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Reduction of train-induced vibrations
on adjacent buildings

Hsiao-Hui Hung†, Jenny Kuo† and Yeong-Bin Yang‡
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Abstract. In this paper, the procedure for deriving an infinite element that is compatible with the
quadrilateral Q8 element is first summarized. Enhanced by a self mesh-expansion procedure for generating
the impedance matrices of different frequencies for the region extending to infinity, the infinite element is
used to simulate the far field of the soil-structure system. The structure considered here is of the box type
and the soils are either homogeneous or resting on a bedrock. Using the finite/infinite element approach, a
parametric study is conducted to investigate the effect of open and in-filled trenches in reducing the
structural vibration caused by a train passing nearby, which is simulated as a harmonic line load. The key
parameters that dominate the performance of wave barriers in reducing the structural vibrations are
identified. The results presented herein serve as a useful guideline for the design of open and in-filled
trenches concerning wave reduction.

Key words: finite/infinite element method; in-filled trench; infinite element; open trench; traffic-induced
vibration; wave barrier.

1. Introduction

As the high-technology community enters the so called “age of nanometer”, the traffic-induced
vibration in buildings or factories becomes an issue of great concern. Most highly developed cities
or metropolises in the world have encountered the problem that transportation constructions inevitably
come across or close to vibration-sensitive residential or industrial areas. Micro-vibrations, which
though may not result in collapse of structures as earthquakes do, have been known to cause
architectural damages and malfunction of delicate instruments located inside the buildings. In highly
vibration-sensitive applications, it is of critical importance that the major vibration sources be
identified, analyzed and isolated, when necessary, as part of the facility design process.

The ground-borne vibration due to the railway traffic has been a subject of increasing research in
recent years due to the construction of highspeed railways worldwide. In general, research on this
subject can be classified into four categories. The first relates to design of special track systems as a
first aid to mitigate the transmission of vibration directly generated by the trains. Elaborate vehicle-
track interaction models have been used in this regard. For instance, the floating slab track
(Grootenhuis 1977, Wilson et al. 1983, Balendra et al. 1989), which consists of concrete slab track
supported on resilient elements, has been proved to be a very effective measure for isolating the
vibration at frequencies above the resonance frequency of the floating slab system. The second is to
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investigate the influence of train speed on ground vibration and to investigate the propagation of
vehicle-induced vibrations via the soils to areas alongside of the railways. Both theoretical methods
with the assumption of elastic homogenous soils and experimental investigations have been
employed in this regard (Gutowski and Dym 1976, Dawn and Stanworth 1979, Alabi 1992, Krylov
and Ferguson 1994, Krylov 1995, Heckl et al. 1996, Madshus et al. 1996). The third category is
focused on the design of buildings to mitigate the traffic-induced vibrations. For instance, theoretical
solutions were obtained by Takahashi (1985, 1986a, b) using the plate elements to simulate a box-
type structure subjected to a harmonic line force on the surface of a viscoelastic half space under
different boundary conditions, where an optimal choice of the structure thickness and material was
proposed based on a parametric study. The last category is concerned with the installation of various
wave barriers, such as open and in-filled trenches (Woods 1968, Lysmer and Wass 1972, Segol et
al. 1978, Emad and Manolis 1985, Beskos 1986, Al-Hussaini and Ahmad 1991, 1996, Ahmad et al.
1996, Yang and Hung 1997), buried concrete plates (Schmid et al. 1991, Antes and von Estorff
1994), or aligned piles (Boroomand and Kaynia 1991), between the railways and the buildings to be
protected. These barriers are not only helpful for isolating the vibration caused by the passing trains,
but also for reducing ground-transmitted waves generated by other vibration sources, such as
machines, vehicles, blasting, etc. In this paper, only the fourth category will be dealt with. 

