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Pseudo plastic zone analysis of steel frame structures
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Abstract. Application of “advanced analysis” methods suitable for non-linear analysis and design of
steel frame structures permits direct and accurate determination of ultimate system strengths, without
resort to simplified clastic methods of analysis and semi-empirical specification equations. However, the
application of advanced analysis mecthods has previously been restricted to steel frames comprising only
compact sections that are not influenced by the effects of local buckling. A concentrated plasticity method
suitable for practical advanced analysis of steel frame structures comprising non-compact sections is
presented in this paper. The pseudo plastic zone method implicitly accounts for the effects of gradual
cross-sectional yielding, longitudinal spread of plasticity, initial geometric imperfections, residual stresses,
and local buckling. The accuracy and precision of the method for the analysis of steel frames comprising
non-compact sections is cstablished by comparison with a comprehensive range of analytical benchmark
frame solutions. The pseudo plastic zone method is shown to be more accurate and precise than the
conventional individual member design methods based on elastic analysis and specification equations.
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1. Introduction

The objective of the research described in this paper was to develop a simpler method of analysis
that adequatcly captures the non-lincar behaviour of steel frame structures comprising non-compact
sections subject to local buckling effects. This simplified method of analysis must therefore be able
to adequately represent the effects of local buckling in addition to the other significant factors such
as material yielding, second-order instability, residual stresses, and geometric imperfections. All
factors relevant to compact sections not subject to local buckling have been investigated by a
number of other researchers who have developed concentrated plasticity advanced analysis
formulations for steel frame structures comprising only compact scctions. One of the most
significant such formulations is the refined plastic hinge method (Liew 1992, Liew et al. 1993).
Recently, Avery and Mahendran (1998a) have modified this formulation to suit the advanced
analysis of steel frames comprising non-compact sections subject to local buckling effects. In this
formulation, the cffects of local buckling such as the reduction in section capacity, gradual stiffness
reduction, and hinge softening are implicitly accounted for by the application of simplc equations.
Avery and Mahendran (1998a) demonstrated that the refined plastic hinge method is a reasonably
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accurate technique for the advanced analysis of steel frame structures comprising non-compact
sections, and significantly superior to the conventional design procedure based on elastic analysis.
However, comparison with benchmark solutions identified a number of limitations and sources of
error in the refined plastic hinge model, due to:

1. Simplifying approximations (e.g., initial yield, imperfections, softening, flexural stiffness
reduction function, tangent modulus, and elastic stability functions). ,

2. The use of model parameters based on empirical specifications equations (e.g., tangent
modulus, section capacity, plastic strength, and effective section properties).

Therefore a rational and more accurate method, referred to as pseudo plastic zone analysis, was
developed to eliminate the above limitations and sources of error as a further enhancement of the
refined plastic hinge method. Analytically “exact” model parameters such as the tangent modulus
and section capacity were derived from distributed plasticity finite element analyses of a stub beam-
column model. They were then used in the formulation of a frame element force-displacement
relationship. This paper presents the details of the new method for advanced analysis of steel frame
structures comprising non-compact l-sections. The new method is verified by comparison with the
analytical benchmark solutions provided by Avery and Mahendran (1998b).

2. Stub beam-column model analysis

Distributed plasticity analysis can be used to calibrate accurate section capacity and stiffness
reduction functions for use in concentrated plasticity models. This approach was adopted for the
hardening plastic hinge method (King and Chen 1994) and the quasi plastic hinge method (Attalla
et al. 1994) in the analyses of a typical compact section. In this paper the distributed plasticity shell
finite element method of analysis described by Avery and Mahendran (1998¢) was used to obtain
section capacity and stiffness reduction functions suitable for non-compact sections subject to local
buckling effects. Due to symmetry of the local buckling waveform, a stub beam-column model with
length equal to one quarter of a local buckling wavelength could be used to obtain the required
properties for a non-compact I-section. Details of the stub beam-column model are described in
Section 2.1. The analytical results are presented in Section 2.2.

2.1. Description of the stub beam-column model

The stub beam-column model was developed using the same methodology as the frame models
described by Avery and Mahendran (1998c). Shell elements were used in order to provide sufficient
degrees of freedom to explicitly model local buckling deformations and spread of plasticity effects.
The Abaqus S4R5 element was selected for all analyses (HKS 1997). This element is a thin, shear
flexible, isoparametric, quadrilateral shell with four nodes and five degrees of freedom, utilizing
reduced integration and bilinear interpolation schemes. A fine element mesh discretization was used
(see Fig. 1) to accurately model the local buckling deformations and associated spread of plasticity.
The RIKS line-arc solution method was used to obtain the softening curve. The Abaqus classical
metal plasticity model with perfectly elastic-plastic behaviour (i.e., no strain hardening) was used
for all analyses. This model implements the von Mises yield surface to define isotropic yielding,
associated plastic flow theory, and perfect plasticity behaviour.

