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A robust genetic algorithm for structural optimization
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Abstract. The focus of this paper is on the development and implementation of a methodology for
automated design of discrete structural systems. The research is aimed at utilizing Genetic Algorithms
(GA) as an automated design tool. Several key enhancements are made to the simple GA in order to
increase the efficiency, reliability and accuracy of the methodology for code-based design of structures.
The AISC-ASD design code is used to illustrate the design methodology. Small as well as large-scale
problems are solved. Simultaneous sizing, shape and topology optimal designs of structural framed systems
subjected to static and dynamic loads are considered. Comparisons with results from prior publications and
solution to new problems show that the enhancements made to the GA do indeed make the design system
more etficient and robust.
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1. Introduction

The simple GA while powerful, is perhaps too general to be efficient and robust for structural
design problems. First, function (or, fitness) evaluations are computationally expensive since they
typically involve finite element analysis. Second, the (feasible) design space is at times disjointed
with multiple local minima. Third, the design space can be a function of boolean, discrete and
continuous design variables. Experience with the GA has indicated that more often than not, tuning
the GA strategy and parameters can lead to more efficient solution process for a class of problems.
Researchers have proposed modifications, such as parameters-pace size adjustment and adaptive
mutation for continuous problems (Djurisic 1998) that focus on refining the searching space adaptively,
niching genetic algorithms that favor the survival of fitter individuals (Sareni e al. 1998) and special
modifications for construction time-cost optimization problems (Li and Love 1997). Researchers
have also combined genetic algorithms and gradient-based techniques for solving constrained
aerodynamic shape optimization problems (Foster and Dulikravich 1997). Since most engineering
design problems are constrained problems and the genetic algorithm is an unconstrained
minimization technique, there exist different strategies to solve these problems using the GA. In one
approach, the fitness is taken as the product of the objective function with an “attenuation” factor
(Skalak et al. Undated). The stratcgies are illustrated with component selection problem in engineering
design and ground water treatment problem for unconfined aquifers. A study of different approaches
to handle constrained optimization problems is presented by Crossley and Williams (1997). Several
potential approaches are presented that utilize adaptive penalty functions that change the value of
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the draw-down coefficients during a run of the genetic algorithm.
In this paper, the proposed improvements to the simple GA are discussed. The basic terms related
to any methodology are explained first so that our motivations for changing the GA arc clear.
Efficient: A mcthodology is defined as being efficient if it finds an acceptable solution with
minimal computational effort.
Reliable: A methodology is defined as being recliable if it finds an acceptable solution regardless
of the problem nuances or the starting point used.
Accurate: A methodology is defined as being accurate if it finds the best possible solution to a
problem.
Robust: A methodology that is generally efficient, reliable and accurate. Later in the paper, we
rank the different GA strategies for robustness based on their efficiency, reliability and accuracy in
solving a class of frame design problems.
Our thrust is to develop a robust GA that can be used to design structural systems modeled using
the general beam finite element. The design problem can be stated as follows:
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where x is the design variable vector, f{x) is the objective function, ni is the number of inequality
constraints, ne is the number of equality constraints, nb is the number of boolean design variables,
nd is the number of discrete design variables selected from a list of ng values, and is the number of
continuous design variables. All structural design problems do not lend themselves to a simultaneous
consideration of all of the above-mentioned constraints and design variables. Specifically, the structural
design problems are usually categorized as sizing, shape or topology design problems or combinations
thereof.

This paper deals with the solution to the above-mentioned problem. The specific tasks, metho-
dologies and the GA enhancements are discussed next.

2. Mathematical properties of the GA

Since the publication of Goldberg’s book (1989), researchers have devoted considerable time and
expertise in utilizing the GA in different disciplines. There are far more publications on the
applications of the GA compared to papers that discuss the GA’s mathematical properties. For
example Takahashi (1994) discusses the properties of 2-bit problems and shows their convergence
properties. In this section we extend the mathematical work in Kingman’s book (Kingman 1980).
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The following discussion is intended to show the convergence property of natural evolution based
on probabilistic analysis as applicable to GAs.

The basic assumption is that the population of each generation is large enough for a statistical
analysis to be meaningful. Let us assumec that the fitness function of each design instance (or
population) is the function of only two design variables, x and y that can be selected from a finite
set of values represented in 4 and B.
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Further let us denote the frequencics of 4; and B, in the current population as p;, g; respectively,
such that the following is true.
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Suppose the probability of f; surviving to maturity is wy;. Then the expected frequencics of 4; and B;
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The properties of the next generation can be calculated using (4) and (5a) as
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Since (@ ; b) > Jcﬁ), we have
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Using the concept of convex inequality, the above equation can be rewritten as
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The first inequality above comes from the fact that the arithmetic mean of two numbers exceeds the

geometric mean, and the second from the convex inequality
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Eq. (8) may not seem very meaningful in this form. However, let the probability of surviving to
maturity be defined as

ij: m f:z (9)
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Assume that in the beginning the population is evenly distributed and after some generations, the
population becomes homogeneous. That is, for some #, s, the following situation is applicable.
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In other words, if the whole population finally converges to the design instance f,, the final design
should be at least better than the average of all possible designs. We will use this strategy to set the
size of the population in the numerical examples discussed in this paper.

