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Abstract. A two-step procedure for the application of non linear constrained programming to the limit
analysis of rigid brick-block systems with no-tension and frictional interface is implemented and applied
to various masonry structures. In the first step, a linear problem of programming, obtained by applying
the upper bound theorem of limit analysis to systems of blocks interacting through no-tension and dilatant
interfaces, is solved. The solution of this linear program is then employed as initial guess for a non linear
and non convex problem of programming, obtained applying both the ‘mechanism’ and the ‘equilibrium’
approaches to the same block system with no-tension and frictional interfaces. The optimiser used is
based on the sequential quadratic programming. The gradients of the constraints required are provided
directly in symbolic form. In this way the program easily converges to the optimal solution even for
systems with many degrees of freedom. Various numerical analyses showed that the procedure allows a
reliable investigation of the ultimate behaviour of jointed structures, such as stone masonry structures,
under statical load conditions.
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1. Introduction

Although there have been considerable developments on modelling of masonry structures, the
problem is still far from being solved in general. On one hand, most of the constitutive models
formulated during the last decades, based on strong idealisation of masonry as a no-tension material
(Heyman 1982, Giaquinta and Giusti 1985, Del Piero, 1989), led to the solution in closed form of a
few class of problems having essentially a theoretical interest (Villaggio 1981, Bennati and
Padovani 1997), on the other hand, many technical solutions proposed have been applied to specific
problems only (Blasi 1994, Braga et al. 1998).

Some appreciable efforts in deriving continuous models for masonry materials properly taking
into account not only the mechanical properties of the constituents but also the geometry of the
bricks and their texture, have been made in the framework of homogeneization theories (Pande
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1989, Pietruszczak and Niu 1992, Lourenco et al 1998). However, being classical continuum
models, they do not account for the size of the units and consequently they cannot consider any
scale effect. Moreover, it is known that the lack of a parameter of internal length scale can be
related to ill-positioning in the differential equations of motion and consequently to mesh-sensitivity
in the finite element formulations (Bertram and Sidoroff 1998). To take into account size effects and
to avoid ill-conditionings, it is preferable to choose models of continua with microstructure and in
particular the micropolar ones (Masiani et al. 1996, lordache and Willam 1998, Trovalusci and
Masiani 1999). Nevertheless, in many cases it could be useful to adopt a more refined modelling,
resorting to numerical simulations based on the distinct description of bricks and mortar, to deal
with some specific problems of masonry mechanics.

This happens for example in ancient masonry. Due to the extremely variable nature of the bricks,
the mortar and the structural typologies, a unified description in terms of continuum can hardly be
found. The strength of this kind of masonry, made of stones dry-assembled or of joints filled by
scattered and poor mortar, strongly depends on parameters not always easily determinable: the
mechanical properties of the constituents; the size of the blocks; the interlocking among the blocks;
the lack of coherence along the joints and their frictional properties. In earlier works the influence
of the brick texture on the whole mechanical behaviour of masonry has been investigated by
experimental and numerical analyses performed for walls made of bricks of various sizes and
arrangements (Baggio and Trovalusci 1993, 1995, 1998). The physical tests concerned walls made
of bricks in dry-frictional contact acted upon by the self weight and by an increasing horizontal
body force simulating statically the seismic action. The experimental results showed the predo-
minance, at the collapse, of the rigid displacements of the blocks with respect to their deformability.
This pointed out the necessity to take into account the geometry of the units and their disposition in
the modelling as well as the inability to carry tension and the friction along the joints. The
corresponding computations were performed by using different discrete approaches (Baggio and
Trovalusci 1995). By accounting directly for the geometry of the stones and the interlocking among
them, numerical results could be obtained consistent with the physical ones. For example, a
surprising physical result was simulated: squat walls, made of bricks sufficiently small, collapse by
detachment and rotation of a part of the wall while more slender walls, made of larger bricks,
collapse through sliding mechanisms (Baggio and Trovalusci 1993, Figs. 1-6).

In this work the attention is still focused on the study of the collapse behaviour of brick-block
masonry. The model selected to describe brick or stone masonry is a system of blocks supposed to
have infinite strength, and considered rigid, interacting through no-tensional and frictional interfaces.
The assumption that bricks cannot break is not so restrictive if masonry with bricks essentially dry
assembled, like ancient masonries, is considered and if the influence of the geometry of the
assembly on the ultimate behaviour of the masonry is investigated.

