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Free vibration of core wall structure
coupled with connecting beams

Quanfeng Wangt

Department of Civil Engineering, National Huaqgiao University, Quanzhou 362011, Fujian, China

Abstract. In this paper, a core wall structure coupled with connecting beams is discretized and modeled
as an equivalent thin-walled member with closed section, while the connecting beams between openings
are replaced by an equivalent shear diaphragm. Then, a numerical method (finite member element method,
FMEM) for dynamic analysis of the core wall structure is proposed. The numerical method combines the
advantages of the FMEM and Vlasov’s thin-walled beam theory and the effects of torsion, warping and,
especially, the shearing strains in the middle surface of the walls are considered. The results presented in
this paper are very promising compared with the ones obtained from finite element method.
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1. Introduction

Core walls are frequently used in tall buildings to provide lateral resistance. Shear walls
distributed around the structure and coupled with floors may constitute a core structure, or a hallow
three-dimensional structure, such as an elevator shaft, act as a core wall. These core wall structures
are often called upon to carry also torque, resulting from either designed or accidental eccentricity
between the line of action of the lateral forces and the axis of rigidity of the structural system. Such
structures are typically idealized as thin-walled members that exhibit significant out-plane warping
due to torsion. The torsional response of the core wall structure lies between that of a cantilever
beam with an open cross section, which is controlled by flexural and torsional couple, and that of a
closed cross section that is controlled by shear-torsional couple, depending on the stiffness of the
connecting beams. These two traditional procedures provide reliable results only for the extreme
cases, e.g., either very flexible or very stiff connecting beams. However, they can not describe
adequately the behaviour of core walls with moderately stiff connecting beams, where bending and
shear in the core walls are of equal importance. Several methods were developed to deal with the
torsional response of a core wall structure during the last two decades (Chan and Kuang 1988,
Heidebrecht and Stafford-Smith 1973, Khan and Stafford-Smith 1975, Liauw 1978, Liauw and Luk
1980, Rosman 1969, Rutenberg and Tso 1975, Stafford-Smith and Taranath 1972, Sumer and Askar
1992, Tso and Biswas 1973) to investigate the behaviour of battened open section structures
subjected to applied twisting moment. But a few attempts have been made to treat the dynamic
problem on the basis of computer analysis. Urgent practical requirements have given rise in recent
years to extensive investigations, both theoretical and experimental, of dynamic analysis of the thin-
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walled structural members. Some closed-form solutions for small amplitude vibrations of such
members were published by Vlasov (1961) and Timoshenko et al. (1961). Useful explicit formulae
to determine the lowest natural flexural and torsional frequencies for thin-walled members with
open and/or closed cross section can also be found in other publications (Heidebrechi and
Ravindora 1971, Robert 1987, and Weaver and Johnston 1987). However, the shear deformation in
the middle surface of the walls can not be incorporated correctly in the methods as presented.
Consequently, the results obtained from the above studies may not represent the true behaviour. No
simple theory comparable to the Timoshenko or Vlasov theory has been developed to deal with
shear lag (Gjelsvik 1991). Among the previous methods for dynamic analysis, the finite element
method is widely used for the vibration analysis of structures including thin-walled structures
(Gellin and Lee 1988, and Krajcinovic 1969). But, finite element analysis of such structures are
quite expensive, even when planar formulation is adopted (Rutenberg and Eisenberger 1983), and
unless very fine meshes are used, they are not likely to be more accurate than some of the
continuum methods. In this study, connecting beams are replaced by equivalent continuum of one
storey height. Thus, the structure resembles a closed section, a mono-symmetric core wall structure
coupled with connecting beams at floor levels will be analyzed by using finite member element
method (FMEM) in which the effects of torsion, warping and, especially, the shearing strain in the
middle surface of the walls are taken into account. The FMEM, considered as a semi-analytical
method, has proved to be an efficient method for the buckling analysis of thin-walled members with
arbitrary cross sections (Wang 1999), in which the member is discretized in one direction only. By
using a one-way geometric discretization, the FMEM reduces a two-dimensional problem to a one-
dimensional problem. This discretization results in fewer equations with a small half-bandwidth and
greater computational efficiency than the finite element method. The results based on the proposed
method are compared with the solution of the core wall with symmetrical cross section, which is
presented by Vasquez & Riddell (1980). In the paper, only one of two Vlasov’ assumptions, i.e.,
“rigid cross section” is retained while no shearing strain in the middle surface of walls is
abandoned.

