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Effect of axial stretching on large amplitude
free vibration of a suspended cable
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Abstract. This paper presents the effect of axial stretching on large amplitude free vibration of an
extensible suspended cable supported at the same level. The model formulation developed in this study is
based on the virtual work-energy functional of cables which involves strain energy due to axial stretching
and work done by external forces. The difference in the Euler equations between equilibrium and motion
states is considered. The resulting equations govern the horizontal and vertical motion of the cables, and
are coupled and highly nonlinear. The solution for the nonlinear static equilibrium configuration is
determined by the shooting method while the solution for the large amplitude free vibration is obtained by
using the second-order central finite difference scheme with time integration. Numerical examples are
given to demonstrate the vibration behaviour of extensible suspended cables.
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Introduction

Cable structures have been used extensively in many civil and ocean engineering applications.
Practical considerations of cable behaviour may be limited to the case of small sag or small
amplitude of vibration such as finding the natural frequencies and mode shapes. However, in some
engineering applications such as cables in offshore engineering operations, large amplitudes of
vibration are encountered. The large amplitude refers to the amplitude of vibration measured from
the cable’s equilibrium position which may be the same as or larger than the order of magnitude of
the sag. The subject of large amplitude vibration of cables has been investigated by many
researchers over the past several years. Early papers on the subject include those by Keller (1959)
and Anand (1969). Rega et al. (1984) used a simple model to investigate non-linear free vibration
of a suspended cable. Forced vibration of elastic suspended cables was investigated by Al-Noury
and Ali (1985), and Benedettini and Rega (1987). Ali (1986) investigated the nonlinear response of
sagged cables with movable supports. Cai and Chen (1994) investigated the nonlinear dynamic
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response of an inclined elastic cable under parametric and external resonances. Leissa and Saad
(1994) studied the large amplitude free vibration of elastic strings in which the effects of
longitudinal and transverse displacements are coupled.

In almost all of the aforementioned papers, the static equilibrium configuration of the cables is
assumed to be straight line or having a small sag and the effect of axial stretching is not considered
seriously. The present paper aims to develop a rigorous formulation of the cable problem that
includes the effect of axial stretching on the large amplitude free vibration of a suspended cable
with a large sag. Equations of motion in the horizontal and vertical directions are obtained by
considering the difference in the virtual work-energy functional of the cable between two states,
namely the equilibrium state and the motion state. A finite difference scheme with time integration
is used to solve these equations. The effect of axial stretching on the large amplitude free vibration
behaviour of cables is investigated by considering some numerical examples for the case of
specified total unstrained arc-length of cable and the case of specified applied tension.

2. Development of equations of motion

Fig. 1 shows a typical cable problem considered in this study. The cable with a span length L is
supported at the same level, with one end of the cable fixed and the other end free to slide over the
support where the specified tension is applied to maintain the cable in equilibrium position. Three
distinct states of the cable configuration are to be noted. The first state is the unstretched state, the
second the equilibrium state, and the third the displaced state. In the unstretched state, the cable
suspends by its own weight and its configuration takes on the catenary form. Due to axial
stretching, the cable moves to the equilibrium position which is considered as an initial
configuration for the cable. Owing to disturbances in loading, the cable is in the vibration or
displaced state. The coordinate parameters in the three states are represented as follows:

ii i) Unstretched state: X, Y, S
iii) Equilibrium state: x0, y0, s0

iii) Displaced state: x, y, s.

Fig. 1 Cable configurations at various states
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Fig. 2 shows the components of the forces acting on an infinitesimal segment in the equilibrium
position. Fig. 3 shows the same segment at the displaced position in which u and v are the
displacement components in the x and y directions, respectively, and their magnitudes can be large.
Consider an element having an unstretched length dS. At the equilibrium position, its length ds0 is
given by

(1)

in which a prime denotes differentiation with respect to x0.
The strain ε0 at the equilibrium position is

  and  (2a, b)

Using Eqs. (1) and (2b), one gets

 (3)

The arc length ds in the displaced position (see Fig. 3) is given by

 (4)

The strain at the displaced position is

ds0= 1 y0′2+ dx0

ε0=
ds0 dS–

dS
-------------------- ds0= 1 ε0+( )dS

dS=
1 y0′2+
1 ε0+( )