Concerning the wave isolation of structures from ground-borne vibrations, a great volume of
research has been conducted in the past using analytical or experimental methods. In early studies
employing analytical approaches, restrictions were often imposed on the geometry and material
properties of the problem considered, as close-formed solutions cannot be easily obtained for
complex conditions. On the other hand, although the results obtained by the experimental methods
appear to be most reliable and close to real situations, an exhausted field test may cost a lot.
Starting from the mid 1970s, various numerical methods emerged as effective tools for solving the
wave propagation problems. By the lumped mass method, Lysmer and Wass (1972) studied the
effectiveness of a trench in reducing the horizontal shear wave motion induced by a harmonic load
acting on the rigid footing lying on the horizontal layer. Segol et al. (1978) used finite elements,
along with special non-reflecting boundary, to investigate the isolation efficiency of open and
bentonite-slurry-filled trenches in layered soils. The axisymmetric infinite elements that are capable
of dealing with multiple wave components have been employed by Yang and Yun (1992) and Yun
and Kim (1995) to deal with the unbounded soils. Using the finite/infinite element scheme, Yang
and Hung (1997) conducted a parametric investigation on the isolation effect of open trenches, in-
filled trenches and elastic foundations. In the last decade, a great portion of the studies on wave
propagation problems were performed by the boundary element method, including Beskos et al.
(1986), Al-Hussaini and Ahmad (1991, 1996), Ahmad et al. (1996), among others. One advantage
of the boundary element method is that the radiation damping can be accurately taken into account.
However, it is not suitable for simulating the realistic situations where irregularities may exist either
in the geometry or materials of the structures and underlying soils. 

As far as the vibrations of the buildings, foundations, and surrounding soils are concerned, a finite
element representation remains the most convenient choice, considering its versatility in treating
various irregularities. In the study by Yang et al. (1996), it has been demonstrated that radiation
damping of the far field can be accurately simulated by the Q8-compatible infinite element they
derived. In this study, the same finite/infinite element method will be adopted. To take advantage of
both types of elements, the structure and soils in the near field will be modeled by the finite
elements, and the radiation property of the far field by the infinite elements. Such an approach is
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attractive in that both the finite and infinite elements can be assembled using the conventional
procedures, with no additional degrees of freedom required for the far field. 

In the literature, most studies concerning wave isolation were focused on reducing the surface
vibration. In comparison, relatively few works have been reported on the reduction of building
response using open and in-filled trenches. The purpose of this paper is to conduct a parametric
study on the open or in-filled trenches for reducing the traffic-induced vibrations on buildings. The
soil-structure model considered herein is basically two-dimensional. The building is simulated as a
box structure, and the moving train as a harmonic line load. There may exist bedrocks beneath the
soils. A parametric study is first conducted for both the open and in-filled trenches in reducing the
building vibration at each specific frequency. Then, the screening effect of the trenches over the full
range of frequencies considered is examined. Previously, rather few studies have been carried out to
evaluate the screening effect of trenches over a wide range of frequencies, due to the diverse
requirements existing for the extent and spacing of the finite element grid under different
frequencies. However, such a problem can be easily overcome using the self-expansion technique
proposed by Yang et al. (1996) for the finite/infinite element meshes, by which the far-field
impedance matrices for the entire range of frequencies can be derived from the mesh established for
the highest frequency considered.

2. Problem formulation and basic assumptions

The soil-structure system considered is shown in Fig. 1, which consists of a near field (Part I) and
a semi-infinite far field (Part II). Typically, Part I contains the components that may be irregular in
geometry or material, including the building, railway (i.e., source of vibration), wave barriers, and
underlying soils, all of which will be represented by the 8-node quadratic (Q8) element in this
study. Part II covers the soils in the far field extending to infinity, which will be modeled by the
Q8-compatible infinite element to be summarized below. To simulate the action of moving train
loads, a line load is applied at the center of the railway. Such an approximation is reasonable
provided that the point of interest from the track is approximately less than 1/π times the length of
train (Gutowski and Dym 1976). Moreover, since a general traffic load can always be transformed

Fig. 1 Typical soil-structure model
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into frequency domain and expressed in terms of harmonic functions, only harmonic line loads are
considered in this paper. It follows that the displacements generated within the system may be
assumed to oscillate harmonically with time as well. Based on the assumption that the length of the
building in the direction parallel to the railway is relatively long compared to the width along the
direction transverse to the railway, plain strain condition is assumed to apply. The soil is assumed to
be an isotropic viscoelastic medium (with hysteresis damping) with or without bedrock. 

