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Mixed formulated 13-node hexahedral elements with 
rotational degrees of freedom: MR-H13 elements

Chang-Koon Choi†, Keun-Young Chung‡ and Eun-Jin Lee‡†

Department of Civil Engineering, Korea Adavanced Institute of Science and Technology,
Taejon 305-701, Korea

Abstract. A new three-dimensional 13-node hexahedral element with rotational degrees of freedom,
which is designated as MR-H13 element, is presented. The proposed element is established by adding five
nodes to one of the six faces of basic 8-node hexahedral element. The new element can be effectively
used in the connection between the refined mesh and the coarser mesh. The derivation of the current
element in this paper is based on the variational principles in which the rotation and skew-symmetric
stress are introduced as independent variables. Numerical examples show that the performance of the new
element is satisfactory.

Key words: 13-node hexahedral element; rotation; variable-node element; finite element method. 

1. Introduction

In many engineering practices, stress concentration phenomena occur in the regions where the
abrupt geometrical changes exist and/or the concentrated load is applied. A relatively finer mesh is
used in the area of higher stress gradient but a rather coarser mesh is used where the stress
distribution is relatively uniform. The h-refinement is the most commonly used adaptive strategy
that reduces the element sizes to create a finer mesh where the initial finite element mesh is not
adequate for the prescribed error tolerance.

In the adaptive h-refinement procedure by using 8-noded regular hexahedral elements, the hanging
nodes which are not connected directly to the nodes of neighboring element are inevitably generated
as a result of local mesh refinement. One of the practical ways commonly used to cope with the
problem is to impose the displacement constraints on the hanging nodes to enforce the inter-element
compatibility between the refined and unrefined element (Gargo et al. 1983, Delvoo 1991, Chang
and Choi 1992). However, since imposing too many constraint equations may lock the system
(Cook 1981), the use of variable-node elements in the transition region to avoid such problems has
attracted many investigators attention (Gupta 1978, Choi and Park 1989, Choi and Lee 1993, 1995).

The development of isoparametric hexahedral element by Iron (1971) may be one of the most
significant contributions to the advancement of finite element technology. The earlier hexahedral
element which has variable number of nodes from 8 to 20 did not have a node at the centroids of
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face generating a hanging node in the subdivided region. Also the basic eight-node hexahedral
element needs to be further improved for practical use since the element deforms in a shear mode
even under the pure bending load. Choi and Lee (1993) established a series of non-conforming
variable-node hexhaheral element with 8- to 27-nodes for adaptive mesh gradation to solve this
problem. NC-V1 and NC-V2 are the variable-node non-conforming hexahedral elements developed
by Choi and Lee (1993). 

The behavior of the brick type 13-node elements with three translational degrees of freedom per
node is similar to that of the original isoparametric element, i.e., the element deforms basically in a
shear mode (elements C-V1 and C-V2 in Choi and Lee 1993). One of the ways to improve the
behavior of a 13-node hexahedral element is to add the rotational degrees of freedom to the element
making the element have six degrees of freedom per node. The rotational degrees of freedom are
treated as independent variables in the variational principles (Reissner 1965, Hughes and Brezzi
1989). The skew-symmetric components of stress are introduced as the Lagrange multipliers to
enforce the equality of independent rotations with the skew-symmetric components of displacement
gradient. These rotational degrees of freedom are viewed as being particularly advantageous when
the element is connected to other types of elements that have six degrees of freedom per node
(Allman 1984, Ibrahimbegovic and Wilson 1991, Yunus, Pawlak and Cook 1991, Choi, Chung and
Lee 1996).

In this paper, a new 13-node element with rotational degrees of freedom that is demanded most
frequently in practice is considered at this initial stage of development of a series of hexahedral
variable node elements. This type of elements can be effectively used in the adaptive mesh
refinement by providing the transition zone where a locally refined mesh is connected to the
existing coarse mesh through a minimum mesh modification. Several numerical tests were carried
out to evaluate the validity and performance of the three dimensional 13-node hexahedral elements
with rotational degrees of freedom.

2. Variational formulation and independent rotations

2.1. Mixed type formulation including independent rotations

Reissner (1965) was the first to propose the ‘mixed’ variational principle with independent
rotational fields. His work has been followed by many researchers’ works, such as Hughes and
Brezzi (1989) and Ibrahimbegovic, et al. (1991) . However, the Reissner’s variational formulation is
inappropriate for numerical applications and inconvenient for the interpolation of fields. For this
reason, Hughes and Brezzi (1989) modified the Reissner’s variational formulation to preserve the
stability of the discrete problem. 

