rﬂ—l (i=1, ...n). (22c)

Note that the system given by Egs. (21a) and (21b) contaihsequations fon+1 unknowns,
G(n), (= 1, ...,n), andf. The system is nonlinear ihand an interpolation scheme is required to
determine these unknowns.

4.1.2 The case of the separation starting from the edges of the stamp

In this case, the integral Eq. (7) is valid except for the factatimatist be replaced Hy At |x|=f
the separation starts and the contact between the stamp and the layered composite will be smooth
near these points. Thereforg(x1)=0 and consequently, the index of the integral Eq. (7) for this
case is-1 (Erdoganand Gupta 1972), its solution may be expressed as

a(M=G(n)(1-n)*?,  (-1<n<1), (23)

where also againG(n) is bounded in interval-{L<n<1 ). The Egs. (11a) and (11b) may be
replaced by

> vvi[,h%gﬁkl(fj,ni)}e(m)ﬁkz(a), (j=1, .n+1), (242)

fs _2 b

h 2 WG(m)=7 (24b)

where
_1-n} -

W= 1 (i=1, ...,n), (25a)

ni=co iT"lg (=1, ..n), (25b)

&=co —#:—11% (j=1, ...n+1). (25¢)

It may be shown that the/@+1)" equation in (24) is automatically satisfied. Thus, the equations
given by (24) constitute a system wfl equations fon+1 unknowns,G(r), (i=1, ...,n), andf.
Note that the system is also nonlineaf (Gegit and Gokipar 1985) and an interpolation scheme is
required as being Egs. (21).
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Fig. 3 The discontinuous contact between two elastic layers

4.2 The discontinuous contact between two elastic layers

Since the interface cannot carry tensile tractions,PelP,, or A>A. there will be separation
between two elastic layers (Fig. 3). Assuming that the separation area is describeck oy,
y = hy, where ¢ andd are unknown and are functionsPbr A.

In this case, the separation problem must be solved under the following boundary conditions:

Toyy(X,0)=0, (0 x< ), (26a)
Touy(X,h1)=0, (0 x< ), (26b)
T1.y(X,h1)=0, (0 x< ), (26¢)
T1,y(X,0)=0, (0 x< ), (26d)
01,(x,0)=—PJ(x-D), (26e)
]
dix[ Vo(X,h1)—va(X,hy)] =Eg,(x)’ 8S<XX<<C(,j d<x<oo’ (26f)
U_
0, 0eh=0FE) DZX2E (260)
0,y (X,hy)=03,(X,hy), (0sx<c,d<x<wm), (26h)
O,y(X,h1)=07,(X,h;)=0, (c<x<d), (261)
dix[vz(x,h)]:o, (0<x<a). 26))

Utilising the boundary conditions defined in Eqgs. (26a)-(26h), the funcligi, C, andD; (i=1,
2) which appear in (4) and (5) may be obtained in termg(9fand ¢(x) . The new unknown
functionsp(x) and ¢(x) are then determined from the conditions (26i) and (26j) which have not yet
been satisfied. These conditions give the following system of integral equations:
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e [A L, t)}p(t)dt ih(f% [ R(xD(Ddt-10k,(0=0, (-a<x<a), (27a)

R T [t L+t (x, t)}¢(t>dt+ [, Ke(xD)P()dt=7Ek,(x)-p,ghy=0,

(c<x<d), (27b)

where 3 is the ratio of the elastic constants given in the Appendix, and the kkifxel, kx(x),
ka(x, 1), ks(X, 1), ks(X, ) andk,(x, t) are given by (A3), (Ad), (A6), (A8), (A9) and (A10) in the
Appendix, respectively.

The index of the integral Eq. (27a) is +1. On the other hand, because of the smooth contact at the
end points ¢ andd, the functiong(x) is zero at the ends and the index of the integral Eq. (27b) is
-1. In this case, the two relations which are needed to determine the unknown ceoretalttsare
the consistency condition of the integral Eq. (27b) and the single-valuedness condition:

[ $(tydt=0. (28)

Designating the variables, (t) on y=h andy=h; by (x;, t;) and &, t,) respectively, and defining
the following dimensionless quantities,

2t
m=ti/a, n,= ﬁ:‘g_-'_-g, (29a)
&=xi/a, &= ﬁ—d—fg, (29b)
4 t
91(n1)= %ﬁ]), gz(nz)zl_%%/_rz]), (29¢)

the system of integral Eqgs. (27) may be expressed as follows:
1 1 1d- 1
7-[‘[-11 |:’7TE+%ml(61rl)}gl(r])dn+712_hC -1 mZ(Eln)QZ(n)dr]—;[nh(f):Of (_1 < 6 < 1)1 (Soa)