----------------------dx0

ds= 1 u′+( )2 y0′ v′+( )2+ dx0

Fig. 2 Free body of infinitesimal cable segment 

Fig. 3 Equilibrium and displaced positions of cable segment
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 (5)

In view of Eqs. (3) and (4), Eq. (5) can be written as

 (6)

The variation of strain ε furnishes

 (7)

3. Virtual strain energy due to axial stretching

The virtual strain energy of the cable at the displaced position is given by

 (8)

where E is the elastic modulus of the cable, and A the undeformed cross-sectional area of the cable.
Using Eqs. (3), (6), and (7), Eq. (8) becomes

 (9)

4. Virtual work due to self-weight and inertia force

For free vibration, the virtual work due to the self-weight and the inertia force are given by

 (10)

in which w is the weight of the cable per unit unstretched length, and the dot denotes differentiation
with respect to time.

5. Euler equations

The virtual work of the cable is written as

  (11)

ε=
ds dS–

dS
------------------

ε=
1 ε0+

1 y0′2+
---------------------- 1 u′+( )2 y0′ v′+( )2+ −1

δε=
1 ε0+

1 y0′2+
----------------------

1 u′+( )δu′ y0′ v′+( )δv′+

1 u′+( )2 y0′ v′+( )2+
----------------------------------------------------------------

δU=  
 

 ∫ EAεδεdS

δU=  
 

 ∫

EA 1 ε0+( )

1 y0′2+
--------------------------- 1 u′+( ) EA 1 u′+( )

1 u′+( )2 y0′ v0′+( )2+
----------------------------------------------------------– δu′

+ 
EA 1 ε0+( )

1 y0′2+
--------------------------- y0′ v′+( )

EA y0′ v′+( )

1 u′+( )2 y0′ v′+( )2+
--------------------------------------------------------– δv′

 
 
 
 
 
 
 
 
 

dx0

δW=  
 

 ∫   
w 1 y0′2+
g 1 ε0+( )

--------------------------– u·· δu+
w 1 y0′2+

1 ε0+( )
--------------------------

w 1 y0′2+
g 1 ε0+( )

--------------------------– v··
  

 
 

δv    dx0













δπ δU δW–=
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Using Eqs. (9) and (10), Eq. (11) becomes

 

 (12)

For static equilibrium, δπ=0 and . Thus, the integration of Eq.
(12) by parts yields two Euler equations with respect to the virtual displacements δu and δv.

, (13)

(14) 

These two equations can also be obtained by considering the equilibrium of forces on the cable
segment in the x and y directions, respectively.

For the cable in motion, , and the integration by parts gives two Euler
equations associated with the virtual cable motion δu and δv.

 (15)

 (16)

By subtracting Eq. (13) from Eq. (15), and Eq. (14) from Eq. (16), one obtains the equations of
motion in the u and v directions, respectively, as

(17)
 

(18)

δπ
EA 1 ε0+

1 y′0
2+

-------------------------- 1 u′+( ) EA 1 u′+( )

1 u′+( )2+ y0′ v′+( )2
------------------------------------------------------–

  
 
 

δu′
w 1 y0′2+
g 1 ε0+( )

--------------------------u··δu+

 
 
 
 
 

dx0∫=

+
EA 1 εo+( )

1 y′0
2+

---------------------------
  

 
 

y0′ v′+( )
EA y0′ v′+( )

1 u′+( )2+ y0′ v′+( )2
------------------------------------------------------– δv′

w 1 y0′2+
1 ε0+( )

--------------------------
w 1 y0′2+
g 1 ε0+( )

--------------------------+ v··–
  

 
 

δv+

 
 
 
 
 

dx0∫

u v u′ v′ u·· v·· 0= = = = = =

EAε0

1 y′0
2+

--------------------
  

 

′
0=

EAε0y0′

1 y′0
2+

--------------------
  

 ′ w 1 y0′2+
1 ε0+( )

--------------------------+ 0=

u v u′ v′ u·· v·· 0≠ ≠ ≠ ≠ ≠ ≠

EA 1 ε0+( )