3. Genetic algorithm as a design automation tool

In this section we will discuss some of the improvements that can be made to a standard GA to
improve its overall performance.

3.1. Adaptive penalty function for constraints

GAs were developed to solve unconstrained optimization problems. However, engineering design
problems are usually constrained. They are solved by transforming the problem to an unconstrained
problem. The transformation is not unique and one possibility is to use the following strategy.

find: b b R i S K
ind: X=[ X1y Xngpys Xiseeos XNipys X1seeos Xnspr)

minimize: )Y c;-max(0,g)+Y ¢, - |h) (12)
i J

where ¢; and ¢; are penalty parameters used with inequality and equality constraints. Determining
the appropriate penalty weights ¢; and ¢; is always problematic. We propose an algorithm here
where the penalty weight is computed automatically and adjusted in an adaptive manner. In the
problem formulation, the constraints are normalized so that the numerical values of the constraints
do not adversely affect the solution. We first modify the objective function as follows.
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fiwy e, (Zmax (0. g)+ 3 1)) (13)

Then the following rules are used to select c,.

(1) If there are feasible designs in the current generation, ¢, is set as the minimum f{x) among all
feasible designs in the current generation. The rationale is that for the design with minor violations
and smaller objective value, the probability of survival is not entirely eliminated. If, on the other
hand, the maximum f{x) among all feasible designs is usecd, infeasible designs will have a smaller
probability to survive even if the constraint violations are small.

(2) If there is no feasible design, ¢, is set as the f(x) that has the least constraint violation. This
strategy has the effect of both pushing the design into feasible domain as well as preserving the
design with the smallest fitness.

3.2. Improving crossover operators using the association string

As discussed by some researchers (Chen and Rajan 1998, Chen, Mobasher and Rajan 1996), the
one-point crossover is preferred for continuous domains, and the uniform crossover for discrete
domains. However, schema representation still plays a pivotal role in the efficiency of the GA. If
one uses a one-point crossover then it is obvious that the ordering of the design variables is an
important issue. Since the characteristic of one-point crossover is that the shorter schema has a
better chance to survive (Goldberg 1989), if two variables that have less of an interdependency are
placed adjacent to each other, or two variables with a strong relationship are placed far away from
each other, the crossover operation will make it more difficult for the GA to search the design space
cfficiently. To implement this strategy, we introduce an additional string called the association
string. Further details of this scheme can be found in Appendix A and in our previous publications
(Chen and Rajan 1998, Chen 1997). Results show that the association string improves the robustness
of the solution process.

3.3. Mating pool selection

The selection scheme (for generating the mating pool) together with the penalty function dictate
the probability of survival of each string. While it is very important to preserve the diversity in each
generation, researchers have also found that sometimes it may be profitable to bias certain schema
(Pal 1995). However, results from most of the selection rules, like roulette wheel, depend heavily on
the mapping of fitness function.

In this paper, the tournament selection (Rajeev and Krishnamoorthy 1992) is used. There are at
least two reasons for this choice. First, tournament selection increases the probability of survival of
better strings. Second, only the relative fitness values are relevant when comparing two strings. In
other words, the selection depends on individual fitness rather than ratio of fitness values. This is
attractive since in this research, the fitness value contains the penalty term and does not represent
the true objective function.

3.4. Elitist approach

The elitist approach was proposed by De Jong (1975). Research (Chen and Rajan 1998, Chen,
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Mobasher and Rajan 1996) has shown that the GA with the incorporation of the elitist approach can
be more reliable and efficient than the ones without. This approach is used in the current research.

3.5. Repeating chromosome

It is found that during the evolutionary process, thc same chromosomes at times are repcatedly
generated (Rajan 1995). Since the fitness evaluation in structural design involves finite element analysis,
a computationally expensive step, all generated chromosome and the associated fitness information
are saved in memory. In this way, if a chromosome is repeated, a finite element analysis is not
necessary to compute the fitness value.