1 1

m(1 +B)Il n- A £ 2d+c 2h Srms(&,1) gz(n)dr7+—§f1 m,(¢, n)gl(n)dn-—me(f)--=
n+é+

(<1< &<1), (30b)

where
My (§1,M1)=Ka(Xa,11), (31a)
My(&1,M2)=kKs(X1,t2), (31b)
Ms(&1)=ka(X41), (31c)
My(&2,M1)=Ke(X2,11), (31d)

Ms(&2,M2)=k7(X2,t2), (3le)
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Mg(&2)=Ka(X2). (31f)

In Egs. (30), the subscripts have been deleted since the var@gbles & , n, and all vary
between-1 and +1. Similarly, the additional conditions (8) and (28) may be expressed as

a1 qumdn=2, (322)

[, 92(mdn=0. (32b)

In order to solve the system of integral equations, it is found to be more convenient to assume
that (30b) as well as (30a) has an index +1 (Civetedd 1978) and let

0 (M=G.(M/(1-n*",  (-1<n<1), (33a)
0(M=G.(m/(1-n*)"%,  (-1<n<1). (33b)

To insure smooth contact at the end points of the separation area, it is imposed the following
condition onG;:

Gy(-1)=0,  G,(+1)=0. (34a,b)

Using appropriate Gauss-Chebyshev integration formula {ErdeganGupta 1972), Eqgs. (30a),
(30b), (32a) and (32b) are reduced following algebraic expressions.

n
z W,
i=1

> W

i=1

lem3(5")’ (j=1, ...n-1),  (35a)

l(n)[ +2 ml(éj,n)J CGa(n)ma( &)

GZ(n)1+B[n.lf,+n+5i2d+c 5h ms(‘fj’ ﬂ+ G1(’7)m4(511’7)]:—me(fj)+A,
itG

(j=1, ...n-1), (35b)

By WGi(n)=5, (362)

iWiGz(fh):O, (36b)

whereW, & andn; are given by (14a)-(14c). Egs. (34), (35) and (36) give22algebraic equations
to determine ther2-2 unknownsG,(n;), G.(n;), (i=1, ...,n), c andd. The system is nonlinear. So,
an interpolation scheme is required for the solutior. ahdd are selected for knowA > A, and
they are substituted into (35a,l8:(17;) and Gx(n;), (i=1, ...,n) are obtained. But, at the same time
these values must also satisfy Eqgs. (36a,b). If these equations are not satafidd, must be
changed and the solution must be repeated until the Egs. (35) and (36) are satisfied at the same
time. After Gi(), Gz(m), (=1, ...,n), c andd are determinedgy(x, hi) contact stress out o€, (d)
can be calculated by making use of Eq. (27h).
The separation between two elastic layers may be expressed as

aix[ V2(x,hy)=vi(x,h)]=9(x),  (c<x<d), (372)
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or

v(x,h1)=va(x,h;)=vi(x,hy)= _r; g(t)dt, (c<x<d),

If the values ofg(t)

p(xhy) 2t 0oC € o) (n)dn
-1 !

P 1+k, 2h

where,

2x _d+c

E:d_—c

Also using appropriate Gauss-Chebyshev integration formula and taking +1 the index of Eq. (38),

d-c’

Ahmet Birinci and Rag Erdol

(37b)

is calculated from Eq. (29c¢), Eq. (37b) may be written as

(-1<&<1), (38)

(39)

the following expression may be written for the separation.

4“2 V(thl):d__c .
mi+k) P 2n

whereW andn; are given by (14a,b).

5. Results and discussion

Some of the calculated results obtained from the solution of the continuous and discontinuous
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contact problems described in the previous section for various dimensionless quantitiesafiuch as
b/h, hy/h, B and A are shown in Figs. 4-10 and Table 1. Fig. 4 shows the normalized contact
pressurep(x)/P/h for the continuous contact case. The contact pressure becomes infinitely large at
the corners of the rigid stamp. As it can be seen in Fig. @ défined in Appendix is sufficiently
increased (i.e.}=1.135), the contact pressys&) becomes zero around0. For bigger values of

B, p(x) changes sign and a separation of the contacting surface of the stamp and the layered
composite may take place arouxxD. The solution given continuous contact case, of course, would
not be valid for this case. For fixed valuesbdd, hy/h and 3, Fig. 5 shows variation of the contact
stressay(x, hy) with a/h for continuous contact between two elastic layers described in Section 3. As
a’h increases, the initial separation poigtseems to increase and the contact swgss h;) seems

to decrease.