Local imperfections were included by modifying the nodal coordinates using a field created by
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plane of
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elastic strip
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Fig. 1 Stub beam-column model geometry and finite element mesh

local imperfections:

Fig. 2 Assumed local imperfections (SAA 1990)

scaling the appropriate buckling eigenvectors obtained from an elastic bifurcation buckling analysis
of the model. The magnitudes of the local flange and web imperfections were taken as the assumed
fabrication tolerances specified in AS4100 (SAA 1990) (see Fig. 2). The assumed residual stress
distribution for hot-rolled I-sections (see Fig. 3) was recommended by ECCS (1984) and has been
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Fig. 3 Assumed longitudinal membrane residual stress distribution for hot-rolled I-sections (ECCS 1984)

adopted by numerous other researchers. The residual stresses were modelled using the Abaqus
*INITIAL CONDITIONS option, with TYPE = STRESS, USER.

A concentrated nodal force and moment gencrating concentric axial compression and uniform
major axis bending were applied at one end of the model. The force and moment were distributed
using rigid surface R3D4 elements (see Fig. 1). These elements rigidly connected the translational
degrees of freedom of all the nodes located on the end section to which the loads were applied, but
did not in any way constrain the rotations or effect the local buckling deformations. Single point
constraints were applied to all nodes located on the plane of symmetry to eliminate the translational
degrees of freedom perpendicular to the plane and the rotational degrees of freedom about the axes
defining the plane. These constraints ensured that the response of the model would be symmetrical,
as required.

Elastic buckling analyses were conducted to determine the critical local buckling half wavelength,
and to obtain the appropriate imperfection shape for each load combination. During preliminary
analyses, it was observed that stress concentrations occurred duc to the constraints caused by the
rigid surface eclements. Thesc artificial stress concentrations adversely affected the stiffness
reduction. The effects of the stress concentrations were eliminated by including a strip of elastic
clements adjacent to the rigid surface at the load application end of the stub beam-column model
(see Fig. 1).

2.2. Analytical results and discussion

Shell finite element stub beam-column models were developed for the three non-compact sections
most frequently used in the analytical benchmark frame models used by Avery and Mahendran
(1998b): the 310 UBi 32.0, 310 UBrl 32.0, and 310 UBr2 32.0 sections (scc Table 1). Each section
was analysed with purc major axis bending (i.e., p = (), pure axial compression (i.e., m = 0), and 11
combinations of axial compression force and bending moment ( p/m =10.02, 0.05, 0.1, 0.2, 0.5, 1, 2,
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Table 1 Scction properties

375

Section d br i be A ! 5 %
(mm) (mm) (mm) (mm) (mm?) (mm*) (mm*) (MPa)

310 UBi 32.0 298 149 8.0 5.5. 3979 6.131E+07 4.613E+05 320

310 UBrl 32.0 297 149 7.0 5.0 3536 5.403E+07 4.076E+05 370

310 UBr2 32.0 296 149 6.0 4.5 3093 4.674E+07 3.539E+05 420

(a) pure bending (b) pure compression

Fig. 4 Local buckling modes

5, 10, 20, and 50). The deformed geomctry and displacement contours corresponding to the ultimate
load for the pure bending and pure axial compression load cases arc illustrated in Fig. 4.

Three non-linear analyses were performed for each load case:

. 1. Second-order inclastic analysis with no local imperfections. The ultimate load factors for each
load case were multiplied by the corresponding applied loads to obtain the plastic strength curve.

2. Sccond-order inelastic analysis with local imperfections. The ultimate load factors for each load
case were multiplied by the corresponding applicd loads to obtain the section capacity curve.
Axial displacements (x;) and major axis rotations (8;) were obtained for each load increment.

3. Second-order elastic analysis with local imperfections. The axial displacements (x.) and major
axis rotations (6,) were obtained for each load increment and subtracted from the corresponding
inelastic deformations (u;, 6,) to derive the flexural tangent modulus (e,) and the axial tangent
modulus (e,,), as shown in Eq. (1). This procedure ensured that the section tangent moduli only

included the effects of material yielding, as desired.
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Table 2 Comparison of FEA and AS4100 effective section properties

ky ZJS
Scction
FEA AS4100 FEA AS4100
310 UB1 32.0 0.890 0.902 0.980 0.976
310 UBrl 32.0 0.815 0.851 0.958 0.939
310 UBr2 32.0 0.719 0.802 0.894 0.887

The initial yield point for each load casc was taken as the load at which the normalised tangent
modulus corresponding to the dominant load dropped below 0.995. Stiffness reduction less than the
0.5 percent tolcrance was assumed to be negligible.

