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Stress wave propagation in composite materials
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Abstract. The linear constitutive relations and the failure criteria of composite materials made of
thermoviscoelastic solids are presented. The post-failure material behavior is proposed and the dynamic
finite element equations are formulated. However, a nonlinear term is kept in the energy equation because
it represents the effect of the second law of thermodynamics. A general purpose nonlinear three-
dimensional dynamic finite element program COMPASS is upgraded and employed in this work to investigate the
interdependence among stress wave propagation, stress concentration, failure progression and temperature
elevation in composite materials. The consequence of truthfully incorporating the second law of thermodynamics is
clearly observed: it will always cause temperature rise if there exists a dynamic mechanical process.

Key words: dynamic finite element analysis; second law of thermodynamics; thermo-mechanical coupling;
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1. Introduction

Composite materials have had a long history, but they received little attention until the rise of the
aerospace and automotive industries. In the latest three decades, the availability, diversity and
applications of the high-modulus fiber-reinforced composites have increased significantly.

Composite materials are different from conventional materials for their high modulus, high
strength, low density and also the superior mechanical properties that could be developed when they
are formed into composite laminates. The use of composite materials could reduce weight by
approximately 35% over the conventional materials in some cases (Kelly 1989). Corrosion resistance is
another significant characteristics of composite materials, which enable them to be applied to almost
every field irrespective of the existing adverse environmental conditions.

The increasing use of composites has made it necessary to investigate their material behaviors,
their possible failure modes, the failure progression and the crack propagation, which are essential
for optimizing the designs of structures made of these materials. Because of the heterogeneity and
anisotropy of composite laminates, their failure characteristics are more complicated than that of the
isotropic materials. Hence, the early studies were limited to special cases with simplifying
assumptions. Only in the most recent years, the revolutionary advancement in computer science
shed a light on this field. The availability of high capacity, high speed modern computers made it
possible to analyze the failure process of fiber-reinforced composite structures in detail with finite
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element technique.
A lot of research has been done on the progressive failure analysis of laminated composite

structures. In one approach, the mechanics of matrix cracking and delamination are accounted for
via locally averaged internal variables that account for the kinematics of microcracking, and damage
progression is predicted by using phenomenological based damage evolution laws (Allen and Harris
1987, Allen et al. 1987, 1988, Lee et al. 1989). Solti, Mall and Robertson (1995) introduced a
micromechanics based model for analyzing the response of unidirectional ceramic composites,
which are subjected to uniaxial, quasi-static tension. The work by Voyiadjis and Kattan (1993) is
also interesting. Some progressive failure analyses of laminated composites similar to the approach
in this paper have been performed by Hwang and Sun (1989), Tolson and Zabaras (1991) and
Pachajoa et al. (1994, 1995). However, dynamic finite element analyses of composite structures are
rare. Besides, those works, even if they include the fully coupled thermomechanical behavior of
composite materials, are based on a linearized energy equation which neglects the effect of the
second law of thermodynamics.

For the investigation of failure analysis of composite structures, appropriate failure criteria are
required. A number of different failure criteria have been proposed to predict the initiation and
progression of damage in a laminate, such as maximum stress criterion (Lee 1982, Pryce and Smith
1993), the fracture mechanics approach which employs a critical energy release rate or stress
intensity factor (Flaggs 1985), statistical failure analyses (Fukunaga et al. 1984) and Hashin’s failure
criteria (Hashin 1980).

In this paper, the linear constitutive relations and the failure criteria of anisotropic thermoviscoelastic
solids are presented. The post-failure material behavior is proposed and the dynamic finite element
equations are formulated. It should be emphasized that a nonlinear term is kept in the energy
equation and thus incorporated in the finite element equations, simply because the effect of the
second law of thermodynamics cannot be disregarded. An integrated three-dimensional nonlinear
dynamic finite element program COMPASS is upgraded and employed in this work to investigate
the interdependence among wave propagation, stress concentration, failure progression and temperature
elevation in composite materials. COMPASS was first developed for static stress and failure
analysis of composite structure (Pachajoa 1995). Then it was further developed into a dynamic
code. Now it is capable of performing nonlinear dynamic finite element analysis and has taken the
effect of the thermodynamic second law into account.