The formulation of the Q-8 element was well established in the literature, which will not be
recapitulated herein. Only the formulation of the Q8-compatible infinite element to be used in this
study will be summarized, based on the works of Yang et al. (1996) and Zhang and Zhao (1987).
Consider the infinite element in Fig. 2. The following are the transformation for the co-ordinates x
and y:

 (1)

where the shape functions  are assumed to be linear in ξ and quadratic in η, i.e.,

 (2)

The element displacements u and v can be interpolated from their nodal values, that is,

 (3)

where the shape functions are
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Fig. 2 Infinite element: (a) global co-ordinates; (b) local co-ordinates
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 (4)

and the propagation function P(ξ) is defined as

 (5)

with αl denoting the displacement amplitude decay factor and kl the wave number, both in the local
co-ordinates. In Eq. (5), the term exp(−αlξ) represents the amplitude attenuation due to wave
dispersion and the term exp(−iklξ) the phase decay due to wave propagation in the direction ξ. The
two local parameters αl and kl can be related to the parameters k and α in the global co-ordinates
as: αl = αl and kl = kl, where l is the scale factor between the global and local co-ordinates, i.e., l =
x/ξ. The global parameters are known to be available in practice, if one notes that k = ω/c, where ω
and c denote respectively the frequency and velocity of the traveling wave.

According to Yang et al. (1996), for the case of a half space subjected to a line load on the free
surface, the amplitude decay factor α should be selected as α=1/(2R) for modeling the regions
where the body waves are dominant, where R denotes the distance between the source of vibration
and the far field boundary. Since the Rayleigh waves do not decay on the free surface under the
same loading condition, it is suggested that α = 0 be used for regions near the free surface.

By the finite element procedure of formulation and assuming the loading and displacement
functions both to be of the harmonic type, one can derive the equation of motion for the infinite
element under a particular exciting frequency ω:

 (6)

where {∆} and {F} denote the amplitude of the nodal displacements and applied loads, respectively.
By letting t denote the thickness of the element, the element mass matrix [M] and stiffness matrix
[K] can be expressed as

 (7)

 (8)

where [N] is the shape function matrix, [B] the strain-displacement matrix, [E] the constitutive
matrix and J is the Jocobian of the transformation matrix from the global co-ordinate system to the
local co-ordinate system. Conventionally, the term ([K]−ω2[M]) has been referred to as the
impedance matrix, which will be denoted as [S] in this study. Both the matrices [N], [B] and the
Jacobian J can be derived from the aforementioned shape functions.

It should be noted that because of the harmonic terms involved in the shape functions, and the
unbounded limits of the integrals, i.e., from 0 to ó , rather than from −1 to 1 as implied by
conventional finite element integrals, the mass and stiffness matrices given in Eqs. (7) and (8)
represent one kind of integrals that cannot be evaluated using conventional Gauss integration
schemes. To evaluate integrals with directions extending to infinity, i.e., the ξ-direction for the
present case, a special integration scheme devised by Bettess and Zienkiewicz (1977) was used.
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Other details regarding application of the infinite element presented in this section are available in
Yang et al. (1996).

3. Scheme for generating finite/infinite element mesh

In this study, the near field including the building will be modeled by the Q8 plane elements, and
the far field by the Q8-compatible infinite elements. As was stated in Yang et al. (1996), the
maximum element size and minimum mesh size required depend on the wave length, which in turn
depends on the frequency of the problem considered. Hence, for waves of lower frequencies, a
finite element mesh of larger extent R should be used. On the contrary, for waves of higher
frequencies, an element of smaller size L should be used. The following are the requirements for the
finite element mesh in order to achieve accurate results: element size Lú λs/6 and mesh extent Rû
0.5λs, where λs denotes the shear wave length. Obviously, it is difficult, or at least computationally
inefficient, to create a finite/infinite element mesh that can meet the diverse needs of waves of both
low and high frequencies. The following is a summary of the procedure for generating the far field
impedance matrices for the full range of frequencies using exactly the finite/infinite element mesh
established for the highest frequency that is of interest (Yang et al. 1996).

