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Influence of thickness variation of annular plates
on the buckling problem
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Abstract. The aim of this work is to establish the coefficient that defines the critical buckling load for
isotropic annular plates of variable thickness whose outer boundary is simply supported and subjected to
uniform pressure. It is assumed that the plate thickness varies in a continuous way, according to an
exponential law. The eigenvalues are determined using an optimized Rayleigh-Ritz method with
polynomial coordinate functions which identically satisfy the boundary conditions at the outer edge. Good
engineering agreement is shown to exist between the obtained results and buckling parameters presented
in the technical literature.
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1. Introduction

The buckling problem is of great practical significance in civil, mechanical, naval and aerospace
engineering applications of plates with either a constant or variable thickness. This topic has
received the attention of many researchers who consider it together with the vibration problem.

Stuart and Carney (1974) studied the free vibrations of isotropic annular plates and have presented
an exact solution that includes asymmetric modes using the Rayleigh-Ritz method. Ramaiah (1975)
considered the asymmetric vibration modes of polar orthotropic annular plates. Loh and Carney
(1976) have determined an exact solution for both the circular frequencies and buckling loads for all
modes of radially compressed spinning isotropic annular plates reinforced with edge beams. Soni
and Amba-Rao (1975) used the Chebyshev collocation method to study the free axisymmetric
vibrations of isotropic annular plates with linear thickness profiles. Ramaiah and Vijayakumar
(1975) also considered the free vibration of isotropic annular plates with linear thickness profiles
and, using the Rayleigh-Ritz method, they have obtained circular frequency parameters for
axisymmetric and asymmetric modes. Laura, et al. (1975, 1988, 1995, 1996) and Avalos et al.
(1979) have produced important contributions. These authors have dealt with the problem by taking
into account different support conditions and discontinuous variable thicknesses. They have given
critical buckling loads.

Dyka and Carney III (1979) have presented an exact solution for an orthotropic annular plate with
variable thickness and reinforced with edge beams along the outer and inner boundaries.
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An exact solution for the fundamental problem treated here is available in the case of plates of
uniform thickness, while there is only a very limited number of studies in the case of annular plates
of non-uniform thickness. In this study the coefficient that leads to the critical buckling load is
determined for isotropic annular plates of both uniform and variable thickness with the outer edge
simply supported and the inner contour free. The outer boundary of the plate is subjected to a
uniformly applied pressure. The analysis is performed by using the optimized Rayleigh-Ritz method
which is based on a variational principle of mechanics.

Numerical data is obtained for plates with both uniform and non-uniform thicknesses for a
Poisson’s ratio value of µ = 1/3.

2. Approximate solution by means of the optimized Rayleigh-Ritz method

A thin annular plate is considered where a and b are respectively the radii of inner and outer
edges. The thickness h, of the plate is assumed to vary in the radial direction in the form h=H rp,
where H, p and constants and r is the radius, proposed by Dyka and Carney (1979).

Determination of the critical buckling load is defined by minimization of the governing functional

(1)

where: D: rigidity of the plate to flexure
Nr : compressive radial force
w : amplitude of normal displacement
r, θ : polars coordinates
µ : Poisson’s ratio

Under an in-plane force which is uniform in the radial direction, there is radial symmetry

w = w(r) (2)

Thus

(3)

Introducing the dimensionless variable x

x = r/b, r = b x; and dr = b dx (4)

one obtains

(5)

where k = ri /re.
In applying the Rayleigh-Ritz method, it is quite convenient to approximate the displacement
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amplitude w(r) by means of a summation of simple polynomial coordinate functions. It is assumed
in the usual form

(6)

In the purposed displacement function, an unknown parameter γ, appears as an exponent. Taking
two terms of the summation, one has 

(7)

Values of αj−1 and βj−1 are determined from the governing outer boundary conditions, applying them
to either term of the summation.

For a simply supported outer edge, r=b or x=1, the governing boundary conditions are:

w(1)=0 (8a)

(8b)

where  and  indicate first and second order derivatives respectively. Substituting Eqs. (8) into
each term of Eq. (7) results in

(9)

(10)

The exponential parameter γ allows for minimization of the calculated eigenvalue.
On the other hand, the radial stress resultant is given by Dyka and Carney III (1979).

(11)

(12)

p = exponent for the law of the variation of thickness
Er, Eq= Young’s moduli
µr, µθ = Poisson’s ratios for the orthotropic polar plate
K2 = µθ /µr = Eθ /Er

In our case, for isotropic plates, the expressions (11) and (12) will be

(13)

(14)

A and B are constants to be determined from the natural boundary conditions

wap r( )=  
j=1

j

∑ Aj −1 αj −1x
γ+β j −1x

2+1( )xj−1

wap r( )=A0 α0x
γ+β0x

2+1( )+A1 α1x
γ+1+β1x

3+x( )

w″ 1( )+µ/x w′ 1( )=0

w′ w″

α0 sup simple=
2 1+µ( )

γ γ −1+µ( )−2 1+µ( )
-------------------------------------------------       β0 sup simple=−

γ γ −1+µ( )
γ γ −1+µ( )−2 1+µ( )
-------------------------------------------------

α1 sup simple=
2 3+µ( )

γ γ +µ+1( )−2 3+µ( )
-------------------------------------------------       β1 sup simple=−

γ γ +µ+1( )
γ γ +µ+1( )−2 3+µ( )
-------------------------------------------------

σrr =
AEθ x1+µθ( )

K2−µθ
2

-----------------------------r
x1−1( )

+
BEθ x2+µθ( )

K2−µθ
2

-----------------------------r
x2−1( )

x1=
p– + p2+4 K2−pµθ( )