2. Constitutive relations

In this work, the structure is considered to be made of unidirectional fiber-reinforced composite
materials that are assumed to be linear thermoviscoelastic solids. That means, the strains and the
temperature variations involved are small so that the higher-order terms in the constitutive equations
are negligible, and that the dependent constitutive variables are only functions of the infinitesimal
strain tensor e, deformation rate tensor d, temperature θ, temperature gradients θ  and the Lagrangian
coordinates X (Eringen 1989). The constitutive relations for anisotropic thermoviscoelastic materials can
now be expressed as

(1)

∇

σ i j =σ i j e d θ ∇θ X, , , ,( )
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(2)
(3)
(4)

where σ, q, η, ψ are the stress tensor, heat flux, entropy density and free-energy density,
respectively.

The fundamental laws of continuum mechanics can be written as (Eringen 1989):

Conservation of Mass (5)

Balance of Linear Momentum (6)

Balance of Moment of Momentum (7)

Conservation of Energy (8)

Clausius-Duhem Inequality (9)

where ρ, υ, f, ε, h are the density, velocity vector, body force, internal energy density and heat
source, respectively. Meanwhile, ε, ψ, θ and η are related as

(10)

Substituting Eq. (1-4) into the Clausius-Duhem inequality, we get

(11)

Since in small-strain-small-temperature-variation theory, , inequality (11) can be written as

(12)

This inequality must be satisfied for all independent thermomechanical processes. Since  and
 occur only linearly with coefficients which are not functions of these quantities, inequality (12)

cannot be maintained for all  and  unless the coefficients of these terms vanish separately,
i.e.

(13)

(14)

(15)

Eqs. (14)-(15) imply that the free-energy density ψ is neither a function of d nor θ,  which means

(16)

qi=qi e d θ ∇θ X, , , ,( )
η=η e d θ ∇θ X, , , ,( )
ψ=ψ e d θ ∇θ X, , , ,( )

ρ· ρυi i, =0+

ρυ· i=σi j j, ρfi+

σ i j =σ j i

ρε·=σ i j dij qi i, ρh+–

ρ ψ· θ·η+( ) σ i j dij
1
θ
---qi θ,i 0≥–+–

ε=ψ θη+

ρ ∂ψ
∂eij

--------e·i j
∂ψ
∂dij    

-----------d·i j
∂ψ
∂θ
-------θ· ∂ψ

∂θ,i
--------+ θ· ,i θ·η+ + + σi j dij

1
θ
---qiθ,i 0≥–+–

e· d≅

ρ ∂ψ
∂eij

--------dij
∂ψ
∂dij    

-----------d·i j
∂ψ
∂θ
-------θ· ∂ψ

∂θ,i
--------+ θ· ,i θ·η+ + + σ i j dij

1
θ
---qiθ,i 0≥–+–

θ· θ,i
·,

d·

θ· θ,i
·, d·

η=
∂ψ
∂θ
-------–

∂ψ
∂θ,i
--------=0

∂ψ
∂dij

--------=0

∇

ψ=ψ e θ X, ,( )
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The Clausius-Duhem inequality now takes the following form

(17)

We divide the stress tensor σ into two parts, the elastic part and the dissipative part, as

(18)

where

(19)

is the reversible or elastic part of the stress tensor, derivable from the free-energy density function
ψ, whereas dσij is the irreversible or dissipative part. Then the Clausius-Duhem inequality becomes

(20)

Introducing the Helmholtz free-energy potential function

(21)

where ρ0 is the initial value of ρ, the constitutive equations are now reduced to

(22)

 (2)*

(23)

(24)

It is noticed that the internal energy ε, the entropy density η, and the elastic part of the stress tensor
eσij are all derivable from the potential Σ.

