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Abstract. In this paper, the adaptive nodal generation procedure based on the estimated local and
global error in the element-free Galerkin (EFG) method is proposed. To investigate the possibility of h-
type adaptivity of EFG method, a simple nodal refinement scheme is used. By adding new node along the
background cell that is used in numerical integration, both of the local and global errors can be controlled
adaptively. These errors are estimated by calculating the difference between the values of the projected
stresses and original EFG stresses. The ultimate goal of this study is to develop the reliable nodal
generator based on the local and global errors that is estimated posteriori. To evaluate the performance of
proposed adaptive procedure, the convergence behavior is investigated for several examples.
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1. Introduction

In recent years, there have been efforts to develop new computational methods, so called meshless
methods through modifying the basic structure of the traditional finite element method to make it
more flexible and robust. These methods are very attractive for the development of adaptive
methods of an h-type because nodes can easily be added or deleted and there is no need to generate
a new element structure with the rearrangement or change in the number of nodes. In meshless
methods, nodes can be located almost anywhere in the model or the entire array of nodes can be
regenerated. Thus the need for generating a new mesh with adjustment of nodal locations and
change in the number of nodes is avoided.

A reliable estimation of the error and an efficient distribution of nodes are crucial issues for the
development of adaptive procedure for meshless method. Considerable effort has been devoted to
these issues and indeed, significant advances have been achieved for some meshless method.
Several adaptive methods and error estimates for meshless method have been proposed. Duarte and
Oden (1996) derived an error estimate that involves only the computation of interior residuals and
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the residuals where Neumann boundary conditions for the h-p cloud method. Liu et al. (1996)
developed an adaptive algorithm from the edge detection technique for Reproducing Kernel Particle
Methods (RKPM). Haussler-Combe and Korn (1998) proposed an adaptive procedure for element-
free Galerkin (EFG) method which incorporates strain gradient and nodal distance.

In this study, we use an error criterion for deriving adaptivity in a meshless method based on
moving least square (MLS) approximations described by Lancaster and Salkauskas (1981) is used.
the implementation of the meshless method used here is the element-free Galerkin (EFG) method
described in Belytschko, et al. (1994). EFG is related to the diffuse element method (Nayroles et
al., 1992), but it is consistent in the sense that it passes the patch test, where DEM does not. In
these methods, the approximation is obtained by a weighted least square fit to a set of nodal
parameters. The weight functions are non-zero only over a small sub-domain; this sub-domain is
called the compact support or the domain of influence.

It is well known that the stresses (or derivatives) calculated in finite element method (FEM) do
not possess inter-element continuity and have a low accuracy at nodes and element boundaries.
Many researchers proposed various continuous stress fields defined by shape functions and
smoothed nodal parameters to obtain more accurate distribution of stresses. In FEM, a posteriori
error can be estimated by comparing this smoothed stresses with FE stresses. In the EFG method,
since there is no element, there is no inter-element discontinuity; that is, stress field is already
smooth. Therefore stress smoothing techniques which work well in FEM are no longer effective in
error estimation of EFG method. Since the exact values of interpolation error is not available in
most cases, error can be estimated by calculating the difference between the values of the projected
stress and those given directly by the EFG solution. Stress projection can be performed by taking
product of shape function based on different domain of influence with the stresses at nodes. 

Many researchers have proposed h-refinement schemes for meshless methods through adding
nodes. Some of them are suitable to a certain condition like crack tip and have lack of flexibility for
general analysis model. One of preferable refinement schemes is the use of background cell because
it can maintain the suitable integration accuracy as the nodal density in local area increase. In this
study, a simple adaptive nodal refinement scheme based on estimated error distribution is proposed
to investigate the possibility of h-type adaptivity of EFG method. By adding new nodes along the
background cell used in the numerical integration, both of the local and global errors that come
from interpolation can be adaptively controlled. The ultimate goal of this study is to develop the
reliable nodal generator based on the local and global errors that are estimated posteriori.

The paper is organized as follows. In section 2 the basic equations of the EFG approximation in
elastostatics and the concept of a posteriori error estimation in EFG method are given. Section 3
describes the error criterion and adaptive refinement strategy. In section 4, the reliability and
performance of adaptivity procedure proposed in this study are demonstrated in several two
dimensional problems in which some singularities are included. Conclusions are stated in section 5.