As widely acknowledged, the problem of the evaluation of the ultimate load for an assembly of
rigid bodies with no-tension and frictional constraints subjected to proportional load can be studied
as a problem of limit analysis of finite-dimensional rigid-plastic systems with non-associative flow
rules. Though appealing from a theoretical point of view, limit analysis of masonry structures gives
rise to a nearly prohibitive numerical task when friction has to be taken into account: this is why
currently, it is not often employed. Moreover, the many degrees of freedom of the actual structures
increase the computational complexity of the problem and, except for a few works (Livesley 1992,
Melbourne and Gilbert 1995), plane structures without practical interest have generally been
analysed.
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In the above mentioned paper (Baggio and Trovalusci 1998) a computer procedure which
provides the ultimate load and the collapse mechanism for two and three-dimensional masonries
made of blocks with frictional interfaces has been implemented. From a mathematical point of view,
this procedure is based on the solution of a problem of constrained programming which, due to
presence of friction, is non-linear and non-convex. It is not guaranteed that the solution of this
difficult problem corresponds to a feasible global minimum. In any case, its complex determination
strongly depends on the choice of the initial estimate for the unknowns. In this work one of the
strategies, outlined in (Baggio and Trovalusci 1995) to solve such limit analysis problems is adopted
and improved. The computational aspects of the procedure selected are also specified and discussed.
In particular, the solution of the problem of non linear programming is approached using as initial
estimates the results of a linearised programming problem obtained by replacing friction with
dilatancy. The advantages of using two steps of mathematical programming, the first one linear and
the second one non-linear, are also pointed out. The effectiveness of the procedure is investigated by
analysing non-trivial problems concerning the safety of two and three-dimensional structures of
practical interest made of many blocks assembled together in various dispositions. The results of the
analysis show the strong influence of the geometry and the texture of the bricks on the ultimate
strength of the masonry for all the structures analysed.

2. Collapse load for rigid block systems with no-tension and frictional interfaces

The procedure we adopt in this work to investigate the ultimate behaviour of systems of rigid
blocks interacting through non-linear and non-elastic actions is the one described in (Baggio and
Trovalusci 1998) and is briefly summarised here below. This procedure corresponds to the
combined ‘equilibrium’ and ‘mechanism’ approach for determining the minimum collapse load
when non-associative flow rules are present. The collapse mechanisms considered involve the
rotations of the blocks around the edges of the contact surfaces (hinging), the sliding along the
joints and the relative rotations of the blocks around the axis normal to the plane of their contact
surfaces (twisting). This problem is related to a non-linear and non-convex optimisation program
with the load factor as objective function, with linear inequality constraints and, due to the presence
of friction, with a non linear equality constraint.

It is known that the governing relations of a system of rigid bodies subjected to proportional loads
and interacting through contact surfaces unable to carry tension and resistant to sliding by friction,
formally correspond to those of a non standard rigid perfectly-plastic discretized body, where the
nodes are replaced by the blocks and the elements by the joints. The blocks of parallelepiped form
are subjected to the action of external forces and couples and interact through plane contact surfaces
by a force and a couple. They can translate and rotate and the strain measures of the assembly are
defined as the relative infinitesimal displacement and the relative infinitesimal rotation between a
pair of adjacent blocks. As the joints cannot carry tension, and the tangential forces, as well as the
torsional moments, are limited by the frictional strength, bounds on the components of the blocks
interactions are posed. These delimitations define a piece-wise linear yield domain in the
superposed space of stresses and strains. The governing relations of this problem are summarised as
follows:

kinematic compatibility equations
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u = Ao
¢ = Aq, with Ay=B"',A= BB, (1)
balance equations , ,
Ao(fo +af)=-A r,—r=0 2)
yield domain
CnT AT T
y=Nr=Nr+N,r,<0 3
flow rule
q=MA  or  q=MA, q,=M)A 4
positive work of the live loads
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complementarity condition
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In the above relations: u is the vector of the generalised displacements; ¢, and ¢, are respectively
the vectors of the free and of the linearly dependent generalised relative displacements (inelastic
strains) (g={q:, ¢-}"); B, is the kinematical submatrix of maximum rank and B, the rest of the
kinematical matrix; f, and f; are the vectors, dead and live respectively, of the generalised actions
on the centres of the blocks; a is the positive load multiplier; ; and r, are the vectors of the
generalised contact actions (stresses) (r= {r, r,}7), with r, the statically undetermined term; y is the
vector of the yield functions defining the piecewise linear yield domain in the stress space; N is the
transpose of the block-diagonal gradient matrix (V=[N;, N;]); A is the vector of the inelastic
multipliers and M is the block-diagonal matrix of the modes of failures (M = [M,, M,]").