Substituting Eq. (10, 22, 23) into Eq. (8), one may obtain

(25)

Let the absolute temperature θ be divided into the sum of the reference temperature T0 and the
temperature variation T, which is assumed to be small, i.e., 

(26)

then Eq. (25) can be written as

(27)

Under zero initial stress condition, Σ, dσ and q can be expanded into polynomial forms as

σ i j ρ ∂ψ
∂eij

--------– 
  dij

1
θ
---qiθ,i 0≥–

σ i j e d θ ∇θ X, , , ,( )= σe ij e θ X, ,( ) σd ij e d θ ∇θ X, , , ,( )+

σe ij e θ X, ,( ) ρ ∂ψ
∂eij

--------≡

σd ijdij
1
θ
---qiθ,i 0≥–

Σ e θ X, ,( ) ρ0ψ e θ X, ,( )≡

σ i j =
ρ
ρ0

----- ∂Σ
∂eij

-------- σd ij+

qi=qi e d θ ∇θ X, , , ,( )

η=
1
ρ0

-----∂Σ
∂θ
------–

ψ=
1
ρ0

-----Σ e θ X, ,( )

ρθη· = σd ijdij qi i, ρh+–

θ T0 T+≡   with  T0 0> T <<T0,,

ρ T0 T+( )η· ρT0η·≅ = σd ijdij qi i, ρh+–
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(28)

(29)

(30)

where Σ0 and η0 are the reference Helmholtz free-energy potential and reference entropy density,
respectively; γ, β, A, B, J, H and G are the material coefficients which may be functions of the
reference temperature and the Lagrangian coordinates, taking material inhomogeneity into
consideration.

Substituting Eq. (28) into Eq. (19, 23), we get

(31)

(32)

since in small strain theory, .
Because the material under consideration is unidirectional fiber-reinforced, it has three mutually

perpendicular planes of mirror symmetry, thus in its constitutive equations, all the odd order
material property tensors have to vanish. Therefore, Eq. (29) and Eq. (30) can be reduced to

(33)

(34)

Substituting Eq. (31), (33) and (34) into Eq. (27), the energy equation becomes

(35)

Similarly, the Clausius-Duhem inequality (20) turns into

(36)

It should be noted that Eq. (35), which is the energy equation, still contains a nonlinear term
. Different from most other works done in this field, this term is kept throughout the whole

work despite that the finite element formulation will become nonlinear and thus more difficult to
solve. It is obvious from the inequality (36), the second law of thermodynamics, that both the
second order tensor H and the fourth order tensor B are positive definite for unidirectional fiber-
reinforced composite materials. For this reason it is not admissible to drop  from the energy
equation, otherwise the effect of the second law of thermodynamics would be disregarded and the
solutions would be erroneous and misleading.

Substituting Eq. (32, 33) into Eq. (6), we get

(37)

Σ Σ0 ρ0η0T–
ρ0γ
2T0

--------T2 β i j eij T
1
2
---Aijkl eij ekl+––≅

σd ij Bijkl dkl JijkT,k+≅

qi Hij T,j– Gijkdjk–≅

η=η0
γ
T0

-----T
1
ρ0

-----β i j eij+ +

σe ij=
ρ
ρ0
----- β i j T Aijkl ekl+–( ) −β i j T Aijkl ekl+≅

ρ
ρ0
-----=1 ekk– 1≅

σd ij=Bijkl dkl Bijkl e·kl≅

qi= Hij T, j–

ργT· T0β i j e·i j Bijkl e·i j e·kl Hij T, j( ),i ρh+ +=+

Bijkl e·i j e·kl
1
θ
---Hij T, iT, j 0≥+

e·:Be·

e·:Be·

ρυ· i= Aijkl ekl Bijkl e·i j+( ), j βi j T, j ρfi+–
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and the thermo-mechanical coupling can be seen clearly in Eq. (35) and (37).
For unidirectional fiber-reinforced composites, we express the stress tensor σ in contracted

notation and in the local LMN-coordinate system, which makes use of the axis symmetry about its
fiber orientation labeled as the L-axis, i.e.

(38)
where

(39)

(40)

(41)

(42)

with ; and the B-matrix has the same form as the A-matrix (Eringen 1989,
Jones 1976).

In the local LMN-coordinate system, Eq. (34) can be written as

(43)

The number of the independent material coefficients are 2 for β and H and 5 for A and B, which
is well-known for second- and fourth-order tensors when the material has axis symmetry (Eringen
1989).

Up to now, we have derived the linear constitutive relations for thermoviscoelastic solid. For
thermo-elastic material, the stress tensor and the energy equation are reduced to

(44)

(45)

For visco-elastic material, they are reduced to

(46)

(47)

For elastic solid, we get

σ i= βiT Aij ej Bij e·j+ +–

σ = σLL σMM  σNN  σMN  σNL  σLM[ ]′

e= eLL eMM  eNN  2eMN  2eNL  2eLM[ ]′

β βL βM  βM  0  0  0[ ]′=

A=

A11

  

A12

A22

symm.