1 y′0
2+

--------------------------- 1 u′+( )
  

 ′ EA 1 u′+( )

1 u′+ 2( ) y0′ v′+ 2( )+
--------------------------------------------------------

  
 ′

–
w 1 y′0

2+
g 1 ε0+( )
------------------------u··– 0=

EA 1 ε0+( )

1 y′0
2+

--------------------------- y0′ v′+( )
  

 ′ EA y0′ v′+( )

1 u′+( )2
y0′ v′+( )2+

--------------------------------------------------------
  

 ′
–

w 1 y′0
2+

1 ε0+( )
------------------------

w 1 y′0
2+

g 1 ε0+( )
------------------------– v··+ 0=

EA[ 1 ε0+( ) 1 y′0
2+( )u″ 1 u′ ε0u″+ +( )y0′y0″]–

(1 y′0
2+ )3 2⁄

----------------------------------------------------------------------------------------------------------------------
EA y0′ v′+( )[ y0′ v′+( )u″ 1 u′+( )v″]–

[(1 u′+ )2 (y0′ v′+ )2
+ ]3 2⁄

----------------------------------------------------------------------------------------------–

w 1 y′0
2+

g 1 ε0+( )
------------------------u··=

EA[ 1 ε0+( ) 1 y′0
2+( )v″ 1 y0′u′– ε0– y0′u′( )y0″+ ]
(1 y′0

2+ )3 2⁄
----------------------------------------------------------------------------------------------------------------------

EA 1 u′+( )[ 1 u′+( ) y0″ v″+( ) y0′ v′+( )u″]–

(1 u′)+
2 (y0′ v′)+

2
+    

3 2⁄
-------------------------------------------------------------------------------------------------------------–

w 1 y′0
2+

g 1 ε0+( )
------------------------v··=
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Eqs. (17) and (18) are the equations of motion for large amplitude free vibration of extensible
suspended cables. If the terms , , and  are set to zero (implying the equilibrium
configuration of the cable is a straight line), then Eqs. (17) and (18) are reduced to the same form
given by Leissa and Saad (1994).

6. Method of solution

The shooting method is used to solve the nonlinear equilibrium Eqs. (13) and (14). The results of
the static solution are the strain at the equilibrium state εo at any position and the equilibrium
position y0 at any position x0 along the span length. For the case of specified end tension, it is more
convenient to use an expression for the tension at any position in the calculations. This expression
can be obtained by considering the equilibrium equation in the tangential direction which is

 
(19)

Integrating from  to L and replacing  by EAε0, one obtains

(20)

Eqs. (13) and (20) are used for solving the case of specified end tension. 
For free vibration analysis, Eqs. (17) and (18) are solved using the finite difference approach. The

derivatives of u and v appearing in the equations of motion are replaced by the following finite
difference approximations:

(21a, b)

(22a, b)

(23a, b)

in which h is the grid size and k is the time step.

7. Numerical examples and results

Numerical examples involving two practical cases are given to demonstrate the vibration
behaviour of u and v. The first case deals with a cable with a fixed value of unstrained total arc-
length and the elastic modulus is varied. The input data for this case are as follows: S=800 m,
L=854 m, w=9.478 kN/m, A=0.1159 m2, and the values of the elastic modulus E are 1.294×106 kN/m2,
1.794×106 kN/m2, and 2.294×106 kN/m2. The second case deals with a cable with a fixed value of
applied tension and the elastic modulus is varied. The input parameters, other than A, L and w as
given in the first case, are taken as: TL=17,000 kN, the assigned values of E are 1.794×105 kN/m2,
1.794×106 kN/m2, and 1.794×107 kN/m2.

y0 y0
′ y0

″

dT
w

1 ε0+
--------------dy0=

x0 T x0( )

