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Soil-structure interaction effect on active control of 
multi-story buildings under earthquake loads
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Abstract. A direct output feedback control scheme was recently proposed by the authors for single-
story building structures resting on flexible soil body. In this paper, the control scheme is extended to
mitigate the seismic responses of multi-story buildings. Soil-structure interaction is taken into account in
two parts: input at the soil-structure interface/foundation and control algorithm. The former reflects the
effect on ground motions and is monitored in real time with accelerometers at foundation. The latter
includes the effect on the dynamic characteristics of structures, which is formulated by modifying the
classical linear quadratic regulator based on the fundamental mode shape of the soil-structure system.
Numerical results on the study of a ¼-scale three-story structure, supported by a viscoelastic half-space of
soil mass, have demonstrated that the proposed algorithm is robust and very effective in suppressing the
earthquake-induced vibration in building structures even supported on a flexible soil mass. Parametric
studies are performed to understand how soil damping and flexibility affect the effectiveness of active
tendon control. The selection of weighting matrix and effect of soil property uncertainty are investigated
in detail for practical applications. 

Key words: active control; soil-structure interaction; state feedback gain; output feedback gain; soil
parameter uncertainty; seismic effectiveness; robustness and sensitivity.

1. Introduction

Extensive study on active control of structures has led to actual implementations in several dozens
of civil engineering structures throughout the world (Wu 1995). Nearly all control systems were
designed for structures on rigid bases. In practice, however, many civil structures are supported on
footings that rest on flexible soil masses. How the soil flexibility affects the performance of control
algorithms is a puzzling question in the mind of engineers.

Recent studies in active structural control considering soil-structure interaction have been developed
in two directions. One is to consider soil and foundation as part of an augmented soil-structure
system (Cheng and Suthiwong 1996) and the other is to simplify the soil-structure system into a
reduced-order structure of modified parameters by neglecting the inertia effect of the foundation
component (Luco 1998, Smith et al. 1994). The optimal closed-loop control algorithms are then
applied into the augmented or simplified system. To implement a control concept in a structure,
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both sensors and actuators have to be installed physically in the structures. Therefore, in the first
approach, the so-called observer technique has to be used and the dynamic responses of the soil
body are estimated based on those measured on structures. From the mathematical point of view,
the responses of a building structure under earthquake loadings can be uniquely determined without
explicit modeling of the soil body if the complete motion at the soil-structure interface can be
monitored in real time. Therefore it is not necessary to explicitly include the soil mass in an
analytical model for the study of active structural control with surface foundation. In the second
approach, negligence of the foundation mass in the development of control algorithms sometime
leads to a considerable degradation of the algorithm performance in reducing the responses of the
soil-structure system (Chen et al. 1999).

The objective of this paper is to study how soil damping and flexibility affect the performance of
active control systems, to understand how robust active control systems are in terms of soil
parameter uncertainties, and to develop a practical control scheme for multi-story building structures
resting on a viscoelastic half space of soil mass. Soil-structure interaction (SSI) is taken into account
in two parts: input at foundation and control algorithm. The former reflects the SSI effect on ground
motions, which will be determined in real time. The latter includes the interaction effect on the
dynamic characteristics of structures and is derived below.

2. Optimal feedback control of soil-structure systems

Consider a n-story building structure resting on a half space of homogeneous soil deposits as
shown in Fig. 1. The structure is a viscously-damped, linear system and the soil body is a viscoelastic
system.

2.1. Soil modeling

The effect of a viscoelastic soil mass on the vibration of the building structure in one direction
can be characterized by two sets of springs and dashpots at the foundation, one for translational and
the other for rotational movement. The foundation vibrations associated with the translational and
rotational movement are referred to as lateral and rocking modes. The coupling effect between two
modes is insignificant and thus neglected in this study (Veletsos and Wei 1971).

Consider a rectangular foundation of length 2L along the ground motion and width 2B. When B/L
≥ 0.4, the stiffness and damping constants of the soil mass can be expressed into (Dobry and
Gazetas 1986) 
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(4)

for rocking mode. Here, (ω) and (ω) are the dimensionless stiffness and damping coefficients
for lateral mode of vibration and, (ω) and (ω) are those for rocking mode. Both sets of
coefficients can be determined from Figs. 6, 7, 10 and 13 in the paper by Dobry and Gazetas
(1986). The soil parameters ξs, v, ρs and Vs denote the hysteretic damping, Poisson’s ratio, density
and velocity of the shear wave, respectively. The quantity ω is the vibration frequency of the soil-
structure system, which is approximately taken to be the fundamental frequency of building
structure in this study.