  

A12

A23

A22  

0

0

0

A44

  

0

0

0

0

A55

  

0

0

0

0

0

A55

A44=1/2 A22 A23–( )

 qL 
qM

qN

 HLL 0 0

0 HMM 0

0 0 HMM 

 T, L 

T, M

T, N

–=

σ i= β iT– Aij ej+

ργT· T0β i j e·i j Hij T, j( ),i ρh+=+

σ i= β iT– Aij ej Bij e·j+ +

ργT· T0βi j e·i j+ =Bijkl e·i j e·kl ρh+
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(48)

(49)

3. Failure criterion

In this work, Hashin’s failure criterion is employed to determine whether failure occurs. It is a
three-dimensional failure criterion for unidirectional fiber-reinforced composite material. There are
four distinguishable failure modes (Hashin 1980):

(1) Tensile Fiber Mode ( )

(50)

(2) Compressive Fiber Mode ( )

(51)

(3) Tensile Matrix Mode ( )

(52)

(4) Compressive Matrix Mode ( )

(53)
where

(54)

When failure occurs in an element, the material properties, namely, the matrices β, H, A and B, of
that failed element will be modified accordingly to the failure mode (Pachajoa et al. 1994). For
example, if an element suffers tensile fiber breakage, then (1) σLL, σLM, σLN and qL are reduced to
zero irrespective of the strains, the strain rates, or the temperature gradients, (2) eLL, eLM, eLN, ,

,  have no effect on the non-vanishing stress components. This implies that after the fibers of
the element break, the matrices β, H, A and B take the following forms for the failed element 

, 

σ i= β iT– Aij ej+

ργT· T0β i j e·i j+ =ρh

σLL 0≥

σLL

c1

-------- 
 

2 σLM
2 σLN

2+( )
c6

2
----------------------------- 1=+

σLL 0<

σLL

c2

-------- 
 

2

=1

σMM σNN 0≥+

σMM σNN+
c3

-------------------------- 
 

2 σMN
2 σMMσNN–

c5
2

-----------------------------------
σLM

2 σLN
2+

c6
2

------------------------ 1=+ +

σMM σNN 0<+

c σMM σNN+( )
σMM σNN+( )2

4c5
2

---------------------------------
σMN

2 σMMσNN–

c5
2

-----------------------------------
σLM

2 σLN
2+

c6
2

------------------------ 1=+ + +

c=
1
c4

----
c4

2c5

-------- 
  2 

 

1–

e·LL

e·LM e·LN

β= 0  βM  βM  0  0  0[ ]′ Η=
 0 0 0

 0  HM 0

 0 0 HM 
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,

The modifications of these matrices for other failure modes can be found (Pachajoa et al. 1994,
Pfister 1998).

4. Finite element formulation

In this work, the finite element equations based on the principle of virtual work are formulated.
Multiplying Eq. (6) by the virtual displacement δui and then integrating over the volume v, applying
the Green-Gauss theorem, we obtain the virtual work equation as follow

(55)

where s is the bounding surface of the volume v. Similarly, from Eq. (35) we obtain

(56)

The surface integral in Eq. (55) can be reduced to 

(57)

where sσ is the part of surface on which the stress vector σijnj is specified to be σi
*. The other part

of the surface where the displacement vector u is specified does not contribute to the integral,
because δui is zero. Similarly, the surface integral in Eq. (56) can be reduced to

(58)

where sq is the part of surface on which the outward heat flux is specified to be q* .
In finite element analysis, the displacement field and temperature field within an element can be

calculated via the corresponding nodal values of that element as

(59)

(60)

where Niα and Nβ are matrices made of shape functions, Uα and Tβ are the nodal displacements and
temperature variations, respectively. Then the strains and the temperature gradient are obtained as

(61)

A=

 0 0 0 0 0  0 

A22 A23 0 0  0 

A22 0 0  0 

A44 0  0 

symm. 0  0 

 0 

B=

 0 0 0 0 0  0 

B22 B23 0 0  0 

B22 0 0  0 

B44 0  0 

symm. 0  0 

 0 

σ i j njδui sd∫ σ i j δeij vd∫ ρfiδui vd∫  ∫ ρυ·
i
δui vd– =0+–

ργT·δT vd∫ T0β i j e·i j δT vd∫ Bijkl e·i j e·klδT vd∫ qiniδT sd∫ qiδT,i vd∫ ρhδT vd∫ 0=––+–+