2.2.1. Plastic strength, section capacity, and initial yield curves

The effective section ratios k, and Z,/S allow for the effects of local buckling through a reduction
in cross-sectional area and scction modulus in the casc of axial compression and bending,
respectively. The values obtained from the analyses of stub beam-column models are compared with
the Australian steel structures code AS4100 (SA 1990) values for the 310 UBi 32.0, 310 UBrl 32.0,
and 310 UBr2 32.0 sections in Table 2. The plastic strength, scction capacity, and initial yield
curves for one of the benchmark sections are provided in Fig. 5.

The analytical results indicated that:

o The AS4100 plastic strength equation is fairly accurate and generally conservative for hot-rolled

[-sections subject to major axis bending and axial compression.
e The AS4100 section capacity ecquation and the AS4100 effective section properties are

14
310 UBi 32.0
L —®— AS4100 plastic strength
| T* AS4100 section capacity
08 | —initial yield (linear interaction)
| =« FEA plastic strength
—®— FEA section capacity |
~B-FEA inttial yield |
06 IR rREYee
p
0.4 1
0.2 1
0 , , - -
0 0.2 04 06 08 1

m

Fig. 5 Plastic strength, section capacity, and initial yield curves for the 310 UBi 32.0 section
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reasonably accurate for the current range of hot-rolled I-sections (such as the 310 UBi 32.0).
However, the AS4100 method significantly overestimates the section capacity of more slender
sections (such as the 310 UBr2 32.0) for compression dominant load combinations. This trend is
also indicated by comparison of the effective section properties (see Table 2), and can be
attributed to the use of the maximum permitted local imperfection magnitude in the analytical
model. The AS4100 section capacity is based on experimental testing of plate elements with
more typical local imperfection magnitudes, and is therefore less conservative than the analytical
model for slender sections whose capacities are sensitive to the imperfection magnitude.

o The initial yield point is influenced by the effects of local buckling, particularly for compression
dominant load combinations. The linear interaction initial vield equation is therefore not appropriate
for non-compact sections without suitable modification to account for the effects of local
buckling.

2.2.2. Moment-curvature and axial compression force-strain curves

The normalised moment-curvature curves provided in Fig. 6 illustrate the gradual stiffness reduction
and hinge softening behaviour of a typical non-compact hot-rolled I-section for a variety of different
load combinations. Axial compression force-strain curves were also produced (Avery 1998),

Normalised moment-curvature curves for three different sections with varying slenderness are
presented in Fig. 7 for the pure bending load case. It is clear that the rate of stiffness reduction and
hinge softening is a function of the p/m ratio and the section slenderness. Furthermore, the rate of
axial stiffness reduction differs from the rate of flexural stiffness reduction. Accurate and rational
consideration of the effects of material inelasticity in non-compact sections therefore requires the
use of two distinct flexural and axial tangent modulus functions. Each function must account for the
effects of the p/m ratio and the section slenderness. The hinge softening model should also include
the effects of the p/m ratio and the section slenderness. It should also be noted that the effects of
flexural stiffness reduction and hinge softening are generally much more significant than the effects
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Fig. 6 Normalised moment-curvature curves
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Fig. 8 Comparison of FEA flexural tangent modulus curves for four different p/m ratios

of axial stiffness reduction, as it is the reduction in flexural stiffness which initiates instability
failure.

2.2.3. Tangent modulus curves

Flexural tangent modulus curves derived from the analytical results are presented in Figs. 8 and 9.
Fig. 8 confirms the previous obscrvation that the tangent modulus is a function of the p/m ratio. Fig. 9
illustrates the effect of section slenderness. The corresponding axial tangent modulus curves are
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Fig. 9 Comparison of FEA flexural tangent modulus curves for three different section slendernesses

given in Avery (1998), which confirm the need for two distinct flexural and axial tangent modulus
functions.

3. Formulation of the pseudo plastic zone frame element force-displacement rela-
tionship

The combined effects of material and geometric non-linearity can be represented by the following
force-displacement relationship for a pseudo plastic zone frame element:

72
’ S ’
9, [sl —=(1 - %)} 049552 0
. 2 .
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The formulation of the pseudo plastic zone force-displacement relationship is similar to the refined
plastic hinge formulation described by Avery and Mahendran (1998a) and Licw (1992). However,
several significant differences exist.

1. The plastic strength, section capacity, initial yield, tangent modulus, and hinge softening
equations for the pseudo plastic zone formulation are accurately determined from the results of the
stub beam-column model analyses. The refined plastic hinge formulation uses approximate
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equations based on the AS4100 (1990) or AISC LRFD (1995) specification equations.

2. The pseudo plastic zone method’s tangent modulus represents the reduction in stiffness due
only to gradual yielding for a particular section and applied load combination of axial force and
bending moment. It does not include any approximate implicit consideration of member instability
and member imperfections, as is the case for the refined plastic hinge formulation. These effects are
dealt with in isolation using inelastic stability functions (s', s%) and a new imperfection reduction
factor ((), respectively. Isolation of the two effects enables a more rational and accurate
representation.