2
---------------------------------------------------,    x2=

p– − p2+4 K2−pµθ( )
2

---------------------------------------------------

σr=
AE x1+µ( )

1−µ2
-------------------------r

x1−1
+

BE x2+µ( )
1−µ2

-------------------------r
x2−1

x1=
p– + p2+4 1−pµ( )

2
---------------------------------------------,    x2=

p– − p2+4 1−pµ( )
2

---------------------------------------------



464 P.M. Ciancio and J.A. Reyes

(15)

pi = inner pressure
pe = outer pressure

Thus

(16)

The compressive radial force is

Nr=σrh (17)

and expressed as a function of x

(18)

where

(19)

Whereas

(20)

(21)

Substituting Eq. (18) into Eq. (5) and operating, one has

(22)

Requiring that the functional be a minimum with respect to the Aj−1 one obtains
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(24)

The non-triviality condition leads to a transcendental equation. The lowest root is the desired
critical buckling parameter λ.

3. Analyzed cases and results obtained

Timoshenko (1961) analyzed the buckling problem in circular and annular plates with uniform
thickness. He obtained, for example, (Nr)cr = (4, 2D)/b2, for the circular plate with the simply
supported edge, where 4,2 represents the critical buckling prrameter λ. The results obtained in this
work for annular plates with simply supported outer edge appear in Table 1.

Other studies (Laura et al. 1995) give the critical buckling parameter for annular plates with a
discontinuous variable thickness. These values are indicative for the case of annular plates with
variable thickness according to the exponential law we have considered above.

For this study we supposed the same height at the outer boundary and for a radius r = (a+c)/2 as
Laura (1995) considered and shows Fig. 2. Taking as a starting point these considerations, we have
determined the following equation for the exponent p that appears in the exponential law.
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Fig. 1 Values of buckling paramer λ. Plate with uniform thickness and simply supported outer edge

Table 1 Values of buckling parameter λ for the annular plates with simply supported outer edge under in-
plane forces and uniform thickness

µ=1/3
k = a/b

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

λ 4.216 4.014 3.671 3.232 2.778 2.537 2.22 2.20
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Supposing  then the thickness is hr=h1 while for r=b hr=h0

one has

(25)

Table 2 shows the values for p. All calculations have been determined for relations h1/h0=0, 8 a/b
=0, 1, ....., 0, 7 y c/b=0, 2, ....., 0, 8. Table 3 shows results for the buckling parameter λ available in
Laura, et al. (1995) and those calculated according to the exponential values given in Table 2.

Different values were assigned for the exponent p to be able to consider the influence of the
thickness variation on the parameter λ. Table 4 shows the values of λ for different magnitudes of k
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Fig. 2 Variation of thickness as a function of h1, h0, a, b, c

Table 2 Values for exponent p as a function of c/b and k=a/b

k=a/b
 Values of c/b

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 0.1176 0.1386 0.1609 0.1853 0.2125 0.2435 0.2794
0.2 0.1609 0.1853 0.2125 0.2435 0.2794 0.3219
0.3 0.2125 0.2435 0.2794 0.3219 0.3732
0.4 0.2794 0.3219 0.3732 0.4368
0.5  0.3732 0.4368 0.5179
0.6 0.5179 0.6256
0.7 0.7756



Influence of thickness variation of annular plates on the buckling problem 467

and different values of p.

4. Conclusions

In this paper an optimized Rayleigh-Ritz method is used to obtain the buckling parameter λ. This
method offers simplicity in its application, and is a powerful tool for determining the buckling load
for a number of complex structures.

This work is an attempt to fill an apparent void with respect to the buckling load for variable
thickness plates. This is achieved by using the exact expression for the in-plane resultant stress in
the governing functional including an exponential law for the thickness profile of annular plates as
described above.

Table 3 Values of parameter for annular plate with simply supported outer edge

k=a/b
Values of c/b

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 (1) 3.02646 2.880401 2.734349 2.58486 2.429609 2.266787 2.095034
 (2) 3.806 3.485 3.224 2.964 2.706 2.505 2.351

0.2 (1) 2.605524 2.479356 2.347538 2.208295 2.060024 1.901283
(2) 3.220 2.946 2.696 2.465 2.284 2.136

0.3 (1) 2.220959 2.109447 1.989157 1.85838 1.71533
(2) 2.786    2.493 2.258 2.064 1.896

0.4 (1) 1.879879 1.778762 1.666018 1.539298
(2) 2.438 2.131 1.927 1.737

0.5 (1) 1.58946 1.492975 1.380846
(2) 2.171 1.888 1.656

0.6 (1) 1.34345 1.243316
(2) 1.951 1.651

0.7 (1) 1.11922
(2) 1.745

(1) Values obtained applying the optimized Rayleigh-Ritz method for the case of variable thickness with continuity
(2) Values obtained by Laura et al. (1995), for the case of variable thickness with discontinuity

Table 4 Values of parameter for different laws of variation thickness

P
k = a/b

 0.1 0.2 0.3 0.4 0.5

0 4.014 3.654 3.158 2.766 2.537
0.5 1.338 1.348 1.418 1.422 1.499
1 0.658 0.703 0.765 0.835 0.901
1.5 0.422 0.447 0.491 0.552 0.625
2 0.314 0.328 0.356 0.400 0.461
2.5 0.253 0.261 0.279 0.311 0.358
3 0.214 0.219 0.230 0.252 0.289
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When the thickness of the inner edge increases towards the outer boundary, the parameter λ
raises. This variation in thickness produces lower values for buckling loads. This difference
diminishes when relation k increases.
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