2. Assumptions

The following formulation of the problem is based on several simplifying assumptions that appear
to be aquite realistic: (1) The core wall is modelled as a prismatic thin-walled beam; (2) connecting
beams can be replaced by a continuum with equivalent thickness; (3) the cross section along the
height is constant; and (4) the floor slab has in-plane rigidity.

3. Analytical model

Consider a core wall structure coupled with connecting beams which rests on a rigid foundation;
as shown in Fig. 1, in which a and b are the width and depth of the core wall, respectively; d and /
are the depth and length of a connecting beam, respectively; A and /4 are the height of the core wall
and storey height, respectively, and ¢ is the thickness of the core wall. In accordance with previous
work, the battened cross section can be idealized as an equivalent closed section by replacing the
connecting beams with an equivalent shear diaphragm (Khan and Stafford-Smith 1975). The model
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Fig. 1 Core wall structure and its plan

incorporated two effects not previously considered in the literature. These are the influence of side-
wall distortion and continuous shear flow around the contour. Herein, the thickness of the equivalent
shear diaphragm is determined, taking into account bending and shear deformation of the bracing
beams, out-of-plane bending of the side walls, and continuous shear flow around the contour of the
equivalent closed section. To simplify the initial analysis, the influence of the channel lip is
neglected by assuming the span of the bracing beams as equal to the width of the core wall. If the
thickness of core wall is constant, the thickness of the equivalent shear diaphragm can be given by
Roberts and Achour (1989) as follows:

_—C + JCT+4C,Cy

0_ 2C2 (])
in which
o hG. o _Cila*2b) . _ BW +WBd Etd’ ,
" 2a° a e (Ba’ +W) 2[a3+3(1+v)ad2],
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W= D[Z o) 2h }
(1-v); b 3y +(1 )(h Y

D is the flexural rigidity of a plate; £ and G are Young’s modulus and shear modulus, respectively;
and v is Poisson’s ratio. Having determined ¢,, the section is idealized as an equivalent closed
section, as shown in Fig. 2.

A possible approximate evaluation of the dynamic characteristics for a core wall with connecting
beams may be derived by the thin-walled member with the equivalent closed section.
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Fig. 2 Equivalent cross section
4. Energy equation of equivalent thin-walled member

The Hamilton principle in variation form for free vibration can be expressed as follows:
15}
5I (T-0)dr=0 2)
0

in which U is the strain energy induced in vibration; 7" is the corresponding Kinetic energy. The
integral interval can be chosen as

©=0; L=2TT W

in which w is the circular frequency of vibration.
For a continuum, the strain energy is given by

U=% Iv Z{Esf +Gy}dy 3)

in which & and y are the normal and the shear strains. Since the stress g, in the tangent direction
and the stress g, in the normal direction of the central line of the cross section are much smaller
than the longitudinal stress o, both are neglcted generally, the linear solution is taken to be
sufficient in the present analysis. The member element considered is basically one-dimensional
along the z direction, the components of the strain are zero except for the following terms:

_ow,
E:_ dZ ’ (4)
46, 100w V[
y_zp’7dz+ZDds * 0-U )

in which w(s, z) is the longitudinal warping displacement along z direction, whose displacement
distribution can be determined by the following Eq. (9); s is the curvilinear coordinate along the
central line of the cross section; v, is the displacement along the tangent direction of the central line
at point s; 0 is the twisting angle of the cross section; and 0, is the normal distance from the centre
line. Substituting Eqs. (4) and (5) into Eq. (3) and neglecting higher order term, the expression for
the strain energy U may be obtained (Wang and Li 1999)

