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Abstract. A 3D nonlinear finite element computation model is presented in order to analyze
concrete filled rectangular tubular (CFRT) composite structures. The concrete material model is ba
a hypo-elastic orthotropic approach while the elasto-plastic hardening model is employed for
element. The comparisons between experimental and analytical results show that the proposed mo
relatively simple and effective one. The analytical results show that the capacity of inner concr
CFRT column mainly depends on the two diagonal zones, and the confining effect of CFRT sec
mainly concentrated on the corner zones. At the ultimate state, the side concrete along the sectio
seriously, and the corner concrete softens with the increase of compressive strains until failure.

Key words:  concrete filled rectangular tubular structure; nonlinear analysis; finite element method. 

1. Introduction

In recent years, concrete-filled rectangular steel tubular (CFRT) column has become pop
structural applications due to its excellent structural behavior, and more attention has been 
the theoretical and experimental investigations on its structural behavior. However, on the as
load-carrying and deformation behavior, most of the research achievements are the formula
on tested results or simple analysis by use of one-dimensional or two-dimensional finite element
model. Because of the high complexity of the problem, no efficient analytical method is repor
study the load-carrying and failure mechanism of CFRT structures so far. All these consider
highlight the necessity of developing fully three-dimensional computational model which ma
used to analyze CFRT composite structures. There are two aims of this paper. One is to develop
3D finite element model for nonlinear analysis of plain concrete up to failure, and the other
use this model to investigate the structural behavior of CFRT columns.
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2. Concrete material model

 In finite element analysis, it is necessary to keep the model as simple as possible so that it
easily implemented in structural analysis. And the model must be capable of idealizin
nonlinear behavior of concrete structures and can trace the overall behavior of these structure
ultimate load, within an engineering degree of accuracy. Thus the model implemented in this
employs three basic features to describe the material behavior, namely, (i) a nonlinear stres
relation including strain-softening; (ii) failure envelopes that define cracking in tension and crushing
in compression, and (iii) a strategy to model the post-cracking and crushing behavior of the m
In the solution, the material can be subjected to cyclic loading conditions, i.e., the numerical s
allows for unloading and reloading including deactivation of tensile failures. However, as will be
apparent, the cyclic loading conditions are only modeled realistically in essentially proportional
loading.

Perfect bond is maintained between the steel element and concrete element in this paper
been typical in most analytical studies of concrete-filled tube members to date (e.g., Neogi 1969
Tomii 1979, Shair-Khalil and Zeghiche 1989). Also local buckling is not simulated in this m
because many tests have been shown that local buckling of steel plate in CFRT columns h
prevented by infilled concrete in most cases.

2.1. Behavior in compression

The hypoelastic orthotropic model proposed by Yu and Lu (1998) is used to describe the cons
relation of concrete under multiaxial compressive stress state. The failure criterion by Ottose
nonlinear expression by Sargin were adopted in the model and the equivalent uniaxial strain c
was incorporated and extended to the nonlinear three-dimensional incremental stress-strain rela
The predictions of the model were compared with some of the two-dimensional tests of Kupet
al. and some of the three-dimensional tests of Kotsovos et al., which showed that the model is 
relatively simple and effective one with a good accuracy.

The incremental stress-strain relationship matrix is as follows:

[D]=  (1)

When taking the uniaxial condition into consideration, the concrete constitutive model is shown in
Fig. 1.

2.2. Behavior in tension

In the present work, concrete in tension is modeled as a linear elastic-strain softening mate

1
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E2 1 µ13
2–( ) E2E3 µ12µ13 µ23+( ) 0 0 0
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the maximum tensile stress criteria is employed to distinguish elastic behavior from tensile fra
The limiting value defining the onset of cracking is established as follows:

(i) in the triaxial tension zone

(i=1, 2, 3)  (2)

(ii) for tension-tension-compression and tension-compression-compression stress states

 (3)

 (4)

Where ft is the tensile strength of concrete. The resulting cracking surfaces are shown in Fig. 2.
The smeared crack model is used herein. For a previously uncracked sampling point, the p

stresses and their directions are evaluated. If the maximum principal stress exceeds a limiting value,
a crack is formed in a plane orthogonal to this stress. Thereafter, the behavior of the concre
longer isotropic, and the local material axes coincide with the principal stress directions. It s
be noted that the direction of the crack remains fixed thereafter, which is known as the fixed
approach. Two sets of cracks are allowed to form at each sampling point. For simplicity, the
directions are assumed to be orthogonal. Once the first set cracks are formed at a point, a s

ft i ′=ft;      