2. EFG approximation and a Posteriori error estimation

2.1. EFG Approximation

In the moving least square technique, the local approximation  of the function  is
expressed as the inner product of a vector of the polynomial basis p(x) and a vector of the

uL
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coefficients a(x)

(1)

where

and m is the number of monomials in the polynomial basis. Using the MLS technique the vector
a(x) can be obtained by minimizing the difference between the local approximation and the nodal
values:

(2)

In the above, n is the number of nodes in  and  is a positive weighting
function with compact support  of measure a; the compact support correspond to the domain of
influence of the weight function. The following weight function have been used in this study.

(3a)

where c is a constant which controls the relative weights and . Later, the domain of
influence will be related to the mesh spacing 

a=Dmh (3b)

where h is the average nodal spacing.
The stationarity of E(a) with respect to a leads to:

a(x)=A−1(x, a)B(x, a)u (4a)

where

A(x, a)=pT(xI)wI(x, a)p(xI) (4b)

B(x, a)=pT(xI)wI(x, a) (4c)

Letting the global approximation be related to the local approximation by

(5)

and substituting Eq. (3) into Eq. (1) gives

(6)

Eq. (6) is the MLS interpolant for u(x).

2.2. Posteriori error estimation

To illustrate the basic ideas and implementation of the stress projetion, linear elasticity is considered.
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The governing equation for elastostatics is

 (7)

where D is the elasticity matrix and S is the differential operator which defines the strain as

(8)

The directly computed stresses are

(9)

where n is the number of nodes in domain of influence for analysis; . Appropriate boundary
conditions are imposed on .

An estimate of the derivative of a function u(x) at any point  can be obtained by considering
a(x) as a constant (Nayroles et al. 1992)

(10)

For accurate results, the coefficient a(x) should not be assumed to be constants. Belytschko et al.
(1994) showed that not accounting for the spatial variation of a(x) detracts significantly from the
accuracy of the method and results in failure to pass the patch test. They proposed a more accurate
formula to calculate  as follows:

(11)

where the index following a comma is a spatial derivative. The faster ways of computing the
derivatives have been given in Belytschko et al. (1996a).

The frequency content of derivatives of the shape function is higher than that of shape function
themselves. For this reason, more accurate results can be obtained for areas with high stress gradients,
such as at a crack tip. However, these high frequencies in the derivatives of shape functions also
introduce spurious oscillations at high gradient stress regions or discontinuous regions.

Chung and Belytschko (1998) proposed very simple and robust posteriori error estimate. The
essence of the error estimate is to use the difference between the values of projected stresses σσ p and
these given directly by the EFG method solution σσ h. The projected stress is obtained by using an
approximation with a different domain of influence. These projected stresses can be obtained as
follows

(12)

where  is the stress at node K, l is the number of nodes in domain of influence for
projection  and  is an EFG shape function obtained with a different domain of influence.
Thus the two shape functions are given as

 (13)
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with . To calculate , the same procedure is used as before, i.e., Eqs.
(1-6), but the domain of influence is reduced. The projected stress is computed simply by taking the
product of shape function and stress computed at the nodes which are in the domain of influence of
the point x considered . The procedure is therefore quite inexpensive since there is no matrix
solution procedure which is needed in most error estimation procedure. 

Chung and Belytschko (1998) found in their numerical experiments that the error was estimated
with accuracy when the domain of influence used for computing the projected stresses is close to
the minimum size which preserves regularity of the moment matrix.

A measure of the pointwise error  can be obtained at any point x in the solution domain as
follows:

(15)

This error can be used as an indicator for adaptive analysis stated in next section.

3. Error criteria and adaptive refinement strategy

In general, adaptive procedures have a refinement criteria for local enrichment and a stop criteria
for completeness of the procedure. To determine whether the enrichment through adding nodes is
needed at a certain local domain, the approximation error need to be estimated locally. At the same
time, to assess whether the accuracy of EFG solutions reaches a desired level at a global manner,
the relative error estimator for solution domain is also needed.

To use point-wise error defined by Eq. (15) in consistent manner, the error should be evaluated in
any appropriate norm. In this study, to measure the local error for each integration cell and the
global error for whole solution domain, an energy norm is used. The point-wise error at a quadrature
point, x=xg can be measured as follows:

(16)

where subscript g indicates Gauss point. The approximation of the interpolation error in the energy
norm for the whole solution domain Ω and for each background cell Ωi can be calculated as

(17)

and

(18)

Above equations are known as the global and local error estimator, respectively. The local error
indicator that is the refinement criteria for the cell i is calculated as 

(19)
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where

(20)

If the estimated local error for the cell i is greater than the local error indicator, the cell i need to be
refined adaptively through adding nodes, that is the background cell i is divided into four integration
cells and five new nodes are added (Fig. 1). In the next step, it is checked whether added nodes are
duplicated with existing nodes and reset the boundary conditions for new nodes. This procedure is
repeated for each cell. After the refinement, the reanalysis is performed with new nodal configuration. 