A mixed type variational functional considering the effects of surface traction t and body force f
in an element domain Ωe can be given as 

(1)

where u, C, skewσ, and ψ are the displacement field, constitutive modulus, skew-symmetric stress
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tensor, and rotation tensor in an element domain, respectively.  and  are respectively the
prescribed surface traction and displacement on the element boundary. For the isotropic elasticity
and a Dirichlet boundary value problem, it was suggested that γ in Eq. (1) takes the same value as
the shear modulus; i.e., γ =µ (Hughes and Brezzi 1989). With the Euler-Lagrange equation resulted
from variations on Eq. (1), the rotation tensor ψ is related to skew-symmetric displacement gradient

.

2.2. Independent fields and hierarchical displacement

The basic displacement field in the variational formulation can be interpolated using shape
functions at any arbitrary point in an element and can be represented by vector form.

(2)

(3)

(4)

The various configurations of the variable-node hexahedral element can be defined by n-node
mapping selectively (Fig. 1)

(5)

where, n is the number of physical nodes in an element, xh represents global coordinates and  is
the conventional isoparametric shape function for each node of a variable-node element. A brief
description of the shape functions used to define the variable-node hexahedral element was
presented by Choi and Lee (1993). Among many possible configurations defined by Eq. (5), the
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Fig. 1 Transition element with variable nodes
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hexahedral element with 13 nodes, which has additional 5 nodes on one of its faces, has been
focused in this study (Fig. 1b).

The displacement interpolation for a 13-node element is derived by combining the conventional
displacements of the parent element and the parabolic deformations of each edge which is the
hierarchical displacement due to the addition of roational degrees of freedom. 

(n=13, m=20) (6)

where  is the amplitude of hierarchical displacement at mid-edge point k (Fig. 2), and 
is the shape function which has a parabolic shape along the line joining adjacent two physical
nodes, and m is the number of mid-edge points which are used to define the hierarchical shape
functions (Fig. 2). The hierarchical displacement component perpendicular to the element edge,
which is used to improve the flexural behavior of element, can be replaced by the introduction of
nodal rotations . This transformation is analogous to the transformation of the one-dimensional
flexural beam deformation due to the end rotations. The transformation of the mid-edge point
displacements into the nodal rotations for an entire element is constructed by systematically using
the same kind of transformation over each element edge. For the typical edge point k defined by
nodes i and j as shown in Fig. 2, the amplitude of mid-edge point deformation can be written as

(7)

where,

(7a)

(7b)
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Fig. 2 One dimensional form of a hierachical edge displacement
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interpolation in the global coordinate system to yield the following non-conventional displacement
interpolation.

(n=13, m=20)  (8)

And the displacement field for the 13-node hexahedral element with rotational degrees of freedom
can be rearranged as

(n=13) (9)

Unlike the translational displacement field, the independent rotational displacement field is
interpolated in an isoparametric fashion over each element as

(n=13) (10)

The distribution of skew-symmetric stress for the mixed-type functional is assumed to be
independent for each element and can be assumed as linear or parabolic polynomials given in the
global coordinate system at the element level.

(11)

where Se is the skew-sysmetric stress distribution function and β e is a vector of skew-symmetric
parameter which correspond to coefficients of assumed polynomials. The number of skew-
symmetric stress parameters is an important factor for the element stabilization. When a small
number of parameters is used, the spurious zero energy mode may occur. Thus, to suppress such
undesired spurious zero energy modes, a requisite number of skew-symmetric interpolation
parameters is necessary for a 13-node hexahedral element. The numerical test shows that in most
cases 6 parameters are sufficient for 8-node hexahedral element (Ibrahimbegovic and Wilson 1991)
and 9 parameters when the number of nodes per element is increased to thirteen (e.g., MR-H13
element, Choi and Chung 1995). The following matrix expressions are adopted for a skew
symmetric stress distribution in this paper.
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2.3. Hierarchical shape function for 13-node hexahedral element

The non-conventional displacement fields with rotational degrees of freedom in Eq. (9) can be
obtained by the summation of conventional displacement field and edge-normal displacement due to
nodal rotations. The conventional displacement fields are interpolated with the shape functions
established by Choi and Lee (1993). The edge-normal displacement fields due to nodal rotations are
interpolated with the transformation of hierarchical shape functions.