3. The pseudo plastic zone formulation includes separate tangent modulus functions for flexural
and axial stiffness (£, E,). The stiffness reduction due to initial member imperfections is only
applied to the flexural stiffness term, as the imperfections have negligible influence on the axial
stiffness. The refined plastic hinge formulation uses a single tangent modulus (including the effects
of initial imperfections) for both flexural and axial stiffness reductions.

4. The pseudo plastic zone’s flexural stiffness reduction parameters (¢4, @5) are evaluated directly
from the flexural tangent modulus, and replace the flexural tangent modulus in the force-
displacement relationship. In the refined plastic hinge model, the tangent modulus is used in
combination with the flexural stiffness reduction parameters, often resulting in an overestimation of
the total stiffness reduction.

Note that the pseudo plastic zone structure force-displacement relationship can be assembled and
solved using the same procedure as the refined plastic hinge method (Avery and Mahendran 1998a,
Liew 1992).

3.1. Plastic strength, section capacity and initial yield

The normalised plastic strength can be conveniently defined as a function of the p/m ratio using a
series of cubic equations in the following form:

Pps=agta, tra,t tast mpl\,:-;z/%; t=tan”' (p/m) (3)

The variable ¢ represents the angle between the horizontal m axis and the line representing the load
path OA from the origin O(0, 0) to the applied load point A(m, p) on the m-p interaction diagram
(Fig. 10). As ¢ varies from zero to /2, it is a preferable regression variable to the p/m ratio which
varies from zero to infinity. Furthermore, because ¢ is a simple function of the p/m ratio, the plastic
strength corresponding to any applied loads can be directly evaluated from Eq. (3) without solving a
polynomial equation as is required for alternative functions such as those proposed by Duan and
Chen (1990) and Attalla e al. (1994).

The constants ay, a1, a;, and a; were determined from a least squares regression analysis of the
stub beam-column model results for each section. The plastic strength is independent of the section
slenderness, therefore the same plastic strength constants can be used for benchmark sections 310
UBi 32.0, 310 UBrl 32.0, and 310 UBr2 32.0. These constants are provided in Table 3.

The normalised section capacity of members subject to pure bending (i.e., p =0) or pure axial
compression (i.e., m = 0), the section capacity can be calculated directly from the effective section
properties (k;, Z./S) obtained from the stub beam-column analyses.

for p=0: m,.=ZJS
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Fig. 10 m-p interaction diagram

Table 3 Plastic strength constants for the 310 UBi 32.0, 310 UBr! 32.0, and 310 UBr2 32.0 sections

ao a a a3
p/m <02 0.0000 0.9980 0.0766 -1.1950
02 <p/m<35 —0.0032 1.1095 —0.6814 0.2494
p/im>5 52.2780 —-106.9742 73.7485 -16.8247
for m=0: py. = ks 4)

The normalised section capacity of a member subject to combined bending and axial compression
can be defined in similar fashion to the plastic strength:

vac.:bo+b,t+b2t2+b3t3; mSL.:l—?p/i";; t=tan”1(p/m) (5)
The constants by, b, by, and b3 were determined from a least squares regression analysis for each
section. These constants are provided in Table 4 for the 310 UBi 32.0 section. Constants for the
other sections are provided by Avery (1998).

It is to be noted that Egs. (3) and (5) are not used for the limiting cases of m=0 and p=0,
instead the limiting values of 1 for m,; and p,,, and effective section properties of Z,/S and k; for m,,
and p,. as in Eq. (4) are used.

The initial yield of a non-compact section can be defined using a modified linear interaction
equation:

k(l-o,/0o, "
i}': ( k - "); miy:%)— (6)
1+ _L_l. prm

Z/Sp/m
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Table 4 Section capacity constants for the 310 UBi 32.0 section

b(} bl 172 b]
plm < 0.2 0.0000 0.9789 -0.1302 ~1.8883
02 <p/m<S5 0.0186 0.8709 —0.4643 0.1727
plm > 5 16.0194 -32.5776 22.8440 -5.2423

Eq. 6 is based on the conventional linear interaction equation, which has been used by other
researchers (Attalla er al. 1994) for compact sections. The effect of section slenderness on the initial
yield is accounted for by using the analytical form factor (k) to reduce the normalised axial force
axis intercept.

The approximate plastic strength, section capacity, and initial yield curves obtained using Egs. (3),
(5), and (6) are compared with the analytical results in Fig. 11 for the 310 UBi 32.0 section. This
figure shows that the equation lines provide an accurate approximation of the analytical result
points.