ft′=ft 1−σp3/fc( );       σp3 0<

ft′=ft 1−σp2/fc( ) 1−σp3/fc( );       σp2,σp3 0<⋅

Fig. 1 Concrete model for uniaxial stress-strain 

Fig. 2 Triaxial tensile failure envelop



580 Xilin Lu, Yong Yu, Tanaka Kiyoshi and Sasaki Satoshi

ection.
e local

action
l tube
proach
 in this
 when

s, etc.
cr
fracture

ain-
s

effect,

 =

 curve
 the
r steel
-filled
performed in the orthogonal plane to determine the maximum stress in that plane and its dir
Again, if that stress exceeds a limiting value, a new set of cracks are assumed to form and th
material axes are fixed.

2.3. Strain-softening rule

Because the classical “tension stiffening” effect, which was explained in terms of bond inter
with reinforcing steel, cannot be applied to plain concrete structures or concrete-filled stee
structures whose inner concrete locates at a certain distance from the interface, the ap
proposed by Petersson (Bangash 1989) is used herein. The tension-stiffening curve adopted
paper is shown in Fig. 3. The stress normal to the crack does not drop to zero immediately
the crack is formed. It decreases with increasing crack width, w, or with the nominal “tensile strain
w/lc”. Many curves have been suggested, with linear, multi-linear, parabolic, exponential form
The manner in which parameters defining the tension-stiffening curve are chosen is more itical
than its actual shape. The model proposed by Petersson (Bangash 1989) in the context of 
mechanics is used herein, which assumes fracture energy, Gf, to be a material property. The
implementation of the “Gf = const.” concept leads to two important conclusions: (1) the local str
softening law depends on a characteristic length, lc; and (2) the local constitutive relation depend
on the finite element mesh. An exponential curve is used to simulate the tension-stiffening 
then

(5)

in which ε is nominal tensile strain in the cracked zone, ε0 is the strain at cracking, ft is the tensile
strength of concrete, αααα is the softening parameter which can be defined as follows:

(6)

in which,  is the volume of concrete represented by the sampling point; 
the energy needed to separate the two crack surfaces 50-200 N/m; w=1cεc=the fictitious crack
width. It should be noted that this computation of strain-softening branch of the stress-strain
is only directly applicable to plain concrete. The classical “tension stiffening” effect due to
presence of reinforcing bars has not been accounted for. The effect of the reinforcement o
plate can be included by taking a higher fracture energy for reinforced concrete or concrete
steel tube than for plain concrete.

σ=f t exp − ε ε0–( )/α( )( )

α= Gf −f tε0l c/2( )/f t l c 0>⋅

l c dv( )1/3≈ ,  dv Gf=  
0

∞∞∞∞∫ σσσσdw
≈

 Fig. 3 Tension-stiffening curve 
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 During the loading process a previously opened crack can begin to close and eventually
totally or re-open again. This behavior is allowed in the present model. If the current strainε is
smaller than the strain εi recorded as the maximum tensile strain reached across the crack 
consideration, the stress normal to the crack is calculated from

(7)

This secant “unloading” path is shown in Fig. 3(a). Re-opening of the crack follows the same
until εi is exceeded. Then the stress is interpolated from Eq. (5). Once a crack is completely 
the concrete is assumed to recover its initial compressive strength normal to the crack.

2.4. The crack [D] matrix

Once cracked, the concrete is assumed to become orthotropic with the material axes orie
the direction of the principal tensile stresses. The [D] matrix is constructed with reference to th
material axes and it is then transformed into the global system. At cracked sampling p
Poisson’s ratio is assumed equal to zero, and the [D] matrix thereby becomes a diagonal matri
The elastic modulus is usually assumed to equal zero in the directions normal to cracked 
which can sometimes lead to non-positive-definite stiffness matrices and subsequent numerical
difficulties. This paper assumes a progressively decreasing stiffness in the considered directio
is, uses a secant elastic modulus for the [D] matrix. The secant modulus, Er, can be evaluated as
(see Fig. 3b)

(8)

The resulting [D] matrix for two-cracked concrete has the form

(9)

For one-cracked concrete, Er2=Ec, β2=1.0. As can be seen in Eq. (9) the shear modulus is 
modified for cracked concrete, accounting for phenomena such as aggregate interlock, et
shear retention factor is usually given a value of β1=β2=β = 0.5.

3. Material model for steel

In the present work the steel element is assumed to be Von Mises elasto-plastic mode
isotropic hardening, and the derivation of whose stiffness matrix can be found elsewhere (Ba
1998). Unloading is assumed to occur elastically.