The hierarchical shape functions due to nodal rotations are of parabolic shape along each element
edge. The hierarchical shape functions can be formed by multiplication of two basic functions. The
first basic shape function has a parabolic shape along an edge (i.e., ξ direction), and the second one
is a combination of two linear functions in two perpendicular directions (i.e., η and ζ directions) as
shown in Fig. 3. The hierarchical shape functions for a 13-node hexahedral element should be
further modified by considering the existence of nodes at each mid-edge.

The special hierarchical shape functions for the edges adjacent to corner node 4 in negative ξ-
direction (Fig. 1a), i.e., for the edge joining node 4 and 3(or 11), can be constructed as follows:

(14)

where
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If variable nodes 11 and 9 exist, the positive η directional hierarchical shape functions from node
11 can be defined as

(15)

where

(15a)

(15b)

The Eq. (15b) needs to be modified by the addition of another variable node. In the case that the
node 21 exists or both nodes 22 and 24 exist, the following modification is necessary.

(15c)

In a similar manner, hierarchical shape functions of other edges can be established.

3. Element formulation

3.1. Element matrices

The infinitesimal strains  in the variational functional (Eq. 1) can be defined as

(16)
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Wilson 1991). 
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  (18)

where

(i=1, 2, ..., n)  (18a)

(18b)

I  is an unit matrix, and  can be obtained by the systematic transformation performed over the
edges which meet at node i. 

(19)

Minimizing the mixed variational functional Πγ in Eq. (1) for a single element, the following
equations can be written

(20)
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Since the skew-symmetric part of stress is interpolated independently in each element, the
corresponding part of stiffness in Eq. (20) may be eliminated by the static condensation at the
element level. Thus the remaining global degrees of freedom in an element are the nodal
displacements u and nodal rotations ψ as shown in Eq. (21). 
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where shape function matrix Ne is

(23)

In calculating the equivalent nodal force components related with rotational degrees of freedom, the
traction  is replaced by −  to satisfy the condition that the traction component associated
with constant stress state does not contribute to the rotational forces. It should be noted that the
equivalent nodal force vector contains not only the translational forces but also the rotational forces
when the traction on an element surface is not constant.

3.2. MR-Hx series and associated elements

Based on the aforementioned concepts, it is possible to establish a series of variable-node
hexahedral elements by the selective use of different number of variable nodes. As the first element
of the series, the element established in this paper is designated as “MR-H13” which indicate
“Mixed formulated element with rotational degrees of freedom− Hexahedral element with 13-
nodes”. Similarly, MR-H8 is the mixed formulated 8-node hexahedral element with rotational
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Fig. 4 Partitioning of integration domains of MR-H13

Fig. 5 Use of variable 13-node element as a transition element
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degrees of freedom. The MR-H13 element is generated by subdividing one of element faces in the
mesh refinement process. The face is divided by bisecting in two directions (Fig. 6). The letter “x”
in MR-Hx means “variable number of nodes” and designates the elements in the series. Some
previously developed variable-node hexahedral elements, such as NC-V1, NC-V2 and C-V2 ( Choi
and Lee 1993), are used for the comparison purpose. 

4. Numerical tests for validation of the element

4.1. Basic tests

To identify the possible spurious mechanisms, which may cause serious drawback of the element,
the eigenvalue analyses were carried out for MR-H13 element. For the mixed type formulation, the
number of skew symmetric stress parameters is a very important factor for stability of the element.
If an adequate number of skew-symmetric stress parameters is used, there are only six zero
eigenvalues associated with rigid-body modes for a typical element and no spurious mechanisms are
expected to develop. The test results show that the MR-H13 element had only six zero eigenvalues,
which exactly represent the six rigid body motion of the element.

In order to check whether the proposed elements are capable of representing constant strain states,
the patch tests were carried out. Fig. 7 shows a typical test patch, which contains two types of
hexahedral elements, namely, MR-H8 and MR-H13 element. Material properties used for the test
are; Young’s modulus E=1.0× 106, and Poisson’s ratio ν=0.25. This problem was solved with the

Fig. 6 Element with 1 subdivided face Fig. 7 Patch test model for 3D hexahedral

Table 1 Boundary conditions and theoretical results

Boundary conditions Theoretical solutions

u =10−3 (2x+y+z)/2 εx=εy=εz=γxy=γyz=γzx=10−3

v =10−3 (x+2y+z)/2 σx=σy=σz=2000
w =10−3 (x+y+2z)/2 τxy=τyz=τzx=400
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prescribed displacement boundary conditions and the obtained results were identical to theoretical
solutions (MacNeal and Harder 1985, Table 1). 