3.2. Section tangent moduli

The normalised axial and flexural tangent modulus functions for the pseudo plastic zone
formulation are defined using Eq. (7):

e~1-c,a*~(l-¢c)a'™ (7)

A variety of different equation forms were investigated. Eq. (7) was found to be the most
appropriate function, with sufficient flexibility to accurately trace all of the tangent modulus

1 4
0.8
310 UBi 32.0
0.6 A T
) 4 plastic strength
P B section capacity
| Snitalyield
0.4
0.2+
0+——-- — S A . 3
o] 02 04 0.6 0.8

Fig. 11 Comparison of FEA and approximatc plastic strength, scction capacity, and initial yield equations for
the 310 UBi32 Section
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Table 5 Tangent modulus constants for the 310 UBi 32.0 section

Load Flexural Axial

combination ¢ ¢ & ¢ ¢ e
p=0.00 0.447 1.023 2.735 0.658 0.328 3.185
p/m=0.02 0.679 1.379 4.473 0.658 0.328 3.185
p/m = 0.05 0.795 1.689 9.063 0.658 0.328 3.185
p/m=10.10 0.751 1.809 7.800 0.612 0.573 1.082
p/m=10.20 0.528 1.449 6.866 0.322 1.27] 1.014
p/m = 0.50 0.620 1.560 12.229 0.721 1.277 8.529
p/m =100 0.685 1.624 20.140 0.631 1.711 19.319
p/m =2.00 0.697 1.244 12.868 0.520 1.749 20.906
p/m =5.00 0.847 1.011 11.972 0.557 2.235 40.345
p/m =100 0.923 0.839 10.784 0.622 2439 84.784
p/m =200 0.976 0.772 307.333 0.656 2.363 88.556
p/m = 50.0 0.990 0.745 307.333 0.690 2.341 74.103
m = 0.00 0.990 0.745 307.333 0.585 1.828 17.028

functions obtained from the stub beam-column analyses. Eq. (7) is a simple polynomial decay
function, containing a lower order (¢,) term, a higher order (c¢;) term, and a weighting parameter (c,)
to vary the relative significance of the lower order and higher order terms.

The tangent modulus is conveniently defined as a function of the effective plastic force statc
parameter ('), which can be cvaluated using Eq. (8). The effective plastic force state parameter
varies from zero at thc point of initial yicld, to one when the section capacity is reached. The
rclationship between the force state parameter () and the effective force state parameter (o) is
illustrated on the m-p interaction diagram (Fig. 10). As shown in Fig. 10, o' = [A/IS, while oz = OA/OP.

o'=0 fora<q,

o (a_ Ol,-‘,)
f(a.vc B aiy)

’

for a>a (8)

The constants ¢y, ¢, and ¢; were determined by a least-squares regression analysis for each
section and load combination. Tangent moduli for intermediate p/m ratios can be evaluated using
linear interpolation, using tan™'( p/m) as the interpolation variable. Values of ¢,, ¢,, and ¢; for the
310 UBi 32.0 section are provided in Table 5. Values for the other sections are provided by Avery
(1998). The approximate flexural and axial tangent modulus curves obtained using Eq. (7) are
compared with the analytical results in Fig. 12 for one of the load combinations.

3.3. Hinge softening

The reduction in the section capacity and stiffness duc to hinge softening can be approximately
modelled by replacing the tangent modulus with a negative softening modulus after the formation of
a plastic hinge (i.e., e,= e,). The normalised flexural softecning modulus (e,) can be determined from
the analytical moment-curvature curves for each section and load combination. These curves
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Fig. 12 Comparison of the approximate and FEA tangent modulus curves (310 UBi 32.0 section, p/m = 0.2)

Table 6 Normalised flexural softening moduli for the 310 UBi 32.0 section

Load combination Softening modulus (e,) Load combination Softening modulus (e,)

p = 0.00 -0.0472 p/m=2.00 —0.0957

p/m=0.02 —-0.0521 p/m =5.00 —-0.1025

p/m = 0.05 —-0.0590 p/m=10.0 —-0.1051

p/m = 0.10 —-0.0701 p/m =200 —-0.1089

p/m = 0.20 —-0.0793 p/m = 50.0 —0.1088

p/m =0.50 —-0.0834 m = 0.00 —0.1088

p/m=1.00 —0.0885

indicate that the initial rate of hinge softening is reasonably constant for plastic curvatures within
the range that may occur in typical steel frame structures. The flexural softening moduli can
therefore be conservatively calculated from the slope of lower bound tangent to the moment-
curvature curves.

Softening modulus values for the 310 UBi 32.0 section are provided in Table 6 for cach load
combination. Values for the other sections are provided by Avery (1998). Softening moduli for
intermediate p/m ratios can be evaluated using linear interpolation, using tan '(p/m) as the
interpolation variable.