Fig. 6 and Table 1 show the variations of starting point of the separatiorhwitland 3 for
discontinuous contact between the stamp and the layered composite. As it can be seen in Fig. 6 and
Table 1, the discontinuous contact area between the stamp and the layered composite increases as
flexibility of the layered composite depending @rh, h/h and 8 increases. If the flexibility
decreases, i.e. 8 decreases anld/h increases, the discontinuous contact area decreases, @and if
sufficiently small andhy/h sufficiently big, the discontinuous contact between the stamp and the
layered composite is replaced by continuous contact. This case can be seen in Hig06Lband
h./h = 0.5532 for the case of the separation starting from edges of the stamp and it can be seen in
Table 1 for either=0.10 andh;/h=0.5392 or3=0.20 andh;/h>0.7112 for the case of the
separation starting from=0 symmetry axis. Fig. 7 shows the contact presp(gP/h under the
stamp for the discontinuous contact case. For shihllvalues (i.e.,b/h=0.10 and 0.35), the
separation between the stamp and the layered composite starts from edges of the stamp, and for
larger b/h values (i.e.pb/h=0.90, 1.00 and 1.20), the separation starts fxefh symmetry axis. For

fih

2.00 —
1.95 -

1.90 —

175 -
1.70—

1.65 |-

1.60 —

155 hs/h
L | L I L | | | 1

0.00 0.20 0.40 0.60 0.80

Fig. 6 Variations of starting point of the separation witth and 3 for the case of the separation starting from
edge of the stam@/h=2.0, b/h=1.0)
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Table 1 Variations of starting point of the separation With and 8 for the case of the separation starting
from symmetry axisg/h=0.50,b/h=2.0)

hi/h f/h
U B=0.10 B=0.20 B=0.30 B=1.00

0.20 0.4108 0.4181 0.4205 0.4238
0.30 0.4036 0.4280 0.4357 0.4462
0.40 0.3541 0.4165 0.4349 0.4592
0.50 0.2133 0.3769 0.4157 0.4635
0.60 0.0000 0.2914 0.3719 0.4592
0.70 0.0000 0.0903 0.2913 0.4459
0.80 0.0000 0.0000 0.1776 0.4211

0.40 <b/h < 0.80, a separation would not occur under the rigid stamp and the discontinuous contact
case is no longer valid in this case.

Fig. 8 shows important results giving the distancesnd d which define the separation zone
between two elastic layers. It appears that, for a fixed valygasfd increasing load factdr; c/h
approaches a constant asymptotic value (of approximatehy). IH®wever,d/h keeps increasing
with increasingA. Sharp point in this graphic are corresponding to the initial separation loads and
the initial separation points. In Fig. 9, the variation of the normalized contact gjfeds;)/P/h at
the interface two elastic layers witth is given for discontinuous contact case. As it can be seen in
graphic, there are three regions in the discontinuous contact between two elastic layers. These are
the continuous contact region, separation zone, and also the continuous contact region where the
effect of the external loadP] decreases and disappears infinitely. The separation decjeig equal
to 1.024é for a/h=0.5, 1.540/ for a/h=1.0, 1.1856 for a/h=1.5 and 0.4888 for a/h=2.0. These

PO c/h, d/h
1200-P/h 400 -
@ B=050
10.00 | 250k @ B=100
® b/h=0.10 ® B=200
@ b/h=035 d/h
8.00 - ® b/h=080 3.00 -
@ b/h=1.00
6.00 |- ® b/h=120 250l
4.00 200
2.00 150 L c/h
0.00 P N T E U R N R
000 020 040 060 08  1.00 4000 8000 12000 16000  200.00
Fig. 7 Contact pressure distribution under the stampig. 8 Separation distancesandd between two elastic
for the case of discontinuous contaahé1.0, layers as a function of load factdrfor various

h,/h=0.50, 3=0.50) values off3 (b/h=1.0,a/h=0.10, h;/h=0.50)
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o, (x,h)/(P/h)

ity Vb o
1.44 — 1-;(1.,,1(2) P

132 ® ah=0.50, c/h=1.3508, d/h=2.3754

120 ® ah=1.00, c/h=1.4500, d/h=2.9907 30.00 — @® A=75, ¢/h=1.7126, d/h=2.0867
@ a/h=1.50, c/h=1.9255, d/h=3.1111 @ A=100, ¢/h=1.6420, d/h=2.2947
108 @ ah=2.00, c/h=2.4225, d/h=2.9108 ® A=125, c/h=1.6074, d/h=2.4554