3.6. Population size and stopping criteria

In the first section we suggested that the initial population should contain uniformly distributed
alleles. By this it is meant that, if possible, no chromosome pattern should be missed. Each
chromosome is represented by n bits with each bit being either 1 or 0. If the distribution of 1’s (or
0’s) in each bit location is to be uniform, the initial population size should be at least n. During the
evolution, it is expected that the chromosome converges to some special pattern with the 0-1 choice
decided for n locations.

Assume that the choice of each bit is independent of all the other bits. Since the population size is
n in each generation, after every generation from the statistical viewpoint we can expect to learn
about at least one bit. Ideally then after » generations, one can expect to learn about all the » bits
forming the chromosome. However, since cach bit is not independent of the others, more than n
generations are perhaps necessary to obtain a good solution. This suggests that thc population size
and the number of generations should be at least n. Numerical experience in our previous work
suggests that using population and generation size of 2n leads to acceptable results efficiently (Chen
and Rajan 1998).

3.7. The improved GA optimizer

As mentioned before selective improvement can be made to obtain a more robust solution methodology
for a class of problems. A total of 21 strategies (combinations of the options) were tried out in a
previous study (Chen and Rajan 1998). The strategies differed in the manner the following options
and parameters were carried out or used - (i) crossover type, (ii) elitist or non-elitist, (iii) population
size, (iv) type of penalty function, and (v) schema representation. Some of the other parameters and
options were fixed with all strategies - (i) the same random number generator was used, (ii) the
tournament selection was used, (i1) repeating chromosomes did not require a function evaluation,
and (ii) the mutation probability was fixed at 0.03 (our numerical experience showed that higher
values mostly did not lead to better results) and the crossover probability at 0.9. The complete data
and results can be found in our previous publications (Chen and Rajan 1998, Chen 1997). Assigning
equal weights to efficiency, accuracy and reliability, the numerical results identified four superior
strategies - (A) elitist, 1 point crossover and 1 bit boolean design variables, (B) elitist, uniform and
1 bit boolean design variables, (C) elitist, 2 point crossover and 1 bit boolean design variables, and
(D) elitist, 1 point crossover and | bit boolean design variables with 3 bit Association String. Amongst
these four strategies, the last one gave consistently superior results. With the primary focus of this
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Table 1 Differences between traditional and enhanced GA

Traditional GA Enhanced GA
Penalty Function ad hoc Automatic
Schema ad hoc Ordered
Cross-over Probability ad hoc Adaptive
Population/Max Generation Size ad hoc Suggested as 2n

research being a creation of a more robust GA for structural optimization problems, we propose the
improvements shown in Table 1.

We will henceforth refer to strategy (A) as Simple GA (SGA) and strategy (D) that incorporates
our proposed improvements as Enhanced GA (EGA). If the problem set used to generate the above
conclusions is representative of other similar design scenarios, then the use of EGA should be
superior to SGA. In other words, new numerical examples should bear out our conclusions.

4. CODE-based design

The Ninth Edition of Allowable Stress Design procedure from AISC (1989) is used. There are
primarily two reasons for this choice. First, this is the newest ASD code from AISC. Second, given
the fact that linear elastic analysis is carried out in this research and the natural meshing between
the analysis and the allowable stress approach, using the ASD design code is a natural choice. It
should be noted that the ASD code still enjoys widespread use in the design industry.

For the purpose of code checks, the finite element analysis is performed first. The member force
vector for each member is calculated. Using the cross-sectional property, the axial stress f,, bending
stress along major axis fy., bending stress along minor axis f,, shear stress in the major and minor
axis directions ( fi, f,,) are calculated. The allowable stress values (F,, F, Fi, F..', F,,") are then
obtained as per code provisions, and the Code-based constraint equations are used. For each
member, whenever appropriate, these checks are carried out at three internal points in addition to
the ends of the member.

4.1. Basic constraint equations
Axial Compression and Bending: For the member in axial compression and bending, the normal

stress of a beam should be proportioned appropriately. In general the requirements are as follows. If
f./F,>0.15 then
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C,=0.85 with sway
M, . .
7 braced against sway, no transverse loading.
2
C,=0.85: braced against sway, with transverse loading, no rotations, both ends
C,=1.0 braced against sway, with transverse loading, with rotations, both ends (17

C,=0.6-0.4

G, can be conservatively taken as 1. Eq. (17) defines the reduction factor, which is taken from the code.

Axial Tension and Bending: For the member in axial tension and bending

j—f‘i+£}’—x-+ﬁ’i <1.0 (18)
FI th Fh_v
Shear: The shear requirement is as follows
&Jrivl <1.0 (19)
Vx Vy

where f,, is the shear stress in the local x (major axis of the cross-section) direction, and Ji 18 the
shear stress in the local y (minor axis of the cross-section) direction. The code provides a detailed
procedure to arrive at the allowable normal stress for various cross-sections under different stress
and loading conditions. A flow chart outlining the checks is available (Chen 1997) to explain the
program flow.