3.4. Imperfection reduction factor

It is desirable to avoid explicit modelling of member out-of-plumbness and out-of-straightness
imperfections in a concentrated plasticity advanced analysis. The refined plastic formulation relies
on the reduced tangent modulus function to provide the necessary stiffness reduction to implicitly
account for member imperfections. This approach does not allow for the effects of the vertical to
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horizontal load ratio, initial imperfection magnitude, and total deflection on the magnitude of the
stiffness reduction. The first-order slope-deflection functions and equations of equilibrium can be used
to derive an improved stiffness reduction function for a sway beam-column member (Avery 1998):

(1 n fé)
HL
fem ©)
(1 £08)
H L

Although the derivation of Eq. (9) is based on a sway member, the equation can also be used for
non-sway members, provided a minimum of two elements per member are used. The free body
diagram of an element defining half the length of a non-sway member is in fact identical to that of
the sway beam-column member used to derive Eq. (9). The imperfection stiffness reduction factor
(&) accounts for the following:

o The vertical to horizontal load ratio (P/H). In a frame analysis, the stiffness reduction factor is
calculated for each individual element. The vertical load (P) is taken as the magnitude of the
element axial compression force, while the horizontal load (H) is taken as the magnitude of the
element shear force. The vertical load is taken as zero for tension members. Elements with zero
shear (i.e., H=0) require explicit modelling of member imperfections. Eq. (9) indicates a decrease
in { with increasing P/H ratios.

e The initial imperfection magnitude (A,). The recommended ratio of the initial imperfection
magnitude to element length (A/L) is 1/500 for both sway and non-sway mcmbers. Note that the
ratio of imperfection magnitude to element length is double the ratio of imperfection magnitude to
member length for non-sway members with at least two elements per member. Eq. (9) indicates a
decrease in § with increasing A/L ratios.

o The total deflection (A). The effect of the initial imperfection diminishes as the total deflection

0.95 § o —o—a—8—a—8—B—a—a—a—&
0.9
0.85
058 1

¢ o051 200

0.7 4
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06 4

0.55 4
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0 0.005 0.01 0.015 0.02 0.025 003

AL

Fig. 13 Imperfection reduction factor vs. normalised total displacement for various element P/H ratios and
A/L = 1/500
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increases. In a frame analysis, the total deflection is taken as the relative deflection of the element
nodes at the end of the previous load increment. The initial stiffness reduction can be determined by
taking A=0.

The imperfection reduction function is illustrated in Fig. 13 for A/L = 1/500 and three P/H ratios.
This Figure suggests that the constant 0.877 imperfection reduction factor used in the AISC LRFD
compression member capacity equations is unconservative for members with high P/H ratios and
smaller total displacements, and conservative for members with low P/H ratios. Note that the
clement axial force to shear force P/H ratio is approximately double the applicd load P/H ratio for a
single storey, single bay sway frame.

It is to be noted that this study considers only a proportional loading as it is generally adequate
for incremental solution procedures, and preferable for practical advanced analysis. Analytical
results indicate that non-proportional loading is slightly more conservative than proportional loading
for typical frame configurations and load cases (Avery 1998).

3.5. Second-order effects

Accurate consideration of the second-order instability of an inelastic beam-column member would

require the solution of a second-order differential equation with non-constant coefficients:
E,,l(j/)"vLPy:wx—MA (10)

After the commencement of yielding, the flexural tangent modulus (£,) will vary along the length
of the member. It is therefore not possible to obtain a simple closed-form solution to Eq. 10. An
approximate solution can be obtained by using:

e Inelastic stability functions (s',, s%) calculated using the mean flexural tangent modulus (£'))
instead of the elastic modulus, as shown in Egs. 11 and 12. The simplified expressions for the
stability functions shown in these equations are as proposed by Lui and Chen (1986).

e A flexural stiffness reduction function based on the tangent moduli at the element ends to
account for the longitudinal distribution of plasticity.

Sl,:4+27z:2p' _(0.01p"+0.543)p™ | (0.004p’ +0.285)p"

15 4+p’ 8.183 + p’
sy TP (001p"+0.543)p" (0.004p’ +0.285)p" )
D 4+p’ 8.183 1 p’
where:
, PL’
P g (12)
T E{, !

Note that a tensile axial force (P) is taken as positive in Eq. (12).

This approximate solution will converge to the true solution as the number of elements per
member is increased. However, two elements per member were found to provide adequate results.
Note that the mean flexural tangent modulus (£’) can be taken as the average of the flexural
tangent moduli calculated at the clement ends (£, Eyp), as shown in Eq. (13).
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:Erm + Et/H

5 (13)

Ey
3.6. Flexural stiffness reduction parameter

The flexural stiffness reduction factor (¢) can be calculated directly from the flexural tangent
modulus using Eq. (14):

$=(0.5 1//3)+]%J(0.5 1B+ 2e,/B for B0

¢p=e, for (=0 (14)
A derivation of Eq. (14) is provided by Avery (1998). The end moment ratio (f3) is defined as:
M
ﬂ:/\——/[—”; IM,| <|My|; —1<B<1 (15)
B

4. Verification of the pseudo plastic zone analytical method

A series of 102 benchmark analyses of single bay, single storey, sway portal frames comprising
non-compact I-sections subject to major axis bending was presented by Avery and Mahendran
(1998b). The benchmark frames included fixed base, pinned basc, and leaned column frames with
different loading. In order to establish the validity, accuracy and reliability of the pscudo plastic
zone method for the analysis of steel frames comprising non—corﬁpact sections, a selection of these
benchmark frames were analysed using the new model. In this section, the results of these pseudo
plastic zonc analysecs are compared with the finitc element analytical benchmark solutions.