Liu et al. (1997) proposed similar refinement algorithm. Since they used high gradient nodes as a
refinement indicator, special consideration for the cells with less than four nodes was needed.
Besides, in this study estimation of local error and refinement procedure is based on integration cell,
additional treatment for divided cell is not need throughout the refinement process.

At this point, it is worth to note the difference between the traditional finite element analysis and
EFG method in adaptive h-refinement. In past decades, the adaptive mesh refinement technique
along with an error analysis has been widely studied in the traditional FEM. The original isoparametric
element with fixed number of nodes are commonly used in the past with displacement constraints
imposed for inter-element compatibility. It is, however, inconvenient to refine the mesh locally at
certain parts of the structure by using these types of elements only. When a refinement is performed,
since the newly generated finite element mesh should satisfy the nodal connectivity of element,
special elements to connect two different element layers are needed as transition elements (C.K. Choi
et al. 1998, 1999). 

In meshless methods, the discretization is based only on a set of nodes and does not require a
mesh. The connectivity or the interaction of nodes is not fixed by input data, it need to be computed
according to the nodal configuration. It is then possible to develop new nodal configuration of the
model from a set of nodes and a description of boundary conditions. Therefore, there is no need to
apply the special treatment or element to ensure the connectivity of newly developed degrees of
freedom in meshless methods, where adaptive finite element method does.

Meanwhile, it should be noticed that there is still an open question with the integration order for
each cell; what orders are needed to obtain an accurate quadrature result. Belytschko et al. (1994)
recommended the following equation based on numerical experiences.

U =
1
2
---  

Ω∫ σT
x( )D 1– σ x( )dΩ

 
 
 

1/2

Fig. 1 Adaptive generation of new nodes and cells
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(21)

where Nq is the integration order and Mc is the number of nodes included in a cell area. This
recommendation is confirmed by Haussler-Combe and Korn (1998). According to this recommendation,
the order of quadrature for integration of a cell to which new nodes are added need to be modified
properly. To avoid the abrupt change of integration resolution and retain the consistent quadrature
accuracy, there would be two methods available. The first method is to increase the order of
quadrature for cells with newly added nodes and the other one is to divide the integration cells. In

Nq= Mc+2

Fig. 2 Flow of analysis
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this study, since nodes should be located along the background cell, the second method is more
convenient to adopt.

The adaptive procedure will be continued until the specified error tolerances are met, i.e. the
estimated relative error is smaller than the user defined level of accuracy. The relative error in the
energy norm is defined by

(22)

If Eq. (22) is smaller than the prescribed tolerance, the procedure will be terminated. 
The proposed adaptive refinement procedure is illustrated through the flow chart shown in Fig. 2.

4. Numerical Examples

The performance of the proposed adaptive procedure is demonstrated in two-dimensional examples
that include L-shaped plate, the near-tip crack field problem and the edge crack problem. For all
computations, the exponential weight function and a linear basis are used. The background cells
were used for quadrature of the Galerkin terms such as the stiffness matrix with 5 by 5 Gauss
quadrature in each cell. 

In this numerical examples, the domain of influence, aI, of a point xI is determined as

aI =DmcI (23)

where Dm is a parameter of domain of influence and cI is the characteristic dimension of the nodal
spacing and is chosen as the distance to the third nearest neighbor node. The examples are analyzed
with different parameters of  for projection and  for analysis.

4.1. Example 1: L-shaped plate

Fig. 3 shows an L-shaped plate subjected to a shear force on the top. Due to its shape, the stress
concentration is occurred at concave corner. To deal with the corner, the imaginary crack line
inclined for 45o at the corner is assumed. This example is analyzed with the =2.5 and =1.75.
In this example, the cell error indicator for refinement is 10%, except for the first iteration. The
coarse nodal distribution of the first iteration can make an incorrect refinement trend. So a stricter
cell error indicator of 5% for refinement is imposed at the first iteration stage. As the iteration
continues, the adaptive and uniform refinement sequence of this problem is shown in Fig. 4 and R
is relative error. As expected, the occurrence of refinement is concentrated around the concave edge
which has steep gradient of stresses. 

The convergence paths for adaptive and uniform refinement are shown in Fig. 5. In this figure,
convergence curves show almost the same rate at the beginning of sequence. But, as the number of
nodes increase, the difference of the performance between the adaptive refinement case and the
uniform refinement case grows significantly. 