2.2. Equation of motion of soil-structure system

When an active tendon control mechanism with 4 cables is implemented between the first floor
and foundation of the building shown in Fig. 1, the equation of motion of the soil-structure system
can be expressed in the vector-matrix form 

(5)

in which M=diag (m1, m2, … mn, Jf +  Ji, mf) and

 
are the mass and stiffness matrices of the soil-structure system of n+2 degrees of freedom. The
damping matrix C is identical to K except that all k’s are replaced with c’s. Here li = hi−hi-1 (i = 2, 3,
…, n) and l1=h1. The structural parameters mi, ki and ci represent the mass at the ith floor, interval
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field motion of earthquake.

2.3. State feedback control

In the state space, Eq. (5) can be written into

(6)

where

The performance index (PI) for control of building responses in this study is described by

(7)

in which Q is a 2(n+2)×2(n+2) dimensional weighting matrix. The coefficient β determines the
relative importance of control effectiveness (response reduction) and economy (control force
requirements). β =ó represents the uncontrolled case. The quantity tf is the terminal time which
covers the entire duration of strong earthquake motion. Following the standard optimization
procedure (Soong 1990), the closed-loop control force to minimize the PI in Eq. (7) can be
expressed into
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Fig. 1 Schematic of soil-structure system
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(8)

in which P is a Riccati matrix, satisfying the following matrix Riccati equation

(9)

3. Proposed output feedback control

The control force in state feedback control, described by Eq. (8), is a function of the displacement
and velocity at foundation with respect to the free field motion of earthquake. Unfortunately this
information is not available in practical applications of structural control. What can be obtained in
real time is the absolute acceleration at footing foundation. Three accelerometers are considered to
be attached to the top surface of the foundation as schematically shown in Fig. 1. One is located at
the center of foundation to measure the horizontal acceleration. The other two are installed at two
sides of the foundation to measure vertical accelerations from which the rocking acceleration of the
foundation can be determined in real time. In what follows, an output feedback law is proposed
using the measurable acceleration responses at the foundation and the state responses of the
building.

The control force described by Eq. (8) can be expanded into 

(10)

in which Xs(t) and Xf(t) represent the displacements of structure and footing, respectively;  and
 are the corresponding velocities relative to the free field motion. By substituting Eq. (10) into

Eq. (5), the equations of motion of footing can be expressed into

(11)

where  denotes the absolute acceleration of footing. The matrices Ti (i=1,
2, 3, 4, 5) are given in the Appendix. Solving Xf (t) from Eq. (11) and introducing it into Eq. (10)
leads to

 (12)

It is well known that SSI tends to reduce the natural frequencies of a soil-structure system. As a
result, the contribution of the fundamental mode to the total responses of the system usually
increases as the soil medium gets more flexible. It is therefore reasonable to approximately estimate
the foundation velocity from those of the structure by using the first mode shape. Let Φ1 denote the
mode vector of the first mode of the uncontrolled soil-structure system. The velocity response of the
system can thus be approximately expressed into
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Both ΦΦ1 and  can be partitioned into structure and foundation parts: 

(15)

The velocity response of footing can then be determined by

(16)

or

(17)

In the equation above, ΓΓ is a transformation matrix that is introduced to estimate the velocity
response of footing. Ms and Mf are the mass matrices of the building and foundation. Both are
submatrices of M.

By substituting Eq. (17) into Eq. (12), the control force can directly be calculated from the
measurable accelerations at footing and state responses of the structure using

(18)

in which  and . Eq. (18)
is the output feedback control algorithm proposed in this paper.

4. SSI effect on active control efficiency

Previous studies in structural control were focused on reducing the peak responses of structures
fixed at base. How the soil flexibility affects the performance of active control is of practical
interest but not yet addressed. Limited studies by Luco (1998) and Smith et al. (1994) only
conducted parametric analyses in the frequency domain. In addition, the variation in soil properties
and the uncertainty involved in the measurement of these parameters are significantly larger than
those of building structures. Sensitivity of a control algorithm to the uncertainty of soil parameters
needs to be studied before the algorithm can be applied into practice. In what follows, practical
issues such as the selection of the weighting matrix and the effect of soil parameter uncertainty on
the performance of control designs as well as the effect of soil material damping and flexibility are
discussed.