4.2. Cantilever beam under pure bending

To evaluate the basic performance of the proposed element MR-H13, a cantilever under pure
bending about y-axis was tested as shown in Fig. 8(a). For the cantilever beam, the rotational
boundary conditions of the fastened end are imposed as symmetric boundary condition on yz-plane
to model the pure bending state. The material properties are given as E=1500, and ν=0.25. The
energy equivalent nodal forces of a hexahedral element with rotational degrees of freedom are
shown in Fig. 8(b) for the free end of the cantilever beam.

The test meshes composed of three types of hexahedral elements are shown in Fig. 9, i.e., the
mesh composed of only MR-H8 elements, a combination of MR-H8 and MR-H13 elements, and the
mesh composed of MR-H13 elements only. The vertical displacement and the rotation about y-axis
at point A are presented respectively in Table 2 and 3 with the theoretical solution for comparison
(Timoshenko and Goodier 1951). Stresses σx at point B are also listed in Table 4. It is also shown
that the proposed MR-13 element, which has rotational degrees of freedom, gives much improved

Fig. 8 Cantilever beam under pure bending
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results over the conventional conforming variable node element (C-V2). When compared with the
behaviours of non-conforming variable node elements (NC-V1 and NC-V2), which do not have the
roatational degrees of freedom, the MR-Hx element shows similar or slightly different behavior. 

When the distorted meshes are used the accuracy of solution obtained by MR-H13 is generally
superior over the accuracies obtained by C-V2, NC-V1, and NC-V2.

Fig. 9 Several element meshes for numerical test
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Table 2 Vertical displacement of cantilever beam under pure bending (point A)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

C-V2 66.67 69.62 69.18 44.38 47.37 49.27
NC-V1 100.00 101.04 99.91 87.45 80.13 91.13
NC-V2 100.00 99.96 99.92 87.45 79.55 90.82
MR-Hx 93.75 100.46 96.96 81.09 86.32 90.79

Mesh

Type

Refined regular element meshes Refined irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx 98.21 100.03 99.18 96.33 99.24 97.03

Theory 100.00

Table 3 Rotation of cantilever beam under pure bending (point A)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

MR-Hx −18.75 −19.95 −19.50 −16.77 −17.24 −17.89

Mesh

Type

Refined regular element meshes Refined irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx −19.64 −19.99 −19.89 −19.25 −19.91 −19.59

Theory −20.00

Table 4 Stresses of cantilever beam under pure bending (point B)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

C-V2 −2200 −2208 −2208 −1736 −2049 −1738
NC-V1 −3000 −3175 −3000 −2262 −2953 −2402
NC-V2 −3000 −2992 −2999 −2262 −2802 −2396
MR-Hx −3000 −3070 −3024 −2405 −3369 −2484

Mesh

Type

Refined regular element meshes Refined irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx 3071 3005 2977 3001 2979 2889

Theory −3000
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4.3. Cantilever beam under shear load

The same cantilever beam of the previous example was tested under a shear force (See Fig. 10).
The test meshes which are composed of 8-node and 13-node hexahedral elements are the same as
shown in Fig. 9 and the same material properties as the previous example (E=1500, ν=0.25) are
used. It is assumed that the shear force is acting on the free end of cantilever beam with the
uniform distribution for simplicity.

The rotations about y-axis at point A under shear load are shown in Table 5 and 6 along with the
theoretical solutions for comparison. In Table 6, no comparisons are made since the elements C-V2,
NC-V1, and NC-V2 do not have rotational degrees of freedom. The stress σx at point B is also
shown in Table 7. Similar trends of solutions as the previous example are obtained.

