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Effects of shear deformation on the effective length of
tapered columns with |-section for steel portal frames

Guo-Qiang Lit and Jin-Jun Lif
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Abstract. Based on the stiffness equation of the tapered beam element involving the effects of axial
force and shear deformation, numerical investigations are carried out on elastic instability for web-linearly
tapered columns with I-section of steel portal frames. Effects of shear deformation on the effective length
of the tapered columns with I-section are studied. An efficient approach for determining the effective
length of the tapered portal frame columns considering effects of shear deformation is proposed.
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1. Introduction

Tapered members are widely used in steel portal frames to make the stress more evenly
distributed, so as that the consumption of steel can be reduced. For safety, stability check is required
for the columns of steel portal frames. The requirements on tapered columns are specified in the
codes of some countries for the design of steel structures. For example, an effective length factor K,
is introduced for compressive strength check of web-tapered columns in the America code (AISC,
LRFD 1994), although the calculation of K, is not specified. In the code of China (CECS 1998), the
effective length factors of tapered columns for steel portal frames are presented, but effects of shear
deformation are not taken into account.

It is found that shear deformation has significant influence on stability of prismatic steel columns
with I-section under certain conditions (Li and Shen 1998). It should also be true for tapered
members. For analysis of tapered members, a number of approaches have been proposed, which
include normal beam elemental approach (Lindberg 1963 and Gallagher 1970), direct integral
approach (Just 1977 and Karabalis 1983), Bessel function approach (Banerjee 1985 and 1986),
principle of virtual forces (Kim, Lee and Chang 1995), and boundary integral approach (Al-Gahtani
1996), etc. The stability of tapered members was studied by Ermoupoulos and Kounadis (1985),
Kim, Lee and Chang (1995) and Wang (1998) recently. On the other hand, Timoshenko beams
including effects of shear deformation were widely employed in the study of natural frequencies for
isotropic (Gupta and Rao 1978, To 1981 and Khulief and Bazoune 1992) and composite
(Ramalinggeswara and Ganesan 1995 and Oral 1995) tapered beams. Vu-Quoc and Leger (1992)
evaluated numerically the flexibility matrix of tapered I-beams accounting for shear deformation by
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principle of complementary virtual work, but not comprising the effect of axial forces. To the
authors” knowledge, the investigation of Timoshenko-Euler tapered beams considering effects of
shear deformation and axial force simultaneously or including the effect of shear deformation in the
stability analysis of tapered members has not appeared in the reported literatures.

In this paper, a Timoshenko-Euler tapered beam element model is presented for analysis of
structures consisting of tapered members by FEM involving effects of shear deformation. The
elastic buckling of steel portal frames employing tapered columns with I-section is analyzed by
using the proposed element.

2. Timoshenko-Euler tapered beam element

The cross-section of tapered members for steel portal frames is usually in symmetrical I-shape,
welded by three plates. The height of the web is normally linearly varied, which the flanges keep
uniform in width along the length of a member, as shown in Fig. 1. For the tapered member
described above, the axis of the member remains straight and the applied forces as well as the
corresponding deformations of the element representing this kind of member can thus be modelded
as shown in Fig. 2. Following the same procedure given by the first author of this paper (Li and
Shen 1998) for dealing with uniform Timoshenko-Euler beams, the equilibrium differential equation
of the tapered Timoshenko-Euler beam element can be established as follows.

Under the simultaneous action of moment, shear force and axial force (positive for tension and
negative for compression), the deflection of the element consists of two portions. One portion is
induced by bending deformation and the other by shear deformation, that is

Y=Yutyo (M
The curvature of the element caused by bending is

V /I__ M
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where I(z) is the inertia of second-moment of the cross-section at the location of distance z from left
end of the element, E is the elastic modulus and M is the cross-sectional moment which can be
expressed by

M=M,-Q, z=N "y (3)
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Fig. 1 A steel tapered member
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Fig. 2 Applied forces and deformations of an element

The slope of the element caused by shearing is
’_ U Q - u . di4 4
YTGTAGR) G-AR) dz @

where A(z) is the area of the cross-section at location z, Q is the cross-sectional shear force, G is the
shear modulus and u is the factor varying with the shape of the cross-section. For I-shaped section,
[ can be approximately calculated by

u=A(z)/A,(z) (5)

where A,(z) is the area of the web at the same cross-section for A(z).
Substituting (5) into (4) gives