Consider the two far fields as indicated by the one with a solid boundary and the other one with a
dashed boundary in Fig. 3. Let the two far fields be similar with respect to point O, in the sense
that along each radial line originating from point O, the ratio of the distance between point O and
the point on the dashed line to the distance between point O and the corresponding point on the
solid line remains equal to n/(n−1), where n is an integer, assuming the material properties to be
identical along each radial direction. Let ∆ω denote a constant frequency increment. It can be
ascertained that for the two-dimensional problem, the far field impedance [S] for ω =(n−1)∆ω at the
outer boundary (dashed line) with an extent of [n/(n−1)]R should equal the far field impedance [S]
for ω =n∆ω at the inner boundary (solid line) with a distance of R. In analysis, one may start by
calculating the far field impedance [S] for the highest frequency ω =n∆ω at the inner boundary with
distance R, i.e., by assembling the structural impedance matrices of the infinite elements over the
inner boundary, and set the far-field impedance [S] for ω =(n−1)∆ω at the outer boundary with

Fig. 3 Schematic of condensation to the inner boundary
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distance [n/(n−1)]R equal to it. Then, one can divide the region enclosed by these two boundaries
into a number of Q8 elements, with the distance between any two adjacent nodes on the outer
boundary set equal to n/(n−1) times that of its corresponding distance on the inner boundary. By
condensing all the far-field degrees of freedom, including those of the newly inserted Q8 elements
and those on the outer boundary, to the nodes on the inner boundary, one can obtain the impedance
matrix [S] for the next highest frequency ω=(n−1)∆ω at the inner boundary. The above procedure
can be repeated to yield the far-field impedance matrices [S] for all the remaining frequencies ω=(n
−2)∆ω, ω=(n−3)∆ω, ..., etc. It should be noted that although the location of the outer boundary
moves as the value (n−1)/n changes, such a condensation process can be carried out by internal
computer codes. Consequently, only the finite element mesh for the near field need be established
prior to analysis, while the rest can be dealt with repetitively by the computer program.

4. Frequency-independent parametric studies

For the purpose of wave reduction, an open or in-filled trench will be constructed between the
vibration source and the building to be protected, as shown in Fig. 1. In this section, a homogenous
half-space is assumed for the soils underlying the building. The finite/infinite element method
described above will be employed to investigate the influence of various parameters upon the
screening effect of the open and in-filled trenches at a specific frequency. Based on the criteria
stated earlier for mesh generation, a finite/infinite element mesh that meets the present demands was
created (Fig. 4). The screening effect of the wave barrier can be evaluated using the amplitude
reduction ratio Ar defined as

 (9)

where da denotes the average displacement amplitude over the floor (or ceiling) surface of the
structure with the wave barrier, and db the corresponding average displacement amplitude for the
case with no barrier. Obviously, a smaller value of Ar implies that a better effect of isolation has
been achieved by the barrier.

Ar=
da

db

-----

Fig. 4 Finite/infinite element mesh I
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In what follows, the influence of geometric and material parameters of the trench, including the
width, depth, location, shear modulus and Poisson’s ratio, will be discussed. To avoid dependency
of the analysis results on the exciting frequency, all the geometric parameters used in this study will
be normalized with respect to the Rayleigh wave length λR, i.e., w=W·λR, d=D·λR, l=L·λR, x0=X0·λR,
t=T·λR, x=X·λR and h=H·λR, where the parameters W, D, L, X0, T, X and H are dimensionless. Unless
otherwise noted, D=1 and L=3/2 will be adopted exclusively for both the open and in-filled
trenches, and W=1/3 and W=1/2 for the open and in-filled trench, respectively. In the parametric
study, the soil and building properties, as well as the location for the external load, will be kept
constant, i.e., X0=1/2, T=1/20 and X=3 will be adopted throughout the analysis and the soil
extending to infinity (H→ó ) is assumed to be homogeneous, viscoelastic. All the material
properties assumed for the standard case have been listed in Table X. Using the present data, the
shear wave velocity Cs for the soil is 160 m/s, and the Rayleigh wave velocity is 150 m/s.