These benchmark solutions were obtained using a distributed plasticity shell finite element model
of the portal frame (Avery and Mahendran 1998c) that was verified by comparison with the
experimental results of frames comprising non-compact sections (Avery and Mahendran 1998d) and
a variety of analytical benchmarks comprising compact sections (Vogel 1985). The wverification
analyses indicated that the distributed plasticity shell finite element model is accurate and reliable
for second-order inelastic analysis of steel frame structurcs comprising non-compact sections.
Therefore the analytical benchmark solutions developed from this model are also considered
accurate and reliable and can be used to verify the accuracy of simplificd concentrated plasticity
methods of advanced analysis such as thc onc described in this paper. It is noted that currently no
other benchmark solutions are available for non-compact sections.

The results of the pseudo plastic zone analyses are also compared with Avery and Mahendran’s
(1998a) refined plastic hinge solutions, and the specification design capacities. All of the results are
compared using tabulated summaries of ultimate load capacitiecs, normaliscd strength curves, and
load-deflection curves. A representative selcction of these tables and charts is presented in this section,
while a more comprehensive presentation of all results and comparisons is provided by Avery (1998).

As stated in previously, stub beam-column analyses were only conducted for the 310 UB 32.0
sections. Model parameters (e.g., the section capacity and tangent modulus cocfficients) werc
thereforc only obtained for these sections. This limited the range of benchmark frames that could be
analysed with the pseudo plastic zone model.

The pseudo plastic zone sway load-deflection curves (PPZ) for two of the fixed base portal frames
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Fig. 15 Sway load-deflection curves for benchmark frame 1-2121

are illustrated in Figs. 14 and 15, and compared with the exact finite element benchmark solutions
(FEA) and Avery and Mahendran’s (1998a) refined plastic hinge solutions using AS4100
specification (RPH-AS4100) and AISC LRFD specification (RPH-AISC LRFD).

Based on the results of the benchmark analyses, the following observations can be made regarding
the performance of the pseudo plastic zone (PPZ) model:

1. The initial flexural stiffness is more accurately modelled in the pseudo plastic zone method
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compared with the refined plastic hinge methods, justifying the applicability of Eq. (9) (see Figs. 14
and 15). The initial stiffness is still slightly overestimated for frames with high P/H ratios, but this
does not appear to adversely effect the accuracy of the model.

2. For frames with larger P/H ratios as in Fig. 14, the difference in the 1n1tlal stiffness is due to
the different approaches used in modelling the initial out-of-plumbness imperfections. In the refined
plastic hinge method (RPH), an approximate constant reduction factor of 0.85 is used, and does not
take into account the fact that the P/H ratio significantly influences the initial stiffness reduction due
to imperfections. For frames with larger P/H ratios, the imperfection and associated displacements
are significant compared with the small overall sway displacements. Eq. (9) of the pseudo plastic
zone method (see also Fig. 13) takes this into account and the PPZ initial stiffness is therefore much
closer to the FEA solution than the RPH method. If an analysis of a frame with no imperfection is
conducted, the PPZ method would match the linear clastic solution because the imperfection
stiffness reduction factor is a function of the initial imperfection magnitude and reduces to 1.0 when
A =0.

3. The rate of stiffness reduction is more accurately modelled in the pseudo plastic zone method
compared with the refined plastic hinge methods, evidenced by the close agreement between the
pseudo plastic zone and finite element benchmark load-deflection curves and ultimate loads (Figs.
14 and 15). This justifies the use of the section tangent moduli (Eq. 7), flexural stiffness reduction
function (Eq. 14), and inelastic stability functions (Eq. 11) to model the gradual stiffness reduction
due to yielding and the associated second-order effects.

4. The load-deflection curves (Figs. 14 and 15) indicate that the initial yield point is accurately
modelled, justifying the applicability of the pseudo plastic zone method initial yield function (Eq. 6).

5. The pseudo plastic hinge model does not appear to overestimate the inelastic redistribution
ductility, as occurred in the refined plastic hinge model (Avery and Mahendran 1998a). This
suggests that the simplified constant hinge softening modulus approach is suitably accurate if the
appropriate modulus is used.

6. The consistent accuracy of the pseudo plastic zone method also demonstrates the accuracy of
the section capacity equation (Eq. 5) derived from the stub beam-column models.

7. The axial stiffness is more accurately modelled in the pseudo plastic zone method compared
with the refined plastic hinge method due to the use of separate flexural and axial tangent moduli.