YETAD ©
By substituting (3) into (6), we have
Yo=5 A CQNY) ™
Differentiating (7) gives
Yo'=g jw(z) | [if;(f)) QN )Ny | (®)
Differentiating (1) twice and associating (2) and (8), we obtain
Y =y = gl I(ZZ; N y+G ' fiw(z) . [/}4‘;’((5)) (0, +N-y)=N- y”} )
Eq. (9) can be simplified as
o(z) - y"=P(z) - N-y'=N-y=p(z) - Q,=(M, - Q, - z) (10)

in which
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o(z)=E-1(z) - 12)

A(2)

=E - I(z)  —2=21—

A 2 G-AL(2)
N

. )’(Z)=1+GTW(Z)

Eq. (10) is the governing equation for the equilibrium of tapered Timoshenko-Euler beams. Let
==, (10) is converted to non-dimensional form by

L
&)y ~B(&) L-N-y'=L*-N-y=B(&) - L’- Q,-L*- (M, - Q, - L- &) (1
By using Chebyshev Polynomial, the function y(&), a(&), B(E) can be approached by
M
V=25, ¢&" (12a)
n=0
M
A§=3 a,- & (12b)
n=0
M
B&=2B.¢& (12c)
n=0

Substituting (12) into (11) leads

n

M
> {z o(n+2-i)(n+1-0)y,,, ;| &~
n=0

i=0

M n M M

LN 2{ Biln+1 —z')ym,} LN Xy, 8= 00 X B LML 0,8
n=0| =0 n=0 n=0

(13)

According to the principle that the factors at two sides of (13) for the same exponent of & should

be equal, then
forn=0:

20 y,=L-N- - Y1*L2 N - }’o:Lz Q- .BO_L2 M, (14)
forn = 1:
60, y3+20, - y,—L-N(2B, - y,+B; 'yl)_Lz : N'}’FLZ -0 'ﬂ1+L3 -0 (15)

and for n = 2:

M
Y a(n+2=i)(n+1-)y, 0. ~L - N- 3 Bi(n+1-i)y,,, ~L*-N-y,=L*-Q,-B,  (16a)

i=0 i=0

Rewrite (16a) as
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i=0 i=0

Youa=|L-N- Y, Bin+1=i)y,,1 AL N-y,+L*- O, - B,- Y, a,~<n+2—i)<n+1—i>y,,+2i}
loy(n+2)(n+1) (16b)

Since o(z), P(z) are functions known already, the series {,}, {B,} are determinate. Hence, it can
be conducted from (16b) that {y,} (for any n = 4) can be expressed as the linear combination of yy,
Y1, Y2, y3 and @ with known coefficients or the series {y,} may be determined when the values of
Yo, Y1, ¥2, 3 and Q, are obtained.

Considering the following boundary condition

for &=0:
y(0)=yo=0 (17a)
’ _ — L _ Ql
Y O=r=5 05 o)) (170)
for &=1:
M
)’(l)zZ,Oyn=C1y1+C2)’2+03)’3+C4Q1=5z"51 (18a)
y'(1)=in~y =CsY +CeYr+Cr Y +Heg Q)= L [92— 9 J (18b)
= ! THHLT? G-AL(D)

The reason that y(1) and y’(1) in (18) are expressed as the linear combination of yy, y;, y2, ¥z and
(O is the conclusion obtained from (16b) and y,=0 from (17a).
Letting y,=1, y,=y;=01=0, ¢, and ¢s can be determined from (18) by

M
=1+ Y (19a)
i=4
_ & (1}
cs=1+ D n-y} (19b)

i=4
in which { yf,”} is the series of {y,} determined under the condition y,;=1, y,=y;=0,=0.

If we let y,=1, y1=y7=01=0, ¢, and ¢4 can be determined in the same way. So do ¢; and ¢4, ¢4 and
Cg.

Up to here, y;, y2, y3 and @, M; are unknown variables. If the boundary deformations of the
element ), 6, 6;, 6 are treated as known variables, the five equations numbered (14), (15), (17b),
(18a) and (18b) can be combined for solving Q; and M,. The applied forces at the other end of the
element, (> and M,, may expressed as the function of @, and M; by considering the following
equilibrium conditions

0+0=0 (20)
My+M,-Q,-L—N - (8,- 8,)=0 210

Then, the stiffness equation of the element is obtained as
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[k]- {6}={/} (22)
in which
{8}=[6,, 6,, 5. 6,)"
{11=10,. M,. 0,, M;]"

—01 ¢ O ¢

[k]: w(])4 ¢5 ¢4 (PO (23)
¢ —0> -9 —¢5
—07 & O, O

The expressions of ¢; (i=1, 2, ..., 9) are given in Appendix.

The stiffness matrix expressed in (23) seems unsymmetrical. But it could be verified by numerical
studies that the values of elements in that matrix are in a symmetric pattern.