To perform a parametric study, a ¼-scale three-story structure is used as an example. The steel
frame structure has a lumped mass of 593 kg, 590 kg and 576 kg, respectively, at the first, second
and third floor. It has the interval stiffness of 542, 2998 and 1298 kN/m, and a damping coefficient
of 0.271, 0.0693 and 0.121 kN.sec/m, correspondingly. The natural frequencies of the structure are
16.47, 56.60 and 109.7 rad/sec with corresponding modal damping ratios of 0.364, 0.354 and
0.267%. Three floors are respectively 1.016, 1.778 and 2.54 meters above a 1.524× 0.762 m
rectangular footing. The foundation is made of 0.4572 m thick reinforced concrete. Therefore, the
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mass and moment of inertia of the footing are 130 kg and 25.2 kg·m2. The soil material filling the
half space below the foundation has a Possoin's ratio of 0.33 and density of 15.7 kN/m3. The soil-
structure system is subjected to the free field motion at ground surface. The NS component of the
El Centro, California earthquake of May 18, 1940 is used as ground acceleration with its magnitude
adjusted to a peak value of 0.98 m/sec2.

When the shear wave velocity in soil decreases from infinity to 25.4 m/sec, the dimensionless
factor (ω1B/Vs, ω1 is the fundamental frequency of the structure fixed at base) increases from 0 to
0.247. Correspondingly, the fundamental frequency of the uncontrolled soil-structure system (β =ó )
reduces by 35% and, the modal damping ratio increases almost 10 times for ξs= 0.05 and 15 times
for ξs= 0.10 as shown in Tables 1 to 3. It is noted that small values have been assigned to the soil
shear wave velocities due to the scale of the model structure.

4.1. Selection of weighting matrix

Three weighting matrices have been selected by Wu (1995) to minimize the potential, kinetic and
mechanical energy of a single-story frame structure. It was concluded that these matrices lead to
nearly the same performance of corresponding algorithms when the coefficient β in Eq. (7)
correspondingly takes the value of r0, r0 and 2r0 (r0 is an arbitrary number).

Similar weighting matrices are considered herein. However, the purpose of installing an active

Table 1 Fundamental frequency of soil-structure system: ξs = 0.05

Fundamental Frequency (rad/sec)

β =1 β =10 β =700 β =∞
0.000 20.18 17.50 16.49 16.47
0.124 17.65 15.39 14.40 14.37
0.247 12.23 11.21 10.67 10.63

Table 2 Damping ratio of soil-structure system: ξs = 0.05

Damping Ratio (%)

β =1 β =10 β =700 β =∞
0.000 66.47 29.07 3.93 0.36
0.124 33.61 19.93 3.32 1.50
0.247 10.62 10.08 3.85 3.50

Table 3 Damping ratio of soil-structure system: ξs = 0.10

Damping Ratio (%)

β =1 β =10 β =700 β =∞
0.000 66.47 29.07 3.93 0.36
0.124 32.62 20.00 3.96 2.38
0.247 12.46 11.34 5.70 5.45

ω1β
Vs

---------

ω1β
Vs

---------

ω1β
Vs

---------
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control system is to reduce the structural deformation,  in Fig. 1, instead of displacement x(t) in
Eq. (5). They are linearly related in the following way

(i=1, 2, ..., n) (19)

In matrix form, Eq. (19) can be written as

(20)

where

(21)

Therefore three weighting matrices corresponding to potential, kinetic and mechanical energy are
respectively expressed into

(22)

in which Ks (a submatrix of K) is the stiffness matrix of the structure fixed at base.
The performance index, the maximum acceleration and the maximum displacement are

normalized by their corresponding quantities of the uncontrolled soil-structure system (β =ó ). They
are presented in Figs. 2 and 3 to illustrate the influence of weighting matrix on the control
effectiveness for two types of soil conditions. The three matrices in Eq. (22) are used, and their
effects are compared under the constraint of equal maximum control force. It can be seen that one
selection of weighting matrix does not lead to significantly more reduction of structural responses
than another. This observation is especially true for flexible soil conditions. For the rest of paper, QP

is always used for this reason.

4.2. Effect of soil parameters

To show the effect of soil damping on the control efficiency, the drift time history in the first
story is plotted in Fig. 4 for ξs= 0.05 and 0.10 at two levels of control force. It can be observed that
both responses have the same pitch at each level of control force. However, the maximum drift
decreases as soil damping increases regardless of the level of control force. This result agrees with
previous studies on the SSI effect on uncontrolled structures. To understand whether this result can
be generalized for cases of various soil flexibility, Tables 2 and 3 include the damping ratio of the
controlled soil-structure system. As one can see, the total damping of the soil-structure system
generally increases as soil damping changes from 0.05 to 0.10. The exception to this is the case
with β = 1 and ω1B/Vs= 0.124, which indicates a large control force acted upon a structure
supported on a relatively-stiff soil mass. Under these circumstances, damping due to active control
constitutes a major portion of the total damping of the soil-structure system. An increase in soil
damping results in a reduction in total damping. Consequently, the drift in the first story is expected
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to slightly increase in this case. 
Presented in Fig. 5 are the normalized performance index and the maximum acceleration and