4. Finite element model and nonlinear solution techniques

4.1. 3-D element

In the present work, steel and concrete of CFRT column are discretized into 20-node isopar
element, whose stiffness matrix can be found elsewhere (Bangash 1989). The 3× 3 × 3 Gaussian

σ=
σi

ε i

----ε

Er=σσσσj /εεεε j Ec≤≤≤≤

∆σ{ }= D[ ] ∆ε{ }=diag.[Er1 Er 2 Ec β1G β2G β1G] ∆ε{ }
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product rules exactly integrate the stiffness matrix of the 20-node elements (for elements
constant Jacobian and with constant material properties throughout the element). The 2× 2 × 2
reduced integration is used herein to save computation time, because it greatly reduces the 
of operations to be performed in the evaluation of the residual forces and tangential st
matrices. However, it is well known that under-integrated matrices are rank deficient and ca
to the development of spurious deformation mechanism. By trying and calculating, it is foun
the spurious deformation mechanism can be depressed if the aspect ratio of individual 20-nod
element is limited to a maximum of 20. Also reduced integration can alleviate shear-lo
behavior resulting from the spurious shear strains.

4.2. Solution of nonlinear equations and convergence criteria

The incremental equilibrium equations in the nonlinear analysis of concrete structure c
expressed as

(10)

where  is stiffness matrix,  is the vector of incremental applied loads, and  i
vector of residual or “unbalanced” forces. The modified Newton-Raphson iterative method is
to solve the nonlinear equation where the tangential stiffness matrix is updated once dur
increment. The vector of incremental applied loads  and the vector of residual force 
are checked in every iteration and convergence is achieved when

(11a)

(11b)

Eq. (11a) compares the Euclidean norms (square root of the sum of the squares) of t
vectors and represents an average check on equilibrium. The second check Eq. (11b) is to
any highly localized values in the residual load vector; both checks must be satisfied for re
convergence.

5. Verification of the model and further application

To verify the above method, comparison of finite element results with the tested results of 
short columns made by the authors (Report of Joint Research of Tongji University and Fujita 
Japan 1997) and Tomii (1977) is made. Table 1 shows the parameters of specimens and the com
of ultimate load capacity. In Table 1 most of the predicted ultimate capacity underestima
experimental loads by about 2%-16%. This discrepancy may result from (i) during tests, the f
between column ends and loading plates is not considered in the analysis, which leads to
calculated values than tested ones; and (ii) the material strength of the specimens are
somewhat, for example, the tested ultimate capacity of specimen CFRT40-4 is higher than 
CFRT40-5 by 3%. Overall, the finite element method gives reliable prediction and can me
requirement of engineering accuracy on the safe side.

Due to the limited page number, only the experimental and analytical results of spe

K[ ] i -1 ∆∆∆∆U{ } i= ∆∆∆∆R{ }i+ R[ ]i -1−−−−  
e

 

∑  
v∫ B[ ]T σσσσ[ ]i -1dv= ∆∆∆∆R{ } i+ ΨΨΨΨ[ ] i -1

K[ ] i -1 ∆∆∆∆R{ } ΨΨΨΨ { }

∆∆∆∆R{ } ΨΨΨΨ { }

ΨΨΨΨ{ } 0.02 ∆∆∆∆R{ }≤

max ΨΨΨΨ i{ } 0.02 ∆∆∆∆R{ }≤
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CFRT40-5 are given herein for clarification. Considering the symmetry of the specimen, only 1
the specimen is discretized into steel and concrete solid element and the finite element mesh 
shown in Fig. 5 with 102 steel elements, 384 concrete elements and 2560 nodes. The 
energy Gf of concrete is 100 N/m due to the fact that its value has minor effect on the ultimat
capacity when it has the values between 50 and 150 N/m.

Fig. 6 gives a comparison of analytical and experimental results, which only consist of the r
before the steel is locally buckled since the effect of local buckling is not considered in the p
model. Fig. 7 shows the state of steel and concrete elements at the central height of the 
during loading. Fig. 7a shows the state corresponding to the load of 1/2 (  is the calc
ultimate load capacity). At this load level, all steel elements are elastic and only the co
elements crack in the corner zone of the section. These corner cracks are stable in the later

Nu
c Nu

c

Table 1 comparison of predicted ultimate load capacity with tested ones

Specimen No.
Section
(mm)

fc

(MPa)
Ec

(MPa)
Height
(mm)

Tested 
capacity
NU (kN)