T x0( ) EAε0 TL= =
w

1 ε0+
--------------y x0( )–

u′
ui 1+

t ui 1–
t–

2h
--------------------------= v′

vi 1+
t vi 1–

t–
2h

-------------------------=,

u″
ui 1+

i 2ui
t u+ i 1–

t
–

h
2

----------------------------------------= v″
vi 1+

t 2vi
t v+ i 1–

t
–

h
2

---------------------------------------=,

u··
ui

t 1+ 2ui
t u+ i

t 1–
–

k2
----------------------------------------= v··

vi
t 1+ 2vi

t v+ i
t 1–

–

k2
---------------------------------------=,
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Fig. 4 shows the static equilibrium positions of cables with a fixed value of unstrained total
arc-length but different values of the elastic modulus. It is seen that the sag of the cable decreases
when the elastic modulus is increased. The result is expected as the cable experiences a greater
sag as EA decreases while TL remains the same. On the other hand, if EA remains unchanged but
TL increases, the sag decreases. Fig. 5 shows the equilibrium positions for cables with a fixed
value of the applied tension. Unlike the first case, it is seen that the sag increases with an
increase in the elastic modulus. Figs. 6 to 11 show the motion of u and v plotted at the quarter
and midspan length for the first case. The computed values of the maximum strain at the
equilibrium position are also given. It can be seen from these figures that the motion of v is more
periodic and has a much larger amplitude than the motion of u. The amplitude of v at midspan is
slightly higher than the one at quarter span while the amplitude of u at quarter span has a much
larger amplitude than the one at the midspan where it shows no oscillation. Fig. 12 shows the
combined amplitude of vibration of u and v for the different values of E. The results show that

Fig. 4 Equilibrium profiles of cables for the specified unstretched total arc-length with different values of elastic
modulus

Fig. 5 Equilibrium profiles of cables for the specified end tension with different values of elastic modulus
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the amplitude of vibration decreases as the elastic modulus increases. These results have the same
trends as those found in the static case.

Figs. 13 to 18 demonstrate the effect of stretching on the amplitude of vibration for cables with a
specified value of applied tension. The motion of u and v show the same vibration behaviour as in

Fig. 6 Vibration amplitude of v at mid span and quarter span for S=800 m and E=1.294×106 kN/m2

Fig. 7 Vibration amplitude of u at mid span and quarter span for S=800 m and E=1.294×106 kN/m2

Fig. 8 Vibration amplitude of v at mid span and quarter span for S=800 m and E=1.794×106 kN/m2
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the first case. However, it is found that the amplitudes of u and v increase as the elastic modulus
increases. The maximum combined amplitude of vibration of u and v versus elastic modulus is
plotted in Fig. 19. It is noted that as the elastic modulus is increased beyond the values used earlier,
the resulting cable motion is unstable and the amplitude of vibration cannot be determined.

Fig. 11 Vibration amplitude of u at mid span and quarter span for S=800 m and E=2.294×106 kN/m2

Fig. 9 Vibration amplitude of u at mid span and quarter span for S=800 m and E=1.794×106 kN/m2

Fig. 10 Vibration amplitude of v at mid span and quarter span for S=800 m and E=2.294×106 kN/m2
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8. Conclusions

The equations of motion of in-plane large amplitude free vibration of a suspended cable have

Fig. 14 Vibration amplitude of u at mid span and quarter span for TL=17,000 kN and E=1.794×105 kN/m2

Fig. 12 Variation of the maximum combined amplitude versus elastic modulus for the specified total unstrained
arc-length of 800 m

Fig. 13 Vibration amplitude of v at mid span and quarter span for TL=17,000 kN and E=1.794×105 kN/m2
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been developed. The formulation is applicable to cables with large sag and large axial deformation
as well as a variable tension force. The method can also be conveniently applied to cables with a
specified end tension. Numerical examples for the cases of fixed unstrained total arc-length and

Fig. 15 Vibration amplitude of v at mid span and quarter span for TL=17,000 kN and E=1.794×106 kN/m2

Fig. 16 Vibration amplitude of u at mid span and quarter span for TL=17,000 kN and E=1.794×106 kN/m2

Fig. 17 Vibration amplitude of v at mid span and quarter span for TL=17,000 kN and E=1.794×107 kN/m2
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specified applied tension have been demonstrated. It can be concluded that for cables with a given
total arc-length, the amplitude of vibration decreases when the elastic modulus is increased.
However, for cables with a specified value of the applied tension, the results show that the
amplitude of vibration increases with increasing values of elastic modulus.
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