4.1 Normalized distance (L) between the structure and open trench

The results computed for the ceiling and floor of the structure by varying the distance L between
the structure and the trench have been plotted in Fig. 5. As can be seen, the difference between the
ceiling and floor responses with regard to the effect of isolation is not noticeable. For both the
ceiling and floor responses, it can be observed that the isolation efficiency of the trench decreases
when it is located either close to the source (i.e., with L=2.5) or close to the structure (i.e., with
L=0.75). One possible reason for this is that at places near the external source, the body waves play
a role more important than the surface waves. Since the body waves decay slowly downward from
the surface, a great portion of these waves can pass through below the trench as it is located close
to the source, thereby reducing the effect of screening. On the other hand, as the open trench is
located near the building, because of the unstable nature of the open trench, it will cause the
neighboring building to vibrate and thus reduce the effect of isolation. 

4.2 Normalized depth (D) and width (W) of the open trench

By changing the depth (D) of the open trench, the results computed for the vertical response of
the floor of the structure have been plotted against the normalized width (W) in Fig. 6. It can be
observed that for shallow trenches, say, with D=1/3 and D=2/3, the wider the trench, the worse the
effect of isolation is. In contrast, for deep trenches, greater width may result in better screening
effect, although the phenomenon is only marginal. One reason for this is that as D is small, the use
of wider trenches, which means wider free surface, allows the body waves to be transformed into
the surface waves, which suffer little geometric attenuation in traveling. As a consequence, the
influence of width becomes pronounced. Besides, the figure indicates that for D û 1, the influence

Table 1 Material properties of soil-structure model

Shear modulus
G (MPa)

Elastic constant
E (MPa)

Poisson’s ratio
υ

Density
ρ (kg/m3)

Damping ratio
β (%)

Soil 43.52 − 0.33 1700 5

In-filled trench 1840 − 0.25 2700 5

Structure − 21000 0.20 2300 2
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of the trench depth becomes rather minor. However, for small D values, say, for D ú 2/3, an
increase in the trench depth can improve significantly the effect of isolation. It should be added that
a trend similar to the one given in Fig. 6 exists for the ceiling, which is not shown here for brevity. 

4.3 Normalized distance (L) between the building and in-filled trench

The amplitude reduction ratios Ar for both the ceiling and floor of the building have been plotted
against the distance L between the building and in-filled trench in Fig. 7. From this figure, a trend
opposite to that of the open trench is observed, that is, the screening effect appears to be greater
when the in-filled trench is located either close to the source (with L=2.5) or to the building (with
L=0.75). It is hard to explain why the in-filled trench shows better isolation effect when located
closer to the source, i.e., with L=2.5, due to the complex nature of the wave propagation
phenomenon, which may involve reflection, refraction, diffraction, mode conversion of waves and
soil-structure interaction. Nevertheless, it is natural to see that the in-filled trench performs better
when located closer to the building, as it is stiffer than the nearby soils, which tends to constrain the
adjoining building from vibration.

4.4 Normalized depth (D) and width (W) of the in-filled trench

To investigate the effect of the trench dimensions in reducing the floor response of the structure,
the influence of the trench width W is investigated for different values of the trench depth D. As
can be seen from Fig. 8, the deeper the trench, the better the isolation effect is. This figure also
reveals that for shallow trenches, say, with Dú 2/3, an increase in the trench width does not always
lead to better isolation. The result for the ceiling response is similar to the one given in Fig. 8 for
the floor response, which is not shown here.