4.2. The effective length factor

The effective length factor, K, is used in Eq. (16). This factor is one of most intriguing portion of
not only the AISC code but also of AISI-LRFD (1989) design manual governing the design of cold-
formed steel members. Typically, engineers use the Alignment Charts (Johnston 1976). However,
some researchers have raised important questions about the applicability of these charts (Cheong-
Stat-Moy 1986 and 1988). Research aimed at deriving the equation for K-Factor based on the end
restraint conditions of each member (Bjorhovde 1984 and Dumontei 1992 and Aristizabal-Ochoa
1994) under certain circumstances have been carried out. In Johnston’s book (1976), the use of the K-
Factor is described for two commonly encountered situations. First, it is used to predict the buckling
of an axially-loaded column. Second, it is used as an amplification factor in considering the P—A
effect in eccentrically loaded beam-column. That is,
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. 1
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where & is the deflection without P—A effect, and &, is the deflection accounting for the effect.
This equation implies that, as the load approaches the critical load, the deflection tends to infinity.
Furthermore, it is also stated that in a complex structurc the K-Factor depends on the final buckling
mode of the structure. Therefore, an alternative way is to find the member capacity is to carry out
the elastic buckling analysis. A linear clastic buckling analysis of the structure is described by the
following equation.

[K,ﬁ‘l K(,]D:P (21)

Here K is the clastic stiffness matrix, P the load vector and K the geometric stiffness matrix,
which is a function of the axial load for each element. To implement the computations associated
with Eq. (21), a linear static analysis is first performed with the P vector to obtain the axial force in
each member. Eq. (21) is then recast to obtain a nontrivial solution by setting P to zero. This
requires an eigenvalue analysis and A is the lowest eigenvalue as well as the critical load factor for
the system. The results from a linearized buckling analysis can be converted to equivalent K-Factor

in each member as
| El
K== [ =4 22
INA-P (22)

where P is the axial force in the member. Note that the factor should be calculated for bending
about both major (K,) and minor (K,) bending axis using the appropriate / value for each axis as
shown in Eq. (16).

5. Sizing, shape and topology optimization of space frames

Structural optimization problems involving sizing, topology and shape parameters have always been
a difficult problem to handle. Since some of the design variables are discrete, the design space is
disjoint and traditional gradient-based methods cannot be employed. The design problem of a three-
dimensional frame can be stated as shown in Eq. (1).

Researchers working in this arca have divided the existing algorithms for discrete variables into
three types - branch and bound, approximation, and ad-hoc methods (Thanedar and Vanderplaats
1995). The solution techniques such as approximation methods (Olsen and Vanderplaats 1989),
branch and bound methods, and ad hoc strategies of adapting continuous design variables in NLP
techniques (Grierson and Lee 1984, Grierson and Cameron 1984) suffer from several drawbacks.
These methods either are inefficient, or do not really converge to the optimal solution or can be
used under very restrictive conditions. For example, the approximation method allows the candidate
solution to be discrete, but still requires the whole design domain to be differentiable and continuous.

In the case of topology optimization, approximation methods and branch and bound techniques
cannot be applied since the methods cannot handle the presence or absence of members as design
variables. Instead, approaches likec the homogenization methods have been widely discussed
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Table 2 Linking of design variables and the physical meaning

Design Variable

Optimization Physical Meaning Type in GA Note
Topology Element Existence Boolean
Sizing Cross-section selection Integer Search through a given table
Shape Nodal Coordinates Real Varies between an upper and a lower bound

(Bendsoe and Strang 1988, Suzuki and Kikuchi 1991). Rescarchers have also used simultaneous
analysis and design method to solve the topology design problem (Sankaranarayanan et al. 1994).
However, these methods consider only the minimization of the compliance of the structure instead
of handling the problem described by (1). Furthermore, it is not clear how the final structure is
formed once the material distribution is obtained. The design problem can be solved more easily
using GAs since they can be adapted to work with discrete and boolean design variables.

5.1. Design variable linking

As shown in Eq. (1), GAs essentially can handle three types of design variables - discrete or
integer, real, and boolean. These design variables capture all the possible structural design parameters.
The sizing design variables considered in this dissertation arc either cross-scectional dimensions or
available cross-section. The former can be described using continuous design variables since these
dimensions can vary continuously. The latter is described in terms of integers (an integer index that
points to a row in a table of available cross-sections). The table search is carried out by using a
table of ordered available cross-sections with the lower and upper bound candidate cross-sections
specified by the user. The shape design variables are the nodal locations. These are real design
variables. The topology (boolean) design variables can be structural parameters such as the presence
or absence of members, and presence or absence of fixity conditions at supports or connections.