σ i j njδui sd∫ = σi
*

sσ

 ∫ δui sd

qiniδT sd∫ = q* δT sd
sq

 ∫

ui=Ni αUα

T=NβTβ

eij =Dij αUα
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(62)

where Dijα and Eiβ are derivable from the shape functions and the geometry of the element.
Similarly, the virtual strains, the virtual temperature variation, and their time derivatives within an
element follow the same pattern. Then by substituting the above expressions and Eq. (34, 38, 57,
58) into Eq. (55, 56), respectively, we obtain

(63)

(64)

where
(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

The virtual work Eq. (63, 64) should be valid for any arbitrary δUβ and δTβ, therefore, the
following conditions must be satisfied

(73)

(74)

It can be seen from Eq. (73, 74) that the displacement field and the temperature field are coupled
and the coupling is through the matrix P, which is related to β, the thermal expansion coefficients. It
is also noticed that the non-linear term representing the effect of thermodynamic second law, ,
is included in matrix Q.

5. Stress wave propagation in composite laminate

The objective is to investigate the interdependence among wave propagation, stress concentration,
failure progression, and temperature evaluation in fiber-reinforced composite materials. In this work,
we consider a specimen with a central crack as shown in Fig. 1. The angle between the fibers and

T,i=Ei βTβ

MαβU··α+CαβU· α KαβUα−PαβTα Fβ–+( )δUβ 0=

GαβT·α LαβTα T0PβαU· α Qβ–+ +( )δTβ 0=

Mαβ ρNi αNiβ vd∫ Mβα=≡

Cαβ Bijkl Dij αDklβ vd∫ Cβα=≡

Kαβ Aijkl Dij αDklβ vd∫ Kβα=≡

Pαβ βi j NαDij β vd∫ Pβα≠≡

Fβ σ i
*

sσ

 
∫ Niβds ρfi ∫ Ni βdv+≡

Gαβ ργNαNβ vd∫ Gβα=≡

Lαβ Hij EjαEiβ vd∫ Lβα=≡

Qβ ρh∫ Nβdv q*
sq

 
∫ Nβds U· αU· γ Bijkl Dij αDklγNβ∫ dv+–≡

MU·· CU· KU PT F=–+ +

GT· LT T0P
TU· Q=+ +

e·:Be·
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the x-axis is 60o. The plate is subjected to a half-sinusoidal stress impulse σ (t) that acts in y-
direction with the following form

(75)

where σ* is the amplitude of the applied stress, set to 0.3 GPa in this work; td is the duration of the
half-sinusoidal wave.

The overall width of the specimen is 2L, the height is 3L and the thickness is 0.2L. The length of
the crack is 0.85L. The specimen possesses both rotational symmetry of 180o about the z-axis and
mirror symmetry with respect to the xy plane at z=0, therefore, only a quarter of the specimen needs
to be modeled if we appropriately specify the boundary conditions as

(1) At y = ±1.5L
(76)

which means there is an uniform tensile stress σyy=σ (t) being applied at these two surfaces.

(2) At x=L
(77)

which means it is a stress free surface.

σ t( )=
σ* sin

πt
td

----- 
    0 t td≤ ≤

0                t td>





σyy=σ t( )   σyx=σyz=0,

σxx=σxy=σxz=0

Fig. 1 Specimen with a central crack
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(3) At z= 0.1L
(78)

which means it is also a stress free surface.

(4) At x= 0
(79)

(80)

(81)

(82)

where ux, uy and uz are the displacements in x-, y- and z-directions, respectively.

(5) At z=0
(83)

which means this is a plane of mirror symmetry.