4.4. Convergence of MR-Hx elements

Test results listed in Tables 2 to 7 show respectively the numerical test results for basic element

Fig. 10 Cantilever beams under tip shear forces

Table 5 Vertical displacement of cantilever beam under shear force (point A)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

C-V2 68.45 71.41 70.87 49.33 52.94 54.25
NC-V1 101.40 102.30 101.35 89.89 82.85 93.22
NC-V2 101.40 101.31 100.28 89.89 82.13 92.82
MR-Hx 96.73 102.24 99.88 84.02 89.25 93.48

Mesh

Type

Refined regular element meshes Refined irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx 100.39 102.47 101.68 98.27 101.56 99.17

Theory 102.625
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meshes and refined element meshes. In this test, the both cases of regular and distorted element
shape are considered. The test results with refined meshes indicate the good convergence
characteristics of MR-Hx elements.

4.5. Application to an engineering problem

To show the applicability of the presented MR-H13 element in local mesh refiement, the upper
part of a movable shoe is considered (Fig. 11). For simplicity only 1/4 part of the shoe is actually
modeled by MR-H8 and MR-H13 elements, and the boundary condition for lower surface is given
as a roller support, i.e., displacements are restricted only in the radial direction. MR-H13 elements
were effectively used in the mesh generation in the transition zone (Fig. 12). A uniform pressure of
total 6000 tf is acting on the top surface of the model. Material properties are given as Young’s
modulus E=2.1× 104 kgf/mm2, Poisson’s ratio ν =0.3. Analysis result shows the vertical displacement
as 0.11230 mm at a center point of top suface (Fig. 13), and the effective stress distribution on the
surface of mesh are shown in Fig. 14.

This practical example shows that as the mesh gradation by using variable-node elements can

Table 6 Rotation of cantilever beam under shear force (point A)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

MR-Hx −14.30 −15.29 −15.00 −12.45 −13.05 −13.72

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx −14.83 −15.24 −14.96 −14.41 −15.04 −14.51

Theory −15.02

Table 7 Stresses of cantilever beam under shear force (point B)

Mesh

Type

Basic regular element meshes Basic irregular element meshes

8-node
(A-1)

8&13-node
(A-2)

13-node
(A-3)

8-node
(B-1)

8&13-node
(B-2)

13-node
(B-3)

C-V2 −2972 −2991 −2983 −2415 −2836 −2403
NC-V1 −4050 −4269 −4059 −3097 −4039 −3278
NC-V2 −4050 −4051 −4048 −3097 −3853 −3254
MR-Hx −4092 −4176 −4129 −3445 −4489 −3526

Mesh

Type

Refined regular element meshes Refined irregular element meshes

8-node
(C-1)

8&13-node
(C-2)

13-node
(C-3)

8-node
(D-1)

8&13-node
(D-2)

13-node
(D-3)

MR-Hx −4146 −4071 −4019 −4104 −4091 −3958

Theory −4050
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maintain the mesh regularity in refinement process, the variable node element is very useful for
adaptive mesh refinement where the finer mesh is connected to the coarser mesh. 

7. Conclusions

In this paper, the 13-node hexahedral element with rotational degrees of freedom which is

Fig. 11 Movable shoe

Fig. 12 1/4 model of upper shoe part by MR-H8 and
MR-H13

Fig. 13 Deformed mesh under constant pressure on
top surface

Fig. 14 Effective stress contour on element faces (tf/mm2)
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designated as MR-H13 has been presented. A mixed formulation, which employs skew-symmetric
stress and rotation field, is used in the formulation of the presented element. The element is formed
by adding five additional nodes to an 8-node MR-H8 element, i.e., four mid-edge nodes and one
node at the center of an element face. These additional nodes enable the element to be effectively
connected to four subdivided elements to form the transitional zone where the coarse mesh is
connected to a finer one.

From the numerical tests, it has been verified that the proposed element pass the patch tests and
produce no spurious zero energy mechanisms. The test results also show the good convergence of
the element. The improvement of the element behavior achieved by employing the independent
rotation fields over the original element was significant and comparable to the improvement
achieved by addition of non-conforming displacement modes without addition of rotational degrees
of freedom (NC-V1 and NC-V2 elements). It is expected that even further improvement can be
achieved by addition of the selected serveral non-conforming modes in the present element. The
MR-H13 elements can provide an excellent scheme to modeling and analyzing the complex
structures, where the local refinement is required. Also MR-H13’s six degrees of freedom per node
will allow easy connection to other types of finite elements which have six degrees of freedom per
node.

It is expected in the future that based on this initial study a series of variable node hexahedral
element can be developed by the selection of the number and locations of variable nodes.
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