5.2. Special considerations

When topology design is considered, several problems should be handled very carefully.

(1) There may be elements not connected to rest of the structure during design. This can be
detected by examining the singularity of the stiffness matrix.

(i1) There may be “null” nodes during the design. A null node is one to which no element is
attached. Such nodes need to be suppressed (from the finite element analysis) in order to find the
response of the remaining structure.

(iif) Sometimes, crisscrossing members are not allowed in frame structures. This situation is
detected by testing the possible intersection of a member with all other members. It should be noted
that handling such a constraint by traditional (gradient-based) optimization approach can be very
challenging.

6. Numerical examples

Two numerical examples are solved in this paper. The purpose of solving these examples is to
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Fig. 1 Structural model

Table 3 Material properties and design data

Grierson and Lee Current Research

Rafter and Chord Web Rafter and Chord Web
Density 0.283 Ib/in® 0.283 Ib/in’ 0.283 lb/in’® 0.283 lb/in’
Young’s Modulus 30.000 ksi 30.000 ksi 30.000 ksi 30.000 ksi
Yield Stress 44 ksi 36 ksi 44 ksi 36 ksi
Ultimate Stress N/A N/A 60 ksi 58 ksi
Allowable Stress 26.4 ksi 21.5 ksi AISC AISC
Klr Assumed Assumed Buckling analysis Buckling analysis

show the robustness of the proposed algorithm. The first example is taken from a prior research
publication. The second example is a larger problem and involves a building frame. All tests are
performed on an Intel Pentium Pro 180 PC running Windows NT 4.0.

Fig. 2 Load Case 1

Fig. 3 Load Case 2
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Fig. 6 Load Case 5

6.1. Roof frame design

This example is taken from Grierson and Lee’s paper (1984). The structure is shown in Fig. 1.
The dead, live and wind load intensities define the service load level. The material properties and
other design data of the original publication are listed in Table 3. The structure is analyzed and

Table 4 Load values for the five load cases

Units=k/in
Wil 0.04783 Wé 0.01179
W2 0.02873 w7 0.03586
W3 0.00783 W8 0.01344
w4 0.01792 w9 0.00698

W5 0.00931
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designed as a planar frame with rigid connections.

In the original publication, the K values arc assumed, and the allowable stress values are
calculated based on the assumed values. In the current research, the linearized buckling analysis is
used to compute the slenderness factor of cach member. The values of material properties as used in
the current research are listed in Table 3. Fig. 2 through Fig. 6 show the layout of the five different
load cases considered in the design. Table 4 lists the load values for the five load cases. In addition
to the stress constraint, displacements in the Y-direction at node 8 and 11 are limited to 4 inches.
The design problem is formulated as

Find: Cross - section x of each member
To minimize: Weight of the structure
Subjected to: o< o, o, defined by AISC-ASD
u|<u, u, the allowable displacements
xe {bi=1,...295, arc b, is AISC standard section} (23)

Grierson and Lee consider only sizing design variables. The members arc divided into three
property groups. The first group consists of the rafters, top chords and bottom chords. CISC W
sections are used as rafters. The top and bottom chords are structural T’s positioned appropriately.
The second group is the vertical web member, and inclined webs form the third group. In the
second and third groups, CISC Standard Double Angle (DL) sections are used. We consider two test
cases - TESTI and TEST2. Only sizing design variables are used in TESTI. However, sizing and
topology design variables arc used in TEST2. In addition, we consider only AISC W sections (a

Table 5 Design variables linking

Grierson and Lee (1984) TESTI TEST2
Sizing DV Section Sizing DV Section  Sizing DV Topology  Section
Rafter 1 CISCW 1 AISC W 1 N/A AISC W
Top chord 1 CISC WT 2 AISC W 2 N/A AISC W
Bottom chord 1 CISC WT 2 AISC W 2 N/A AISC W
Vertical web 2 CISC DL 3 AISC W 3 1~4 AISC W
Inclined web 3 CISC DL 4 AISC W 4 5~8 AISC W
Table 6 Final design results
Grierson TESTI-EGA TESTI-SGA TEST2-EGA TEST2-SGA
Section Section Section Section Exist Section Exist
Rafter W460x61 W6X25 W8X24 W8X24  ALL  WB8X24 ALL
Top chord WT230x30.5 W12X14 W12X14 WI12X14  ALL WI2X14  ALL
Bottom chord WT230x30.5 W12X14 WI12X14 W12X14 ALL Wi12X14  ALL
Vertical web DL100x90x6 w12X14 Wo6X9 W6X9  25-29  W6X9 25~29
Inclined web DL 55x35x4 W6X9 W6X9 W14X74 NONE WI18X50 NONE
Weight (Ib) 2918.5 24452 2319.6 1818.1 1818.1
CPU time (sec) 669 865 1147 1309

Function evals. N/A 3279 4326 6145 7101
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Fig. 7 Final topology for both opcrators
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total of 295 AISC standard W sections are considered). The design variables used in TESTI1 and
TEST2 are listed in Table 5. For each test, the SGA and the EGA strategies are considered. The
choice is based on our prior work (Chen and Rajan 1998). The design results are shown in Table 6.