Predicted 
capacity
NU

c  (kN)
Steel parameter

CFRT40-3 200× 200 24.7 30000 2061 1937 0.94
CFRT40-4 × 5 28.3 27800 600 2530 2115 0.84
CFRT40-5 32.5 28100 2468 2227 0.90 σσσσs =227Mpa
CFRT60-3 300× 300 24.7 30000 3621 3569 0.98 σσσσb =366Mpa
CFRT60-4 × 5 28.3 27800 900 4603 4023 0.87 Es =214000Mpa
CFRT60-5 32.5 28100 4872 4381 0.90

I-A* 100 × 100 32.6 507 481 0.94 σσσσs =198Mpa
I-B* × 2.29 30000 508 0.94 σσσσb =353Mpa
II-A* 100 × 100 21.8 521 513 0.98 σσσσs =346Mpa
II-B* × 2.20 30000 300 520 0.98 σσσσb =419Mpa
III-A* 100 × 100 21.0 539 551 1.02 σσσσs =294Mpa
III-B* × 2.99 30000 538 1.02 σσσσb =412Mpa
IV-A* 100 × 100 20.2 680 689 1.01 σσσσs =290Mpa
IV-B* × 4.25 30000 679 1.01 σσσσb =400Mpa

*Data comes from Tomii (1977). In analysis, Ec =30000 Mpa, Es =200000 Mpa.

NU
c

NU

-------

Fig. 4 20-node isoparametric element



584 Xilin Lu, Yong Yu, Tanaka Kiyoshi and Sasaki Satoshi

ret the
ement
ws the
d and
r of the

reasing
ntrated
nsverse
olumn

d II-II
egative.

e side
stage due to confinement provided by steel tube. It must be noted that one should interp
terminology “crack” judiciously because a physical crack does not actually develop at the el
integration point, instead, the material has failed in one principal stress direction. Fig. 7b sho
states corresponding to the load level of . At this load level, all the steel elements yiel
cracked concrete elements develop along the side zone. A small part of concrete in the cente
section is uncracked and most of concrete elements in the diagonal zone soften with inc
compressive strain. These results indicate that confinement effect of CFRT section is conce
on the corner zone, and those corner concrete elements carry most of the longitudinal and tra
stresses. Thus, it can be concluded that the load capacity of inner concrete of CFRT c
depends on the two diagonal zones.

Fig. 8 and Fig. 9 show the transverse stress distribution of concrete elements at I-I an
sections (see Fig. 5) respectively, where compressive stress is positive and tensile stress is n
General trend of stress distribution can be found from the two figures as follows: (i) along th

Nu
c

Fig. 5 Finite element mesh of specimen CFRT 40-5

Fig. 6 Load-deformation curves
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direction (I-I section), , but difference between stress in two directions is small for mos
of I-I section, also confining stress decreases rapidly from the corner zone to the centra
(ii) along the diagonal elements (II-II section) , and confining stress in the corner zo
maximum and decreases rapidly along the central part direction; (iii) at load level of 1/2
stress σσσσy of the central elements in I-I section is tensile stress, which can be explained as follo

σσσσx σσσσy≠≠≠≠

σσσσx σσσσy≈≈≈≈
Nu

c

Fig. 7 Failure state of concrete and steel elements

Fig. 8 Transverse stress distribution of concrete elements in I-I section
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the earlier load stage, the Poisson’s ratio of concrete is smaller than that of steel, and the se
trend between two materials results in tensile stress, which should not exceed the bond stren
may be overestimated in this paper due to the assumption of perfect bond between concrete and
steel tube wall. Fig. 10 shows the transverse deformation of CFRT section during loading. A
from the figure, transverse deformation of central part of the section increases and exceeds
corner part as the loading increases, which reproduces the phenomena observed during exp
From the above analysis, it can be concluded that confining effect of CFRT section is m
concentrated on the corner zones, which is different from concrete-filled steel circular tube and
concrete section confined by rectangular stirrups.

Fig. 9 Transverse stress distribution of concrete elements in II-II section

Fig. 10 Predicted transverse deformation of CFRT column during loading
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6. Conclusions

The proposed finite element model for the nonlinear static analysis of three-dimensional 
columns can evaluate the capacity and deformation behavior of CFRT columns well. It needs 
few inputted data and is stable during analysis. Therefore it provides an effective tool for stu
the structural behavior and inherent mechanism of CFRT composite structures.

Finite element analysis results indicate that the capacity of inner concrete of CFRT column m
depends on the two diagonal zones. At ultimate state, the side concrete along the of the 
cracks seriously and the corner concrete softens with the increase of compressive strain
failure. Distributions of transverse stresses also show that confining effect of CFRT section is
mainly concentrated on the corner zones, which is different from concrete-filled circular tube and
from concrete section confined by rectangular stirrups.
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