LD T G, Ovgd L ags
U_ZIO Est |:E|:|dz|:| +G|:|0‘DS + o"»ZDJtudS'i'GJdEUZD %jz (6)

in which J, is the St. Vanant’s torsional constant; >s is the length of whole cross-section; #, is the
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equivalent thickness of wall when there is a row of holes in the wall. The kinetic energy is a
general member element of length H; can be given by the expression

Uo: O Uo-0 Ugr O

T=%I:‘J’zx po[fﬁ—wﬁ Ef?—D E@D}dsdz )

in which v, and v, is the displacement of any point of cross section in the x and y directions
respectively; p, is the density of material of the member. If the analysis does not take into account
the shearing strains of the middle surface of walls,

o, v,
s 9z

Eq. (6) can be reduced as

According to the “rigid cross section” assumption (Vlasov 1961), the tangent displacement can be
expressed by the centroid displacement

V,:[’L]lxg{ Vc}3x1 )]

in which [n,]=[cos a sin a p]; {V.}=[V. V., B8]"; a is the angle between x axis and tangent of point
s; (s) is the distance from ¢ to the tangent of point s; V.., V,, are x and y direction components of
the centroid displacement V., respectively. The longitudinal warping displacement w(s, z) of the
whole cross section can be expressed as

W(S Z) Z LAU/(S)WI(Z) [w]lxn{w}nxl (9)

i=1

in which »n denotes the total number of nodes which divided the whole cross section into
subintervals; (J; (s) are chosen coordinate function while w,(z) will be determined, and

[uj]lxnz[ujjl(s)’ LAUJZ(S) Ll]jn(s)]; {W}nx l:[wl(z)a W2(Z)“'W11(Z)]T'

5. Dynamic equations of thin-walled member
As to free vibration at a natural frequency of the thin-walled member, the motion at any point is
simple, harmonic, and deflected shapes are independent of time, Egs. (8) and (9) can be written as
vz, =V,(2)sin(ar + €)=[n], +{ P} isin(ar + ) (10)
w(s, z, )=W(s, z)sin(wt + &)=[ Y], « ,{ W}, x1sin(wr + &) (11

respectively, in which V(z) and W(s, z) are the functions of mode shape respectively; € is the phase
angle. Providing that the x and y axes are the principal axes passing through the centroid of a cross
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section, hence, v, and v, are related to v, v., and 6 by

SV, 2, )= (ver =y B)sin(ar + ),
0 v, (x, z, £)=(v.,txO)sin(wr + €);

Substituting the above equation, Eqgs. (10) and (11) into Eqgs. (6) and (7) gives
] Hl I I I
U=5 [ (E{w'} T w' G} TBI{w}+2G{w} TCH{ v}

+G{v.}Y [D){ v }+G{ 0} J A 0})dz (12)
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where 4, is the are of cross section of the thin-walled member; /; and I, are the second moments of
inertia of the cross section with respect to the principal axis x and y respectively. By virtue of
Hamilton’s principle, the stationarity of the action integral yields the actual motion among all those
which take place in the time interval between f; and #,. This variational condition provides for
Euler’s equations and the natural boundary conditions, i.e., taking the first variation of the
functional with respect to {w} and {v.} in Eq. (2), and using some standard techniques such as
integration by parts in the derivation, we have

E[A], "} =GBl W1 =GLCLxaf v i 700 [AL e d wh s ={ 0} s (14)
GLCT3xu{ W'} *GIDLs s { v} 51+, @ [Dlsss{ vk 50 ={ 0} 513 (15)

with the relevant boundary conditions
E[A],«n{w'},1={ 0}, x13 (16)
(€l whax +[DTswa{ v b5 ={ 0} 3 (17

in which
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Egs. (14) and (15) are the governing differential equations for the dynamic analysis of a thin-
walled member.