The chromosome length for TEST1 and TEST2 are 36 and 44 respectively. The population size
and number of generations is taken to be 72 for TEST1 and 88 for TEST?2.

The results are encouraging. With only sizing design variables, the final weight is about 20% less
than those reported in the earlier publication. With the addition of topology design variables the
savings are even greater - about 40%. It should also be noted that in TEST2, the EGA methodology
uses much less computation time and function evaluation (about 13% less) than the traditional GA
(SGA), with similar results. The final topology of TEST2 is shown on Fig. 7. An indication of how
the two GA strategies behave for TEST1 is shown in Figs. 8 and 9.

6.2. Ten-storey frame

The structure has four bays in both directions and is twenty stories in height. The details of the
frame are shown in Fig. 10, Fig. 11 and Fig. 12. A linear, elastic, small displacement finite element
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Fig. 10 Ten-storey building, top view
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Fig. 12 Ten-storey building, 3D view

analysis is carried out to compute the structural response. All connections are assumed to be rigid.
The base of each column is assumed to be rigidly supported. For each storey, the members are
divided into five groups - corner column, outer column, inner column, outer beam and inner beam.
The material properties of steel are listed in Table 7.
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The loading on the frame includes the dead load (in the negative Z direction) on cach floor, and
the wind load on left and right sides of the building (in the positive X direction). The dead load is
taken to be 0.75 pound per square inch on the bottom nine stories, and 0.347 pounds per square
inch on the roof. The inward wind load (acting on the left side of the building) is 0.07 pound per
square inch, and the outward wind (acting on the right side of the building) is 0.04375 pound per
square inch. The distributed loading on the floors is transferred as equivalent line distributed load
on all members surrounding the loaded area. The (sizing) design problem is formulated as follows:

Find Cross - section x of each member
to minimize Weight of the structure
subjected to: o< 0, with ¢, defined by AISC-ASD code
xe {bji=1,...n, b; is an AISC standard section} (24)

To make the overall design process systematic and efficient, the design is carried out in two
levels. In the first level design, only forty-nine candidate AISC W sections are considered for each
beam or column group. The candidate AISC standard W sections for the first Icvel design are listed

Table 7 Material properties of steel

Steel
Young’s Modulus 29,000 ksi
Yield Stress 36 ksi
Ultimate Stress 58 ksi
Poisson’s Ratio 0.3 ksi
Table 8 Candidate AISC W scctions in the first level design
Rank  Section Rank Section Rank Section Rank Section Rank Section
1 W4X13 11 W10X45 21 WI14X82 31 WI8X311 41 W30X581
2 W5X19 12 WI10X112 22 W14X132 32 W21X57 42 W33X169
3 W6X16 13 WI2X22 23 W14X426 33 W21X93 43 W33X619
4 W6X25 14 WI12X35 24 W14X730 34 W21X402 44 W36X256
5 W8X15 15 W12X50 25 W16X31 35 W24X62 45 W36X848
6 WEX21 16 WI12X58 26 W16X57 36 W24X103 46 W40X183
7 WEX28 17 WI12X336 27 W16X100 37 W24X492 47 W40X655
8 WEX67 18 WI14X26 28 W18X46 38 W27X129 48 W40X328
9 WI10X19 19 W14X38 29 WI18X71 39 W27X539 29 W44X285
10 WI10X30 20 W14X53 30 WI8X119 40 W30X148

Table 9 Design variable linking for each storey

DV Type Lower Upper
Corner Column AISC W 1 49
Outer Column AISC W 1 49
Inner Column AISC W 1 49
Outer Beam AISC W 1 49
Inner Beam AISC W 1 49
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Table 10 Results for first level design, storey one to six
Ist story 2nd story 3rd story 4th story Sth story 6th story
Corner column W27X129 WI12X35 WE8X28 W14X426 W24X103 W16X31
Outer column W30X148 WI12X58 W40X183 W27X129 WI18X71 W10X45
[nner column WI14X132  WI8X31I WIBXI119  W36X256 W44X285 W16X100
Outer beam W33X169 W18X46 W16X57 WI18X46 W14X132 W18X71
Inner beam WI12X50 W18X46 W21X93 WI10X112 WI12X35 W12X35
Table Il Results For First Level Design, Storey Seven to Ten
7th story 8th stroy 9th story 10th story
Corner column WI16X100 WI12X336 W5X19 W36X256
Outer column W21X93 W18X71 W40X328 W30X148
Inner column WI16X100 WI18X71 W21X93 We6X25
Outer beam W8X28 W14X53 W12X50 WEX28
Inner beam W27X129 W14X53 W12X35 W40X183