In theory, the approach described above is accurate. The only error comes from the representation
of the real deflection y by Chebyshev Polynomial with definite terms. So long as the number of
terms for y, i.e. M, is suitably chosen to make the coefficients c¢,~cg accurate enough, the
satisfactory accuracy of stiffness matrix of the element can be achieved. According to the actual
numerical experience, it may be concluded that M around 13 can produce satisfactory results in
stability analysis of structures.

3. Application

3.1. The effective length factors of tapered columns for steel portal frames excluding
effects of shear deformation

The steel portal frame with tapered columns as shown in Fig. 3 is widely used for industry
buildings. Effective length factors for the tapered columns are given in the China Specification
(CECS 1998) for simplifying safety check on stability.
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Fig. 3 Diagram of a steel portal frames
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Define the effective length factor of a tapered column in the portal frame shown in Fig. 3 as

2
T El
p= [—3 (24)
P, H

where P,, is the elastic critical load of the steel portal frame, /.4 is the inertia moment of the smaller
end of the tapered column as illustrated in Fig. 3 and E is elastic modulus.
Two parameters are introduced for expressing i They are

n:Irl/ICO (25)
ILH
K= (26)

where [, is the inertia moment of the larger end of the tapered column, I, is the inertia moment of
the girder for the portal frame, H and L are heights and span of the portal frame respectively, as
shown in Fig. 3.

By using finite element method, the elastic critical load of portal frames can be obtained. Then,
the effective length factors of the tapered portal frame columns can be calculated by Eq. (24).
Comparison is made on values of u in Table 1 obtained respectively by CECS(1998) using Euler
beam element and this paper using Timoshenko-Euler beam element and assuming G= ©© for
excluding effects of shear deformation.

3.2. Effects of shear deformation on the effective length factors of tapered columns for
steel portal frames

In order to discuss effects of shear deformation on the effective length factor of tapered columns
for steel portal frames, a slenderness parameter is defined as

l(':H/AII(‘O/ACO (27)

Table 1 Values of y excluding effects of shear deformation

i K 0.1 0.2 0.5 10 2.0 10.0
50 CECS 0706 0591 0518 0494 0484 0475
This paper 0.704 0.588 0.516 0.493 0.481 0.473

20 CECS 1095 0889 0758 0713 0693 0682
This paper 1077 0881 0751 0708 0687 0670

10 CECS 1473 1208 1008 0942 0929 0869
This paper 1495 1201 1002 0933 0918 0871

5 CECS 2053 1.641 1.341 1229 1176 1.140
This paper 2065 1644 1337 1228 1173 1.129

I CECS Novalue 3420 2630 2330 2170 2000

This paper 4.405 3.404 2.627 2.327 2.164 2.033
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where A is the area of the smaller end of the tapered columns.

It is found that the effective length factor of tapered columns, u, varies only with n and K if
effects of shear deformation are neglected. When effects of shear deformation considered, however,
the slenderness parameter, A., has significant influence on values of u. In general, the larger the
slenderness parameter, the smaller the effects of shear deformation on the effective length factor of
tapered columns.

For convenience of practical application, a magnification factor is introduced to consider the
effects of shear deformation on the effective length factor of tapered columns, i.e.

B=1/ o (28)

where u, and y are effective length factors of tapered portal frame columns including and
excluding effects of shear deformation respectively. The values of u employed by CECS (1998), as
given in Table 1, are just values of py. The values of p can be determined by implementing the
elastic buckling analysis of the portal frame as shown in Fig.3 using the Timoshenko-Euler beam
element presented in this paper. It is clear that the magnification factor, 3, indicates the severity of
shear deformation effects. If f is obtained, the effective length factor of tapered columns involving
shear deformation effects may be easily determined, with previously known values of .

Table 2 gives the values of the magnification factor varying with n and K, when 4,=23.67. It can
be found from Table 2 that the magnification factor reduces with n when K keeps constant.
However, when n keeps constant, the magnification factor varies slightly with K. For simplification,
a constant Bz may be adopted to represent all the values of 3 for a constant » with K varying from
0.1 to 10.0. The even value of the maximum and the minimum value of B for each n can be used
for B, as listed in Table 2.

By using fBg, the magnification factor becomes the function of A, and n. Fig. 4 gives a group of
curves for PBg varying with the slenderness parameter, 4., under the condition of a number of
constant values for n, which can be used to quickly estimate the magnification factor in practice.