displacement responses of the soil-structure system. They were computed under equal control force
and plotted as a function of the dimensionless factor (ω1B/Vs) to study the influence of soil
flexibility. It can be clearly seen that the performance index and structural response increase as soil
material softens. Specifically, the reduction in peak acceleration at the 2nd floor due to the active
tendon control decreases from 70% to 20% and that in peak displacement decreases from 85% to
30% when the dimensionaless factor increases from 0 to 0.247. This decrease indicates significant
degrading of the control effectiveness. The exception for the above trend is the footing
accelerations. The translational/horizontal acceleration nearly remains constant due to the dominance
of the free field motion. The rocking acceleration at the footing can be suppressed when the soil
material is not very stiff.

To further study the soil flexibility effect, time histories of the drift in the first story and the
accelerations at the 3rd floor and foundation are shown in Fig. 6 for very soft and stiff soil
conditions. One can see from this figure that, in addition to significant deviation in magnitude, the

Fig. 2 Effect of weighting matrix on control effec-
tiveness under constant max. control force:
ω1B/Vs = 0.124 and ξs= 0.05

Fig. 3 Effect of weighting matrix on control effec-
tiveness under constant max. control force:
ω1B/Vs = 0.247 and ξs= 0.05
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pitch of vibration also differs appreciably. This difference is attributable to the reduction in natural
frequency of the soil-structure system as the soil material becomes softer as evidenced from Table 1. It

Fig. 4 Effect of soil damping on story drift: ω1B/Vs = 0.247

Fig. 5 SSI effect on control effectiveness under constant max. control force: ξs= 0.05
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is worth noting that the horizontal acceleration at the footing does not change significantly and the
time history corresponding to a rigid base is the input to the soil-structure system.

Another way to evaluate the effectiveness of active control on a flexibly-based structure is to
compare the equivalent dynamic property of the controlled structure with those of the uncontrolled
structure as given in Tables 2 and 3. When ξs = 0.05, the equivalent damping increases due to active
control from 0.36% to 66.47% for a rigid base while that only increases from 3.50% to 10.62% for
a flexible base (ω1B/Vs= 0.247). This indicates the tremendous reduction in total damping of the
soil-structure system and thus results in less effective control on structural responses as discussed in
the preceding paragraph. Indeed, the total damping of the controlled soil-structure system
considerably decreases as the soil material is softening while the damping of the uncontrolled
system significantly increases. At β = 700, the combined contribution of soil damping and active
control results in nearly-constant system damping for various soil flexibility. It is noted that the
fundamental frequency of the system increases as a result of control effort and decreases with the
softening of soil mass.

Fig. 6 Time history responses of three-story structure controlled with constant max. force: ξs= 0.05
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4.3. Effect of soil parameter uncertainty

Uncertainties in the measurement of soil parameters are considerably larger than those associated
with structural properties. In order to develop a practical control scheme for soil-structure systems, a
proposed algorithm should be robust and insensitive to any unexpected uncertainty in the system
property. Consider a site with a dimensionless factor (ω1B/Vs) ranging from 0.062 to 0.247. The
statistical average factor at the site is taken to be 1.24. A control algorithm can then be designed
based on the average value. To see how sensitive the so-designed algorithm is to the change of soil
flexibility, the performance index as well as the maximum acceleration and displacement of the soil-
structure system controlled with such an algorithm are respectively divided by those corresponding
to the average factor. The ratios of these responses are plotted as a function of the dimensionless
factor in Fig. 7 with various lines. For the sake of comparison, the same ratios calculated with a
control algorithm corresponding to the actual soil shear wave velocities are presented in Fig. 7 with
solid marks. It can be observed that the control algorithm is not very sensitive to the uncertainty in
soil flexibility as long as the actual soil property is in the neighborhood of the average value. The
horizontal acceleration at footing nearly remains constraint due to the dominant effect of the ground
motion as discussed before. The rotational acceleration and displacements at the footing
progressively deviate from those based on the actual soil property as the dimensionless factor
increases. They are more sensitive to the higher ω1B/Vs value. Therefore using a higher ω1B/Vs

Fig. 7 Sensitivity of control algorithms to soil property uncertainty: ξs= 0.05
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value to design the algorithm could slightly reduce the deviation. However, structural displacement
and acceleration seem insensitive to the uncertainty in soil parameters. It can thus be concluded that
the state feedback control is robust and effective in reducing the peak responses in building
structures even though strong soil-structure interaction exists.