A comparison between the ultimate loads obtained from the pseudo plastic zone (PPZ) analyses,
benchmark finite element analysis (FEA), refined plastic hinge (RPH) analyses, and specification
design calculations is summarised in Table 7.

The pseudo plastic zone method is suitable for all of the benchmark frame types investigated in
this study. The method is significantly more accurate and precise than both the conventional
individual member design methods based on elastic analysis and specification equations, and the
refined plastic hinge methods. On average, the pseudo plastic zone model is 1% conservative, with
an acceptable maximum unconservative error of 4.9 percent. The pseudo plastic zone model can
allow the design capacity to be increased by up to 29.0 percent for simple frames, mainly due to the
consideration of inelastic redistribution (Avery 1998).

The results presented in this paper have been limited to a series of 310 UB 32 sections. However,
the paper has provided the analytical framework and other essential details to enable its application
to other UB sections or cross-sections. Recently, Yuan er al. (1999) has extended the work described
in this paper to include the current range of Australian hot-rolled UB sections.
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Table 7 Summary of benchmark analysis results

Mcan Coefficient Maximum Minimum
of variation

PPZ / FEA 0.990 0.023 1.049 0.941
RPH (AS4100) / FEA 0.945 0.047 1.066 0.864
RPH (AISC) / FEA 1.009 0.064 [.165 0.869
PPZ / RPH (AS4100) 1.048 0.037 1113 0.944
PPZ / RPH (AISC) 0.983 0.059 [.119 0.833
PPZ / Design (AS4100) 1.105 0.069 1.290 0.944
PPZ / Design (AISC) 1.071 0.052 1.194 0.920

5. Conclusions

A concentrated plasticity model for the advanced analysis of steel frame structures has becn
presented in this paper. This pseudo plastic zone model accounts for the effects of local buckling
using the tangent moduli, section capacity, and initial yield equations derived from distributed
plasticity finite element analysis of a stub beam-column model. The accuracy and precision of the
new model has been extensively verificd using the analytical benchmarks presented by Avery and
Mahendran (1998b).
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Notation

A, = gross cross-section area

a; = constant used to define the plastic strength

b; = constant used to define the section capacity

by = flange width

¢ = constant used to define the tangent modulus

d = total depth of section

d, = clear depth of web

E = elastic modulus

e, = non-dimensional softening modulus = E/F

E, = softening modulus

& = non-dimensional tangent modulus = E/E

E, = tangent modulus

E. = axial tangent modulus

Cu = non-dimensional axial tangent modulus = E, /£

Ey = flexural tangent modulus

Eyy, Eg = flexural tangent modulus at element ends A and B
"y = mean flexural tangent modulus

ey = non-dimensional flexural tangent modulus = £,/F

I = local element pseudo-force vector

H = applied horizontal load

I = second moment of area with respect to the axis of in-plane bending

1, = second moment of arca of beam section

1. = second moment of arca of column section

ky = form factor for axial compression member

L = member length or length of element chord

Ly, = length of beam member

L. = length of column member
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= bending moment

= non-dimensional bending moment = M/M,

= bending moment at element ends A and B

= bending moment defining the initial yield

= non-dimensional bending moment defining the initial yield = M,/M,
= plastic moment capacity = ¢,

= bending moment defining the plastic strength

= non-dimensional bending moment defining the plastic strength = M,,/M,
= bending moment defining the section capacity

= non-dimensional bending moment defining the section capacity = M,/M,
= axial force or applied vertical load

= non-dimensional axial force = P/P,

= axial force defining the initial yield

= non-dimensional axial force defining the initial yield = P;/P,

= axial force defining the plastic strength

= non-dimensional axial force defining the plastic strength = P, /P,

= axial force defining the section capacity

= non-dimensional axial force defining the section capacity = P, /P,
= squash load = 6,4,

= plastic section modulus with respect to the axis of in-plane bending
= inelastic stability functions

= variable used to define the plastic strength and section capacity

= flange and web thicknesses

= axial displacement

= axial displacement from elastic analysis

= axial displacement from inelastic analysis

= distance along member from end A

= in-plane transverse displacement at location x

= elastic section modulus with respect to the axis of in-plane bending
= effective section modulus with respect to the axis of in-plane bending
= relative lateral deflection between element ends

= initial imperfection magnitude

= curvature

= effective force state parapeter

= force state parameter

= force state parameter corresponding to initial yield

= force state parameter corresponding to section capacity

= end moment ratio

= flexural stiffness reduction factor

= flexural stiffness reduction factors for element ends A and B

= column to beam stiffness ratio = ({/L.)/(1,/L;)

= rotation of deformed element chord

= rotation at element ends A and B

= rotation from elastic analysis

= rotation from inelastic analysis

= axial force parameter used to calculated inelastic stability functions
= maximum residual stress

= yield stress

= imperfection stiffness reduction factor

= member out-of-plumbness imperfection
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