in Table 8, and the design variable linking for cach storey is shown in Table 9. There are 5 design
variables for each floor. Hence with a 10 storey frame we have a total of 50 design variables. The
chromosome length is 300 since 6 bits are required for every design variable. The population size
and number of generations are both taken to be 300. The selection of the design variables especially
in terms of grouping the beams and columns, is designer-dependent. Some designers prefer to hold the
beam and possibly, the column sizes to be the same for every storey especially if the floor loading is
the same at each storey. Some of the stated advantages are as follows - the process is cost cffective

Table 12 Candidate design variables for second level design

Previous

result W27X129 W30X148 WI4X132 W33X169 WI2X50 WI12X35 WI2X58 WI18X3I11
W27X194  W30X235 WI14X193 W33X263 WI2X72 WI2X53 WI2X87 W21Xe62
W27X178  W30X211 WI14X176 W33X241 WI2X65 WI2X50 WI12X79 W21X57
W27X161  W30X191 WI4X159 W33X221 WI2X58 WI2X45 WI2X72 W2IX50
Further W27X146 W30X173 WI14X145 W33X201 WI2X53 WI2X40 WIi2X65 W21X44
search ~ W27X129 W30X148 WI14X132 W33X169 WI2X50 WI2X35 WI2X58 WI8X31!
W27X114  W30X132 WI4X120 W33X152 WI2X45 WI2X30 WI12X53 WI18X283
W27X102  W30X124 WI14X109 W33X141 WI2X40 WI2X26 WI2X50 WI8X258
W27X9%4  W30X116  WI14X99 W33X130 WI2X35 WI2X22 WI2X45 WI8X234
Table 13 Result for second level design, storey one to six
Ist story 2nd story 3rd story 4th story 5th story 6th story
Comer column W27X102 W12X35 W8X35 W14X342 W24X76 W16X36
Outer column W30X124 W12X72 W40X149 W27X146 WI8X60 W10X39
Inner column W14X99 WI8X258 W18X119 W36X260 W44X198 W16X77
Outer beam W33X130 W18X60 W16X40 W18X35 W14X99 W18X55
Inner beam W12X45 W18X46 W21X73 W10X77 W12X35 W12X53
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Table 14 Result for second level design, storey seven to ten

7th story 8th story 9th story 10th story
Corner WI18X50 W14X30 W6X15 W36X210
Outer column W21X93 W18X65 W44X198 W30X148
Inner column W16X77 W18X76 W21X73 W8X18
Outer beam W8X24 W14X38 W12X40 W8X24
Inner beam W27X94 W14X38 W12X35 w40X149

Table 15 Comparison of the results from the two-level design

Weight (kips) Function Evaluations Time (hrs)
Ist level 1,005 89,700 19
2nd level 823 22,312 5

as repetition cuts down on the construction time, makes it cheaper to cut and to purchase the sections,
and reduces the possibility of construction errors. However, in this paper, we demonstrate that our
methodology is less affected by increasing problem (chromosome) size by considering different beam
and column sizes for each floor.

The results for this first level design are shown in Table 10 and Table 11. Based on these results,
the candidate member sections are refined. Only 8 AISC W sections were considered as the
possible choices for each design variable. These scctions were selected based on the final results
from step 1 - using the order from AISC ASD W section tables, four sections above the final
design, three sections below, and the final section from step 1. Table 12 lists a few examples of the
refined search. For this stage of the design, the chromosome length is 150; the population size and
generation numbers are both taken as 150. The results of the second level design are shown in
Table 13 and Table 14, with Table 15 showing the comparison between the two design steps in
terms of the objective function value and the computational effort.

Clearly for this problem it was possible to separate the candidate sections into several groups, so
that one can compute a rough design (Level 1) first, and then refine the search (Level 2).