4.5 Impedance ratio (IR) of the in-filled trench 

The impedance ratio (IR) is a factor widely used by geotechnic engineers to distinguish whether a
wave barrier is soft or hard with respect to the surrounding soil, which is defined as

Fig. 5 Effect of normalized distance from structure
to open trench

Fig. 6 Effect of normalized (open) trench depth and
width on floor response
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 (10)

where ρb and ρs denote the mass density of the barrier and the soil, respectively, and Vb and Vs the
shear wave velocities of the two. Since the shear wave velocity V can be related to the shear
modulus and mass density, i.e., V=(G/ρ), the preceding equation can be rewritten,

(11)

where Gb and Gs denote the shear modulus of the in-filled trench and the underlying soil,
respectively. In this section, only the shear modulus Gb of the in-filled trench is allowed to vary,
while the shear modulus Gs of the soil and the mass densities for both the trench and soil will be
kept constant.

The amplitude reduction ratio Ar has been plotted against the impedance ratio IR for both the
ceiling and floor responses in Fig. 9. As can be seen from the right-hand part of the figure, the
increasing of IR can result in better isolation effect for trenches that are stiffer than the soil, i.e., for
trenches with IR > 1. However, the amplitude reduction ratio Ar tends to approach a limit value of
0.5 and 0.45 for the floor and the ceiling, respectively, as the barrier gets harder. Generally, the use
of IR = 7 can be regarded as an optimal choice for hard barriers. On the other hand, from the left-
hand part of Fig. 9, it can be observed that for barriers that are softer than the soil, i.e., for trenches
with IR < 1, the amplitude reduction ratio Ar declines dramatically as the impedance ratio IR
becomes smaller and reaches a minimum of 0.05 when IR = 0.11. A scrutiny of this figure reveals
that as the impedance ratio IR approaches zero, the amplitude reduction ratio Ar will approach the
value given in Fig. 6 for the open trench with W= 1/2 and D = 1. Such a phenomenon can be easily
conceived since the open trench is nothing but a special case of the in-filled trench with IR = 0.
From the point of construction, an in-filled trench with IR < 1 can be achieved using properly
designed soil-bentonite mix as the fill material. 

4.6 Poisson’s ratios (υb,υs) 

The variation in the reduction ratio for the floor response over different Poisson’s ratios of the
trench (υb) and the underling soil (υs) has been plotted in Fig. 10, in which the results for υs=0.25,

IR=
ρbVb

ρsVs

-----------

IR=
ρbGb

ρsGs

------------

Fig. 7 Effect of normalized distance from structure
to in-filled trench 

Fig. 8 Effect of normalized (in-filled) trench depth
and width on floor response
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0.33, 0.38 are almost coincident. As can be seen, an increase in the Poisson ratio υs of the soil from
0.25 to 0.38 causes basically no difference on the isolation response. However, as the Poisson ratio
υs of the soil equals 0.49, drastic decline on the isolation effect may occur. Such a phenomenon can
be attributed to the distinct influence of the Poisson ratio of the soil on the compressional wave
velocity Cp and, accordingly, on the wave length. The compressional wave velocity Cp can be
related to the shear wave velocity Cs as: Cs. As the Poisson ratio υs

change from 0.25 to 0.38, the compressional wave length increases by 1.31 times, while as the
Poisson’s ratio υs changes from 0.25 to 0.49, the compressional wave length increases by more than
4 times. Hence, for the case with υs=0.49, deeper trenches are required to achieve the same degree
of isolation. Besides, the figure indicates that changing υs causes basically no influence on the
isolation response. The above observations remain valid for the isolation of ceiling response, which
are not shown here. As a side note, the influence of the damping ratio and mass density of the soil
on isolation of building response is not significant for practical applications, which is also omitted.