0.96 »00r @ A=150, c/h=1.5853, d/h=2.5926

084 20.00 —

0.72

0.60 15.00

0.48
10.00

024

0.04 — sl
0.02 I
x/h xh
0.00 —— 55— 0.00 — I/-K . .
000 %% 400 10 200 250 300 3% 400 160 ' 200 2% 240 2% 2380
Fig. 9 Contact stress distribution between two elasti¢-ig. 10 Separation displacemen(x,h;,) between two
layers for discontinuous contad¥/t§=1.0, 3= elastic layers as a functionfor various values
0.05,hy/h=0.50,A=150>A,) of the load factonl (b/h=1.0, a/h=0.10, hy/h
=0.50, 3=0.50)

values show that the separation zone increases until a certain valbe(icf., a/h [11.0), then for
a/h>1.0, it becomes decreasing.

Some sample results calculated from Eq. (40) giving the displacereftt,) in the separation
zone c<x<d, y=h;, are shown in Fig. 10 as functionfor various values of\. As expected, The
separation zone and the separation displacemenh,) increase with increasing load factor

6. Conclusions

It has been demonstrated that the support width, the rigid stamp width, and the elastic properties
and the thickness of the layers play a very important role in the formation of the continuous and the
discontinuous contact area, the initial separation point, the separation displacement, and the stress
distribution on the contact surface. The separation both between the layered composite and the rigid
stamp, and between two elastic layers occur in various dimensionless values for various
dimensionless quantities as mentioned in section 5. However, generally, in order for the separation
not to occur or to be more difficult :

- The rigid stamp width and the support width must be sufficiently saib#1.0, b/h<2.0).

- The lower layer must be more rigid than the upper lg¥€t.().

- The thickness of the layers must be close to each other.
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Appendix

For the case in which gravity forces exist, i.e., special solution of the Navier equations for each strips of
which heights arén; and h,, respectively, the components of the displacements and the stresses are given
following expressions.

— h
() =5 200, (Ala)
Ki=1p.9y 1+K
le(y):Ki+l 21111 (y=hy)- 8/Jlly(Pzg hy+p:9h,/2), (Alb)
3- h
uzp(x):—slz2 22 2y, (Alc)
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1+K K
va(y)=—%ﬁy[ L a0n,- K (hyrh- y)}

3-KiKi=10:19,5.,_
O_lXp(y) K +1K +1 2 (2y hl)y
Oyp(Y)==—p2gh+p19(y-hy), (0sy<hy),

_3- KoK= 10,0 5, 1
GZXp(y)_K2+lK2+l > (2y—-h-hy),

Op(Y)=p29(y-h),  (hisy<h),
Tlxyp(xay):T2xyp(Xay):01

whereg, p1 andp, are gravity acceleration, mass density of the strip 1 and 2, respectively.
Kernels of integral Eqgs. (7), (9), (16) and (27) are expressed as follows:

where,

kl(x,t):J': E—*—(l—aj)[Kl(w).KZ(wHﬁKS(a)).K4(a))]—1 Esin(t—x)%’dw,

kz(x):r Z%{ (1- eZwr) K5((4))+0.)I’[(1+€2M) K6(w)+2(e—2w82wr —2wr)] }

* [sin(b+x)%’—sin(b—x)ﬂdw

Ks(X,t)= 297 _629_K 6( w)] cos(t—X) @dw,

)
Ka(x)=

" [cos(b+x)h+cos(b x) & }

K(xt)= %[Kl(w).K2(w)+ﬁK3(w).K4(w)]—1% [sin(t+x)%’—sin(t—x)ﬂdw

ks(X,t)=

) [cos(t x)—ﬁ—cos(t+x) }

ke(X,t)=

[cos(t x)h+cos(t+x) }

K(x0=(; [(A%—E-%KZ((O).K7(w)—1}[sin(t+x)%’+sin(t-x)%’}dw,
A (@) =-K2(w).K3(w)-B.K4(w).K7(w),
K1(w)=e " +e*-2e e,
K2y =L 46 (<2-40f 4™,
K3(w)=e*“-e*" -2e2“e? (200-200r),
K4(w)=1-*"(4or +e*"),

K5(w)=(1+w)e > +(-1+w)e >,
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—20r —2;

K6(w)=(—wtawr)(e ™ +e ),

K7(w)=e*" +e*“-e e (2+40’+4w 1’ -8 '),
K8(w)=—1+ar+e* (1+awr),
K9(w)=e“-e?“"+K6(w),

and,

_1+ki U _
Fivon:  @=ah. r=h/h