7. Conclusions

In this research, a genetic algorithm based design optimization methodology is developed and
implemented for sizing, shape and topology optimization of discrete structural systems subject to either
strength considerations or code provisions. AISC ASD design checks are carried out systematically
and enforced during the design process. Enhancements have been made in making the GA robust
and efficient. New stopping criteria, penalty function, crossover operator and schema representation
have been developed and implemented. Particular attention is paid to reducing the number of user-
input optimization parameters. Basic theoretical considerations are developed and used to arrive at
minimum acceptable values for the population size and number of generations to consider. As
evidenced by the results from several numerical experiments the developed methodologies show
promise in terms of efficiency, reliability and accuracy. An improvement that can be made in the
developed methodology is to provide the designer with several alternate yet optimal designs. The
GA can be used as a search and optimization tool to generate Pareto Optimal design set. The
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designer can then weigh the pros and cons of the different designs and select the most suitable one.
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Appendix A Details of the Association String Strategy

If one uses a one-point crossover on the string, then it is obvious that the placement or ordering of the
design variables is an important issue. Goldberg (1989) has shown that with the one-point crossover scheme, a
shorter schema has a better chance of survival. In other words, if two variables that have less of an interde-
pendency are placed adjacent to each other (or, two variables with a strong relationship are placed far away
from each other), better designs are less likely to yield from the crossover operation. One strategy to over-
come this problem (with longer schema) is to segment the chromosome based on the naturc of the design
variables. Then depending on the type of design variable, the appropriate crossover operator can be used. In

0011 0101 0101 1001 0100
dvl dv2 dv3 dv4 dv5

any case, segmenting the chromosome alone will not increase the efficiency of the search process unless the
association between the design variables (or, their interdependencies) is established.

Example 1: Consider an examplc of a chromosome that represents five design variables (dv) as follows

Assume that the probability of crossover is p and that it is desirable to change design variables 2 and 4 but
not 1, 3, and 5. With a one-point crossover taken with the entire chromosome, the probability of achieving the
above objective is zero. However, with the same one-point crossover applied to each design variable individu-
ally, the probability of achieving the objcctive is p*(1-p)*. To implement this strategy, we introduce an addi-
tional string called the association string. This string is formed for each member of the population with three
bits assigned to each design variable. The following procedure describes the implementation.

Let the segments for the jth design variable associated with the two chromosomes, selected using the selec-
tion criterion, be denoted as }y and Jy. Implement the following two steps.

Step 1: For each design variable implement the following.
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1 3 1 . ~ . . . .
Assume jqzz /i is the segment of the association string 1 associated with the jth design variable. Let g

=1, . . . ~ ~
be the corresponding value for the second string. Let 'f and f be the fitness value for chromosomes one and
two respectively. Calculate the crossover parameter

pﬂ{int[%@}%ﬁm[%z‘l]%} | (A)

where ¢ is a random number between 0 and 1. If p>0.5 take the one-point crossover on strings 'y and Jy.
Otherwise, skip the crossover operation for the jth design variable. The major objective is to reduce the num-
ber of disruptive crossovers.

Step 2: Take uniform crossover on the two association strings to generate the association string for the next
generation.
We will illustrate the above procedure with an example.

Example 2: Consider 2 members (designated pop/ and pop?2) of a population that have the fitness values
given as '/10 and 230, and have been selected for mating. Let the chromosome represent six design vari-
ables with the first three as real or integers, and the last three as boolean. Let their current representation be
as shown in the table.

popl 0011 0101 1001 0 1 0
AS1 000 110 111 000 110 111
pop2 1110 0100 0010 1 0 1
AS2 110 000 100 100 011 110

The procedure for producing offspring from these two members is as follows:
(a) Generate the random numbers ¢ for each AS and use Eqn. (A)) to calculate the crossover parameter for
each design variable. The results are shown below (using arbitrarily gencrated values).

) 0.8 0.2 0.2 0.9 0.7 04
P 0.6 0.05 0 0.675 0 0

(b) If the crossover parameter is greater than 0.5, then take the one-point crossover for real or integer design
variables and exchange the 2 bits for boolean design variables. With the current example, crossover takes
place for the first and the fourth design variables only. While mutation can take place, the new chromosomes
are shown below without any mutation.

popl 0010 0101 1001 1 1 0
AS] 000 110 111 000 110 11
pop2 1111 0100 0010 0 0 1

AS2 110 000 100 100 011 110
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(c) Now implement step (2) with the association strings (AS). No mutation is allowed in this step. The
results are shown below.

popl
AS1

pop2
AS2

0010
010

1111
100

0101
010

0100
100

1001 1 1 0
111 100 010 111
0010 0 0 1
100 000 111 110

The purpose of the association string is to enable the GA to use and establish the inter-dependency between
the different design variables without any prior knowledge of the problem characteristics. Once the chromo-
some is segmented based on the nature of the design variable (sizing, shape or topology), the somewhat
disruptive nature of the crossover operation is controlled by the use of the Association String. We belicve that
this is the key in retaining the right genetic material for the subsequent generations in a frame design scenario.