(6) At y=0 and 
(84)

which means that the crack surface is also a stress free surface.
It is also assumed that all the surfaces are insulated. In other words, there is only heat conduction

σzz=σzx=σzy=0

ux 0 y z t, , ,( )= ux 0 y– z t, , ,( )–

uy 0 y z t, , ,( )= uy 0 y– z t, , ,( )–

uz 0 y z t, , ,( )=uz 0 y– z t, , ,( )

T 0 y z t, , ,( )=T 0 y– z t, , ,( )

uz=σzx=σzy=0

0 x 0.425L≤ ≤
σyy=σyx=σyz=0

Fig. 2 Finite element mesh of the specimen
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within the plate, but no heat convection between the plate and its environment. Then due to
insulation or mirror symmetry, the heat flux on all the above-mentioned surfaces, unless otherwise
the temperature is specified, are equal to zero, i.e. q= 0. It is also assumed that the crack does not
propagate under the applied load. Hence, the boundary conditions will not change during the entire
failure progression process.

This quarter of the specimen is discretized with a finite element mesh consisting of 360 eight-
node solid isoparametric elements and 808 nodes as shown in Fig. 2. The mesh is refined near the
crack tip. In order to investigate the influence of the material properties, the calculations in this case
are carried out for four subclasses: thermoviscoelastic, thermoelastic, viscoelastic and elastic
composites. The material properties used in the thermoviscoelastic case are listed in Table 1.

From the numerical results of the thermoviscoelastic case, it can be seen that the applied stress
impulse generates a stress wave in the plate (Fig. 3). When the wave approaches the centerline y=
0, the existence of the crack causes a rise of the stresses. The stresses near the crack tip built up to
reach the first climax. Then the stress wave moves on in an outward direction away from the crack
tip. Consequently, the stresses near the crack tip decline. When the stress wave bounces back at the
boundaries of the plate, it approaches the crack tip for a second time. This causes the stresses at the
crack tip to increase again to the second maximum. This process continues and the stress wave
keeps on moving although the magnitude of the wave declines due to the existence of the viscous
damping (Pfister 1998).

Table 1 Material properties used in the thermoviscoelastic case

Material constants Values

Elastic modulus in fiber (L) direction 150GPa
Elastic modulus in matrix (M) direction 007.5GPa
Poisson’s ratio in LM direction 000.25

Poisson’s ratio in MN direction 000.45

Shear modulus in LM direction 006.0GPa
Thermal expansion in fiber (L) direction  −0.03MPa/oK
Thermal expansion in matrix (M) direction 000.6MPa/oK
Thermal conductivity coefficient in fiber (L) direction 000.5N/sec oK
Thermal conductivity coefficient in matrix (M) direction 000.08N/sec oK
Damping coefficient B11 002.5 KPa/sec
Damping coefficient B22 007.5 KPa/sec
Damping coefficient B12 002.5 KPa/sec
Damping coefficient B23 003.75 Kpa/sec
Damping coefficient B55 003.75 Kpa/sec
Density 001.5*103 kg/m3

Specific heat 010 J/kg oK
Hashin’s tensile strength in fiber direction 000.5 Gpa
Hashin’s compressive strength in fiber direction 012.0 GPa
Hashin’s tensile strength transverse fiber direction 050.0 MPa
Hashin’s compressive strength in matrix direction 2.0 Gpa (absolute value)
Hashin’s transverse shear strength 000.1 GPa
Hashin’s axial shear strength 000.1 GPa
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Fig. 3 Stress fields during the stress wave propagation: (a) t=175 µsec; (b) t=225 µsec; (c) t=375 µsec and
(d) t=525 µsec

Fig. 4 Temperature fields (upper) and failure patterns (lower) during the stress wave propagation
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While the stress wave bounces back and forth between the boundaries of the plate and the crack
surfaces, the temperature of the whole plate increases significantly (Fig. 4). The continuous rising of
temperature shows the effect of the second law of thermodynamics, which is represented by the
nonlinear term  in the energy equation Eq. (35). Since we did not neglect the viscous damping
of the material, the quadratic term  will always play a positive role to the temperature
elevation as time goes on. Although the thermo-mechanical coupling, represented by  in the
energy equation will cause the temperature to fluctuate in some local areas, the temperature rise,
caused by , in the overall field cannot be denied. This result is in accordance with the
practical experience. It explains why we insist that nonlinear term must be incorporated into the
finite element formulation. On the other hand, as we mentioned above, because both the influence
of the thermo-mechanical coupling and the effect of the thermodynamic second law exist, the
temperature distribution pattern may vary according to different material constants (Pfister 1998).