Taking a careful observation of Fig. 4, we can find that when

A.=36.0.02n+26 29)
the magnification factor becomes less than 1.05. In this case, the effects of shear deformation on the

effective length factors of tapered portal frame columns may be approximately neglected.
B in Fig. 4 could further be fitted by the second-order exponent-decay function as

Table 2 Values of the magnification factor when A, = 23.67

i LA 02 05 10 20 10.0 By
50 1278 1330 1365 1372 1360 1358 1325
20 1177 1215 1227 1226 1208 1182 1202
10 1161 1159 L1168 1158 L1119 1142  1.144
5 1124 1126 L1128 1125  L115 1091  L110

1 1.064 1.064 1.071 1.067 1.059 1.066 1.065
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Fig. 4 Curves of magnification factor vs slenderness parameter

-17.75)/4 -17.75)/22

Be=PBe(n, A)=1.0+f,(n) - e " +h(n) e ™

where
£1(n)=0.02903+0.00991—0.00034161%+0.0000041551>
£(1)=0.06523+0.011201—0.00010567*
The fitted values by Eq. (30) are compared with the original values of g in Table 3.

Table 3 Comparison between the calculated and fitted values of Sg

A " 50 20 10 5 1
17.750  Calculated 1.550 1.364 1.267 1.200 1.105
Fitted 1.550 1.371 1.265 1.189 1.115
23670  Calculated 1.328 1218 1.157 1.117 1.061
Fitted 1.319 1217 1.150 1.107 1.067
35.505 Calculated 1.157 1.102 1.072 1.054 1.028
Fitted 1.163 1.112 1.076 1.054 1.035
47340  Calculated 1.092 1.059 1.042 1.031 1.016
Fitted 1.094 1.064 1.044 1.031 1.020
59.175 Calculated 1.056 1.038 1.027 1.020 1.010
Fitted 1.055 1.038 1.025 1.018 1.012
71.010  Calculated 1.041 1.027 1.019 1.014 1.007
Fitted 1.032 1.022 1.015 1.011 1.007
82.845 Calculated 1.031 1.020 1.015 1.010 1.005

Fitted 1.019 1.013 1.009 1.006 1.004
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3.3. Example

To explain the modification of effective length factors for tapered columns due to effects of shear
deformation, take an example from the case shown in Table 2 where 4,=23.67. When »n=50 and
K=0.1, we know from Table 2 that f=1.278 and B;=1.325, and from Table 1 that ,=0.706. Hence,
the accurate value of the effective length factor considering effects of shear deformation is
W=Puo=1.278x0.706=0.902, while the corresponding approximate value of the effective length
factor is p,” =PBy=1.325%0.706=0.935. The relative error between u,” and g, is 3.7%. This
demonstrates that the substitution of 8 with B can obtain satisfying estimation for y,. Fig. 4 or
Eq. (30) can be employed by practicing engineers to determine .

4. Conclusions

The following concluding remarks can be summarized through studies of this paper.

(1) The equilibrium differential equation for the Timoshenko-Euler tapered element is established
in this paper, and it is successfully solved by utilizing Chebyshev Polynomial approach technique.

(2) Effects of shear deformation on effective length factors of tapered columns with I-section for
steel portal frames are discussed on the basis of the element developed in this paper. It is found that
under certain circumstances shear deformation has significant influence on the effective length of
tapered portal frame columns. The condition that effects of shear deformation need not considered is
investigated.

(3) A magnification factor is defined for efficiently determining the effective length factor of
tapered columns with I-section considering effects of shear deformation based on the values of the
corresponding effective length factor excluding shear effects. Curves and fitted equation for
determining the magnification factor are obtained and proposed for practical use.
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Appendix

Expression of elements in Eq. (23)

6= Yis _YiuVism Vi ¥ - YW 21*1//11‘1’1
] Vi Wis— WY ? Vi Vis— WY : Wi Ws— Wi W ‘ Vi
o=l V0 eN=s, i=gi—bs, P9l
Y Y
oL Lo, L L
TG AL(0)-N0) TR0y T GA () ) Ty
:L'ﬁo(N‘Wl"'L) =__£2~ =L‘N'ﬂ0‘l//2
’ 20, A YN ¥ 2a,
:2(L N-By—a)ys+L- (B + LY(N -y, + L) _2(L- N - By—o) e
Wy 6, » Yo= 6at, ,
2(L-N- By~ +L-N(B,+L
0= ( by l)g/; (B, )Wz’ YVi=C Y +C s+ C W+ Cy, Win=Co Wty Y,
o

Vi=—(C ¥ + W5 + C3Wi0)s Wiu=CsW+CWs+Cr WatCo— W, Wis=CoWotCq o,
Wie=—(Ccs¥Ws + CoWq + C1 W)