5. Effect of frequencies and soil conditions

In the preceding parametric studies, all the results obtained are independent of the exciting
frequency of the driving force because all the geometric parameters have been normalized with
respect to the Rayleigh wave length. However, as the traffic loads cover a wide range of frequencies
and the building size x0 remains fixed in practice, the parametric studies conducted in the preceding
section under the assumption that the half-width of the building equals half of the Rayleigh wave
length (x0=1/2λR) appear to be insufficient or meaningless for the purpose of engineering applications.
In this section, the screening effect of the open and in-filled trenches will be investigated in a more
realistic manner under the range of frequencies considered for different soil conditions. The model
adopted in this section is exactly identical to the one given in Fig. 1. For the present case, however,
all the geometric parameters will be normalized respect to the half-width x0 of the building, rather
than the Rayleigh wave length λR. In particular, the thickness of the building is assumed to be t =
1/10 x0, the location of vibration source is x = 4.5 x0 and the depth of soil layer 1 is h = 2 x0. For the
open trench, the depth and width are d = 1.5 x0, w = 0.25 x0, and the distance from the trench to the
building center is l = 1.25 x0. And for the in-filled trench, the following data are used: d = 1.5 x0,
w = 0.5 x0, and l = 1.25 x0. All the material properties for soil layer 1, as well as those for the

Cp= 2 1 υs–( )/ 1 2υs–( )

Fig. 9 Effect of impedance ratio for in-filled trench Fig. 10 Effect of Poisson’s ratio for in-filled trench
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structure and the trench, are the same as those listed in Table 1. For the present purposes, two
different conditions will be considered for the soils. One is a homogeneous half-space soil with no
bedrock, which can be achieved by setting the shear wave velocity of layer 2 equal to layer 1, i.e.,
Cs2 = Cs1 = 160 m/s. The other is a soil supported by bedrock, which can be achieved by assigning a
rather high value to the shear wave velocity of layer 2, say, using Cs2 = 1200 m/s. Through a careful
examination of the present data for the soil and structure, a finite/infinite element mesh was created
as shown in Fig. 11.

The non-dimensional frequency factor ωx0/Cs is used as a frequency parameter, where ω denotes
the exciting frequency and Cs the shear wave velocity of soil layer 1. The average response of both
the ceiling and floor of the structure will be analyzed. In addition to the normalized vertical
response V·G, where V denotes the vertical displacement and G the shear modulus of soil layer 1, a
log-scale vibration acceleration level (VAL) with the unit dB will also be adopted to present the
analysis results, 

relative VAL[dB]=20log10  (12)

where the reference acceleration is obtained from the response of a reference analysis in which no
trench is present. Obviously, the relative VAL serves as an indicator of the effectiveness of the
trench in reducing the building vibrations.

5.1 Soil with no bedrock

Figs. 12(a) and (b) respectively depict the vertical response of the ceiling and the floor under
different frequencies. As can be seen, the resonance responses occur at ωx0/Cs = 0.6 and 1.1 for the
ceiling, but no resonance response occurs on the floor. The non-consistence in the response of the
ceiling and floor can be attributed to the fact that the floor is in direct contact with the soil, but the
ceiling is not. Consequently, the resonance frequencies occurring on the ceiling should be
interpreted as the natural frequencies of the building. 

Corresponding to Figs. 12(a) and (b), the effectiveness of the trenches in reducing the ceiling and

calculated  acceleration
reference  acceleration
--------------------------------------------------------

Fig. 11 Finite/infinite element mesh II
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floor responses has been plotted in terms of the relative VAL in Figs. 13(a) and (b), respectively.
From these figures, it is clear that although the trenches are very helpful for reducing the high-
frequency vibrations, basically no isolation effect can be achieved at lower frequencies, say, in the
range with ωx0/Cs < 1.3 for the ceiling and with ωx0/Cs < 1.0 for the floor. Such a result can be
easily interpreted using the relation: λ =2πC/ω, where λ is the wave length and C the wave velocity.
As the soil properties remain unchanged, so does the wave velocity C. It follows that a lower
frequency ω implies a longer wave length λ. Hence, to achieve the same level of isolation, deeper
trenches must be used for waves of lower frequencies, because of their longer wave lengths.
However, as was shown in Fig. 12, the response of the building for the case without bedrock are
dominated by lower frequencies. Thus, if one is interested in mitigating the low-frequency response
for the present case, the trenches should not be regarded as a proper tool. Besides, the results also
demonstrate that the open trench tends to isolate the vibration more effectively than the in-filled
trench, and that there is no monotonous increase of the screening effect with relation to increase of
the frequency, especially for the open trench. This implies that for a specific frequency, an increase
of the trench dimension does not always lead to better isolation effect, which is consistent with the
observations made in the preceding section. 