The study on failure progression shows that the first failed element appears right at the crack tip
when the stress concentration is reaching its first climax (Fig. 4a). It suffers matrix failure at first,
and in the end both fiber breakage and matrix failure occur (Fig. 4b). Then, according to its failure
mode, its material properties are changed and hence the stresses redistribute. The high stress
concentration is shifted to elements around it and this gives rise to more failures in these elements
later. It can be seen that the area of failure gradually enlarges outwards. During the process of
failure progression, three different kinds of failure mode appear, i.e. fiber breakage (dark grey),
matrix failure (grey) and fiber breakage together with matrix failure (black). This makes the stress
distribution, the temperature variation and failure progression even more complicated and variant
(Fig. 3, Fig. 4).

In the analyses of the other three subclasses, the appropriate material constants are set to zero
respectively. For example, in the case of thermoelastic composite, the damping coefficients are set
to zero. In addition, in the cases of visco-elastic and elastic composites, we are not interested in the
thermo-mechanical coupling, hence the β -matrix is set to zero. The results show that although the
details of their stress distribution and failure progression are different from each other, they have a
similar pattern as that of the thermoviscoelastic material: a stress wave is generated and moves
between the boundaries and the crack surfaces; the crack tip causes stress concentration; the first
failed element appears right at the crack tip when the stress concentration builds up there for the
first time; the stress redistributes and brings about further failures; the failures all start from the
crack tip and propagate outwards. However, the temperature fields of these three cases are quite
different from each other. They are described as follow (Pfister 1998):

For thermo-elastic material, there is no damping and, as the stress wave moves between the
boundaries, the temperature fluctuates up and down without any tendency. This is expected because
there exists thermo-mechanical coupling however the matrix B is set to zero in this case.

For visco-elastic material, it can be seen that in the beginning near the two boundaries, where the
stress impulse is applied, the stress wave is generated, the temperature is high relative to that in the
area where the wave has not reached. Then the temperature starts to rise significantly around the
crack tip where the stress concentration occurs. While the stress wave bounces back and forth
between the boundaries, the temperature keeps on increasing and the high temperature area keeps
on enlarging around and in front of the crack tip. In fact, in this case the effect of the second law of
thermodynamics is better recognized, since there is no thermo-mechanical coupling term, the matrix
P in Eq. (63, 64), to blur the picture. 

For elastic material, the temperature field remains unchanged all the time, which is in our
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expectation as one can see from Eq. (49) when the β -matrix and heat source are set to zero.

6. Conclusions

This work is based on a small-strain small-temperature-variation theory of thermoviscoelasticity.
The constitutive relations derived are both materially and geometrically linear. However, a nonlinear
term, , is kept in the energy equation which represents the law of conservation of energy ---
one of the five fundamental laws in continuum mechanics. Furthermore, the Clausius-Duhem
inequality dictates that the matrix B is positive definite, hence the nonlinear term  is always
positive and has the effect to cause the temperature to rise. To drop this nonlinear term on the
pretext of linearizing a theory is essentially equivalent to denying the effect of the second law of
thermodynamics, actually the only fundamental law in continuum mechanics that is expressed in the
form of an inequality, not an equation, and shows time has a sense of direction.

The finite element equations based on this theory for thermoviscoelastic solids have been
formulated. First, it is noticed that the effect of the second law of thermodynamics can only be
observed in dynamic processes. Therefore, in this work, the dynamic finite element analysis of
stress wave propagation has been performed by utilizing the upgraded finite element program
COMPASS.

Second, in the theory of thermoviscoelasticity, the effect of the second law of thermodynamics is
represented only by the viscosity. Therefore, it is clearly seen that there is no temperature elevation
if the theory is reduced to thermoelasticity --- the effect of viscosity is eliminated --- or to elasticity
--- both viscosity and heat conduction are eliminated, although the thermo-mechanical coupling may
still exist in elastic and thermoelastic solids. However, it has to be emphasized that for these
materials only temperature fluctuation, not temperature elevation, may be observed because
thermoelasticity and elasticity are theories describing thermodynamically reversible processes.

On the other hand, the consequence of truthfully incorporating the effect of thermodynamic
second law is clearly observed as long as the material possesses viscosity: it will always cause
temperature rise if there exists a dynamic mechanical process. This is the main point that the
authors of this work are trying to convey.
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