6. Solution of dynamic equation

From the “rigid cross section” assumption, the displacements at one end of the member element
are only the lateral displacements and twisting angle of the cross section and n longitudinal
displacements of knots. In matrix form, the end displacements of the member element are expressed
by a vector {Wr} as:

_ r
{WE} (2n+6) x 1_[Vl,\’5 Vly: 919 Wlla Wl'lulwlna V2.\'5 V2y: 629 W215 W22'“W2n] (18)

in which the first subscript 1 or 2 denote first or second end cross section; v, denotes the lateral
displacement of the cross section in the x direction at first end, wy; denotes the longitudinal
displacement of first knot at first end, etc. Similar to the finite element analysis, a finite member
element can be established for the thin-walled structure analysis. Define a transformation as

{W}nxl:[a]nxn{U}nxl (]9)
in which
[a]:[{al}’ {a2}9 T {an}]; {U}:[Ula UZ» e LJ/:]T:

and {a;} is an eigenvector. From the studies (Wang and Li 1999), the following displacement vector
can be expressed in terms of end displacements of member element:

c

D . D |:| [T\'(Z)] X n+ |:| -
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and [ /] is an unit diagonal matrix; A;, /Ny, ..., /A, are the eigenvalues of the following eigenvalue
equation:

/\[A]nxn{ a}nx l_([B]nxn _[C]nXS[D]EIXS[C]gxlz){a};1X 1:{ 0};1><1 (2])

Substituting Eq. (20) into Eqs. (14) and (15) yields the following standard formula of finite
member element stiffness equation for dynamic analysis:

([K] + wz[]\/[])(ln+6)><(2n+6){ WE}(2n+6)x 1:{ 0} (2n+6)x1 (22)

in which [K] is the linear strain stiffness matrix, following the standard procedures of the finite
element method, the stiffness matrix [K ] of the member element can be obtained; [M ] is referred to
as the nonlinear general mass matrix and can be derived from the loading potential energy and
written by

i H T _
[M]{2n+6} X{2n+6}:([TE]{2n+6} x{2n+6}){ IO p([TV(Z)]{2n+6} XS[D]3 ><3[]1\’(Z)]3><{2n+6}

T T -1
+[Tw]{2n+6} xn[a]n xn[a]n xn[Tw]nx{2n+()})dZ} [TI:']{2n+()} x{2n+6}; (23)
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Fig. 3 Isolated core-wall example

7. Examples of dynamic behaviour of core walls

In order to illustrate the application of the proposed method two examples of torsional dynamic
behaviour of core wall structure are presented.

Example 1: Consider first the case of the simple ten-story structure shown in Fig. 3. For
comparison with the results obtained by Vasquez and Riddell (1980), same data and US customary
units are used. In the example, £=5.04x10® kip/ft*; G=E/2.3.

Table 1 shows the torsional periods of vibration of the structure, considering the effects of torsion,
warping and, especially, the shearing strains in the middle surface of the walls. For easiness, the
value of story rotational inertia is chosen so as to give a fundamental period of one second. Table 1
shows a comparison of the results obtained from different methods, in which the percentage errors
(in parentheses) are in reference to the present solution. It can be seen that the results are in close
agreement between the numerical method by Vasquez and Riddell (1980) and the proposed method
except only the high modes.

Example 2: In this second example, a central core wall identical to that of the first structure is
connected to a set of four girders at each story level. The beams provide warping restraint to the
core wall without further altering the torsional behaviour of the building. The torsional periods of

Table 1 Periods in seconds for modes of structure of Fig. 3

Mode Finite element method Proposed method
1 1.0000 1.0010 (100%)
2 0.2713 0.2602 (95.9%)
3 0.1208 0.1157 (95.8%)
4 0.0690 0.0669 (97.0%)
5 0.0461 0.0450 (97.6%)
6 0.0343 0.0336 (97.1%)
7 0.0276 0.0262 (96.0%)
8 0.0236 0.0215 (91.1%)
9 0.0212 0.0181 (85.4%)
10 0.0199 0.0157 (78.9%)
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Fig. 4 Core wall structure coupled with connecting beams

vibration of the structure are presented in Table 2 and compared with the results by Vasquez and
Riddell (1980). The same value of the story rotational inertia of the first example is used.