4.2. Example 2. Near-tip crack field

The problem of a small plate with an edge crack subjected to the traction prescribed by the near

R=
E
U

---------

Dm
p Dm

a

Dm
a Dm

p
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Fig. 3 L-shaped plate

Fig. 4 Analysis sequences with relative error for example 1

field solution was considered. When a crack in a body is modeled, the displacement must be
discontinuous across the crack. The method for construction of approximations around the tip of a
discontinuity is the diffraction method (Belytschko et al. 1996a and Organ et al. 1996). This method
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treats the line of discontinuity as opaque but bases the weight function parameter on the length of
the path which passes around the corner of discontinuity.

A closed form displacement solution of near-tip crack field can be written as Eqs (24). A square
patch with sides of length 2a and a crack of length a is used (Fig. 6). The displacement fields for a
mode 1 crack are (Anderson 1991)

(24a)

(24b)

where r is the distance from the crack tip and θ is the angle measured from the line of the crack.
The stress intensity factor is prescribed as . The stresses resulting from this
displacement field satisfy the equilibrium and the solution is exact if the displacement from above
Eqs. (24) are prescribed on the outer boundaries.

ux=
K1

2µ
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2π
------cos

θ
2
--- 

  κ−1+2sin2 θ
2
--- 
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2µ
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2π
------sin

θ
2
--- 

  κ+1−2cos2
θ
2
--- 

 

K1=1psi in

Fig. 5 Convergence curves for example 1

Fig. 6 Local coordinate system for near crack tip problem
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The problem is analyzed with =2.5 and =1.75. The value of error indicator that is used for
the criteria of cell refinement is 0.1 for each iteration and the target level of relative error is 10%. 

Dm
a Dm

p

Fig. 7 Analysis sequences with relative error for example 2

Fig. 8 Convergence curves for example 2
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The Fig. 7 shows refinement sequence of adaptive analysis model and analysis models of uniform
refinement. As the previous example, new nodes are added around the crack tip in adaptive
procedure. The distribution of added nodes resembles that of estimated error. The convergence ratio
of adaptive analysis model and uniform refined model are compared in the Fig. 8. This figure
shows the effectiveness of adaptive analysis. The recalculated value of K1 at final step has 0.19%
error for adaptive analysis and 2.37% error for uniformly refined analysis. In Fig. 9 distributions of
energy norm along the x axis with different iteration step are compared. 

Fig. 9 Comparison of energy norm distributions along the x axis for example 2

Fig. 10 Shear edge crack problem



Adaptive nodal generation with the element-free Galerkin method 647

4.3. Example 3: Shear edge crack

In this example, a plate subjected to shear traction τ =1.0 on the top and containing an edge crack
of length a=W/2=3.5 is considered (see Fig. 10). The plate is clamped on the bottom. The material

Fig. 11 Analysis sequences with relative error for example 3
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constants used are E=30.E6 and ν=0.25 and plane strain conditions are assumed. The stress intensity
factors used for the reference solution are K1=34.0 and K2=4.55.

The problem is analyzed with =2.5 and =1.8. The value of error indicator that is used for a
criterion of cell refinement is 0.15 for each iteration and the target level of relative error is 10%. 

The adaptive and uniform refinement sequences are denoted Fig. 11 and convergence curves of
this example is shown in Fig. 12. The variations of two stress intensity factors K1 and K2 along the
analysis sequences are displayed in Fig. 13. In Fig. 14 distributions of Von-Mises stresses for initial
and final nodal configuration which comes from adaptive procedure are presented . 

Dm
a Dm

p

Fig. 12 Convergence curves for example 3

Fig. 13 Stress intensity factors
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5. Conclusions

The local and global error estimates for the element-free Galerkin (EFG) method and the adaptive
refinement procedure using background integration cell are proposed. The point-wise errors are
obtained by comparing the projected stresses and EFG stresses. This stress projection scheme
requires no matrix solution procedure, which are needed in many other error estimation procedures.

To demonstrate the efficiency of proposed schemes, the adaptive refinement analyses are
performed for several numerical examples. The convergence rates of adaptive refinement analysis
are superior over those of uniform refinement analysis. Also the results of analysis show a high
accuracy for structural parameters such as stress intensity factors.

From the aforementioned results, the strong possibility of h-type adaptivity of EFG method can be
found. Since only one level refinement is carried out at each step of procedure, re-analyses are
needed until the solution satisfies the desired accuracy. A more efficient refinement procedure need
to be found to get a completely new nodal configuration which satisfies all user defined tolerance
optimally.

A more sophisticated nodal generation method that is independent from the background structure
and similar to bubble meshing technique will be presented in out next paper.
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