Fig. 8 Performance of various algorithms: ω1B/Vs = 0.247 and ξs= 0.05
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5. Seismic effectiveness of the proposed output control algorithm

The same example soil-structure system and earthquake input as used in Section 4 are considered
to demonstrate the control efficiency of the proposed algorithm. The drifts in the lst story and the
absolute accelerations at the 3rd floor, calculated by using the state feedback (SF) and the proposed
output feedback (OF) algorithm, are compared in Fig. 8 under the same control force (peak value).
Fig. 8(a) clearly demonstrates that both drift and acceleration time histories using the OF algorithm
coincide with those using the SF algorithm at the level of 1.84 kN control force or about 11% of
the total structure weight. Therefore the proposed algorithm performs as well as the optimal control
algorithm under low control forces. Even at the higher level of control force in Fig. 8(b), the two
algorithms result in slightly-different drift and acceleration time histories only in magnitude. The
high accuracy of the proposed algorithm is achieved because the only approximation used in the
derivation of the OF algorithm is the velocity relation between the structure and foundation, Eq. (17).
This approximation mainly changes the damping of the soil-structure system. In addition, the
difference in acceleration is more significant than that in displacements of the controlled structure
since acceleration is affected more by the higher modes.

It is observed from Fig. 8(b) that the absolute acceleration at the 3rd floor is reduced more by
using the proposed OF algorithm. This reduction is likely caused by the non-optimality of the SF
control due to neglecting the external disturbance in the derivation of the closed-loop algorithms,
and the indirect control on acceleration in the performance index as implied by the weighting matrix
in Eq. (22). A closer look at the SF-controlled soil-structure system indicates that the fundamental
frequency of the system is 12.23 rad/sec as given in Table 1 for β = 1. It turns out that this
frequency is in the proximity of the dominant frequency of El Centro Earthquake. In addition, the
earthquake record reaches its maximum ground acceleration in a short period. The combination of
the nearly-resonant system and the rapidly-increasing disturbance leads to the worst performance of
the SF control (Chen 2000).

6. Conclusions

A simple soil model is used to investigate the effect of soil damping and flexibility on the seismic
effectiveness of active control of multi-story building structures. The influence of uncertainty in the
measurement of soil parameters has been extensively studied. A practical algorithm toward the
actual implementation of optimal control is then proposed, taking into account the soil-structure
interaction in a simple way. Based on the extensive analyses on a three-story frame structure, the
following conclusions can be drawn:

1) The fundamental frequency of a soil-structure system, controlled or uncontrolled, significantly
decreases as soil material softens. However, it increases by 15% to 23% with significant control
effort (β = 1).

2) The damping ratio of the first mode of an uncontrolled soil-structure system significantly
increases with the softening of soil material while that of the system controlled with significant
effort decreases. This indicates the considerable degrading in performance of an active control
system. Soil material damping plays an important role in reducing the dynamic responses of
structures on flexible bases regardless of the level of control force.

3) Under the same control force (peak value), the selection of weighting matrix does not
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significantly affect the amount of peak response reduction. Therefore, the weighting matrix leading
to the minimization of potential energy is recommended for practical applications.

4) Uncertainty in soil parameters does not appear to significantly degrade the performance of a
state feedback control algorithm as long as the algorithm is designed based on the average soil
properties at a site.

5) The proposed output feedback algorithm does not require the design of an observer. It is
proved very effective in reducing the maximum responses of structures. It has nearly the same
performance as the full state feedback algorithm under the same control force (peak value).
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Appendix: Matrices, Ti (i = 1, 2, 3, 4, 5)

(A-1)T1=
kθ+  

i 1=

n

∑ ki l i
2 k1l1

k1l1 ky+k1

−4kccosαα
l1

1 
 
 

Gxf
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(A-2)

(A-3)

(A-4)

(A-5)

T2=
Jf+  

i 1=

n

∑ Ji 0

0 mf

T3=
cθ+  

i 1=

n

∑ ci l i
2 c1l1

c1l1 cy+c1

−4kccosαα
l1

1 
 
 

Gx·f

T4=
c2l2−c1l1 c3l3−c2l2 … cnl n−cn-1l n-1 cnln–

c1– 0 … 0 0
−4kccosαα

l1

1 
 
 

Gx·s

T5=
k2l2−k1l1 k3l3−k2l2 … knln−kn-1l n-1 knln–

k1– 0 … 0 0
−4kccosαα

l1

1 
 
 

Gx·s
.