Comparing the results presented in this paper with the ones obtained by another numerical method
in this table, the observation can be made that the higher modes periods are not in good agreement.
The difference increases towards the higher modes and the results from the proposed model in this
paper are smaller than that given by Vasquez and Riddell (1980). In fact, the difference between the
results lies mainly in the analyzed structure of Fig. 4 is idealized as an equivalent thin-walled closed
cross section, while the connecting beams between openings are replaced by an equivalent shear
diaphragm in this paper, which has bigger shear-torsional stiffness.

8. Conclusions
The core wall structure is discretized and modeled as an equivalent thin-walled closed section,

Table 2 Periods in seconds for modes of structure of Fig. 4

Mode Finite element method Proposed method
1 0.5041 0.5039
2 0.1594 0.1410
3 0.0879 0.0691
4 0.0574 0.0434
5 0.0415 0.0311
6 0.0323 0.0241
7 0.0267 0.0195
8 0.0232 0.0164
9 0.0210 0.0140
10 0.0199 0.0123
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while the connecting beams between openings are replaced by an equivalent shear diaphragm. A
more rational approach for the dynamic analysis of core wall structure coupled with connecting
beams is presented in this paper. By employing finite member element method (FMEM), and by
considering the shear strains of the middle surface of walls, numerical examples that were given in
this paper verify the simplicity and feasibility of the proposed method. The results of the analysis
are compared with the results from the finite element method. An acceptable solution to the
problem has been obtained. However, using the proposed procedure a great saving in computer time
and data preparation effort are achieved when compared with the finite element procedure.
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Notation

The following symbols are used in this paper:
A, : the area of cross section of the thin-walled member

a, b : the width and depth of the core wall, respectively
{a;} : an eigenvector

c : the centroid of the cross section

D : the flexural rigidity of a plate

d : the depth and legnth of a connecting beam

E : the Young’s modulus

G : the shear modulus

H, : the longitudinal length of the member element

H : the height of the core wall

h : the storey height of the core wall

[7] : an unit diagonal matrix

L, 1, : the second moment of inertia of the cross section with respect to the principal axis x and y
Ju : the St. Venant’s torsional constant

[K] : the linear strain stiffness matrix

[M} : the nonlinear general mass matrix

/ : the length of a connecting beam

n : an arbitrary chosen number of knots

s : the curvilinear coordinate along the central line of the cross section
>s : the length of whole cross-section

T : the corresponding kinetic energy

t : the thickness of the core wall

Z,

" : the thickness of the equivalent shear diaphragm

U : the strain energy induced in vibration

Viz) : the functions of mode shape

Vix : the lateral displacement of the cross section in x direction at first end
Vexs Voy : x and y direction components of the centroid displacement of v,

Ve : the centroid displacement of v,

v, : the displacement along the tangent of the central line at point s

Vi, V) : the displacement of any point of cross section in the x and y directions

(dvx/ 0z)%, (9v,/dz)*: the longitudinal strains caused by transverse displacements v, and v,
W(s.z) : the functions of mode shape

wi : the longitudinal displacement of first knot at first end

{Wr} : the end displacements of the member element

W : the real knot displacement in the segment

w(s,z)  :the longitudinal displacement along z direction

x, y axes : the principal axis and pass through the centroid ¢ of the cross section
z axis : the longitudinal axis

a : the angle between x axis and tangent of point s

: the shear strains
: the normal strains
: the phase angle

M, <
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0 : the twisting angle of the cross section

=z
n H

G

A ,-:H EA i
1% : Poisson’s ratio
g S 1-n
o(s) : the distance from ¢ to the tangent of point s
[oR : the normal distance from the centre line
JoX : the density of material of the member
g, : the stress in the tangent direction of the central line of the cross section; much
o, : the stress g, is the normal direction of the central line of the cross section
(o8 : the longitudinal stress

w : the circular frequency of vibration
Wis) : chosen coordinate function
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