Fig. 12 Effect of frequency for soil without bedrock
on vertical displacement of (a) ceiling, (b) floor

Fig. 13 Effect of frequency for soil without bedrock
on VAL response of (a) ceiling, (b) floor
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5.2 Soil with bedrock

To simulate the effect of underlying bedrock, the shear wave velocity of soil layer 2 is assumed to
be eight times that of layer 1. The absolute values of the vertical displacement of the ceiling and
floor of the building versus the non-dimensional frequency factor have been plotted in Figs. 14(a)
and (b), respectively. By comparing the results for the present case with those for the case with no
bedrock in Fig. 12, one observes that pretty low responses occur at lower frequencies for the case
with bedrock. This can be attributed to the fact that no vibration eigenmodes can be induced below
the cutoff frequency of the soil stratum. According to Wolf (1985), the cutoff frequency is Cp/(4h)
(equivalent to ωx0/Cs = π/4(Cp/Cs) = 1.56) for the vertical injected compressional wave and is Cs/(4h)
(equivalent to ωx0/Cs = π/4 = 0.79) for the shear wave. Another observation is that, unlike the case
with no bedrock, the floor may become in resonance with the soil stratum, with rather large peak
response induced. Here, the resonance frequency of the soil stratum is (2n−1)Cp/(4h) = (2n−1)
1.56 = 1.56, 4.68, ..., for the compressional waves, and (2n−1)Cs/(4h) = (2n−1) 0.79 = 0.79, 2.36, ...,
for the shear waves.

Corresponding to Figs. 14(a) and (b), the effectiveness of the trenches in reducing the ceiling and
floor response has been plotted in terms of the relative VAL in Figs. 15(a) and (b), respectively. A

Fig. 14 Effect of frequency for soil with bedrock on
vertical response of (a) ceiling, (b) floor

Fig. 15 Effect of frequency for soil with bedrock on
VAL response of (a) ceiling, (b) floor
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comparison of these figures with those for the case with no bedrock (Fig. 13) indicates that similar
trend exists between these two, implying that the existence of the bedrock causes basically no
difference to the efficiency of isolation of the trenches. However, as was revealed by Fig. 14, the
building response becomes rather small at lower frequencies due to presence of the bedrock. Thus,
the potential drawback of the trenches in reducing the low-frequency response becomes insignificant
for the case with bedrock.

6. Conclusions

The following conclusions can be drawn from the results presented in this paper: (1) In order to
achieve a good effect of isolation, the open or in-filled trenches should have a depth of the same
order as that of the Rayleigh wave length. As a result, the isolation of ground-borne vibrations by
trenches is effective only for moderate to high frequency vibrations. (2) The open trench tends to
perform better than the in-filled trench for the cases studied. However, the open trench is inferior to
the in-filled trench because of its higher difficulty in construction and higher cost of maintenance.
(3) Soils with large Poisson’s ratios can reduce the effect of isolation brought by the trenches, since
they can increase considerably the compressional wavelength. (4) The stiffer (or softer) an in-filled
trench with respect to the surrounding soil, the better the effect of isolation is. (5) Although the
ceiling response differs significantly from the floor response due to involvement of the building
frequencies, the efficiency of trenches in isolating the ceiling and floor responses appears to be
similar. (6) For soils with bedrock, the response of the building at frequencies lower than the cutoff
frequencies becomes rather small, as compared with the case without bedrock. However, the
response may become more pronounced at frequencies equal to or higher than the cutoff frequency
because of the resonance effect of the soil stratum. Both the cutoff effect and the resonance effect
should be considered if an artificial bedrock is to be installed at a certain depth under the structure
or the source to mitigate the train-induced vibrations.
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