Let {e‘} be an ortho-normal basis in the three-dimensional space for each c-th contact surface
between bricks, where i=1, 2, or /=4, 5, indicates respectively the two directions tangential to the
contact surface and /=3, or /=6, the direction normal to this surface (Baggio and Trovalusci 1998,
Fig. 1). The vector r is made of subvectors r¢ of three components of force, i, 5, r5, and three
components of couple ry, 75, ry. The matrix NV is made of diagonal blocks of submatrices

Eo 000 1 -1 0 0 0 0 E
EO o000 0 o0 1 -l 0 0 E
NC:E—ZE =l Iy =1y —1g¢f —1g¢f —1g¢ —1g —1g@ PI° —1g@ BI° E
gl -100 0 0 0 0 0 0 0O
Eo 01 -1 0 0 0 0 0 0 E
90 0 00 0 0 0 0 1 -1 0

where @° is the angle of friction, /; and /5 the half lengths of the edges of the c-th contact surface,
[° a characteristic length of the surface and 8¢ an undimensional factor depending on the shape of
the surface. Supposing a uniform distribution of pressure on plane circular contact surfaces of radius
I'=1+1;, B=(2/3).
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Fig. 1 Collapse mechanism and collapse multiplier of a block with frictional (a) or dilatant (b) interface

Therefore, the yield domain (3) is made of ten faces corresponding, first, to the activation of the
rotational mechanisms about the edges of the parallelepiped blocks (four faces), then to the slipping
along the directions of the two edges (four faces) and finally to the twisting (two faces). As first
attempt, sliding was only allowed in two orthogonal directions, but there are no theoretical limits to
consider more possible directions of sliding by increasing the number of the faces of the yield
domain. Finally, the block-diagonal matrix M is made of submatrices

Eo 0 0 01—100005
00 0 0 0001-1000
o ., . . 0
[Mc]zg—zz—zz—zl—zlooooo05
91 -10 0000000
Eo 0 1-1000000%
00 0 0 00000 1—10

where the j-th column (=1, 10) amplified by the multiplier A; represents the contribution to the
relative displacement of the interface due to the activation of the j-th face of the yield domain at a
given interface c. It is easy to verify that the normality rule holds only in case of relative
displacements normal to the plane of the joints. To determine the collapse load multiplier a. for the
described assemblage of blocks we can resort to the methods of the theory of optimisation under
constraints. Mathematical programming has been considered for some time as an effective tool to
deal with problems involving inequality boundary conditions on the contact interfaces between solid
bodies, such as constraints against interpenetration of adjacent elements, no-tension constraints and
friction conditions (Stavroulakis 1991, Simo and Laursen 1992). All of these problems, belonging to
the class of the so-called free-boundary problems, can be formulated in variational inequality form
and solved using constrained minimisation routines. To this purpose, several improvements in the
methods of non-linear programming have been provided (Li ef al. 1997). Moreover, it is recognised
that in the presence of load governed by a single parameter, the inequality constrained minimum
formulations, in terms of potential or complementary energy, lead to the statements of the kinematic
and the static theorems of limit analysis, extended even to the case of non-conservative systems
(Maier and Nappi 1990, Boothby and Brown 1992, Boothby 1994). Non-linear optimisation under
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constraints becomes the natural tool to identify the safety load factor for a system of bodies
subjected to unilateral and frictional constraints.

Due to the presence of non-associative flow-rules (4) (in this case N # M) the Drucker’s stability
postulate is no longer valid, the power of dissipation cannot be uniquely defined and the solution in
terms of load contact actions and collapse factor also loses its uniqueness. Coulomb, in studying the
strength of masonry vaults (Coubomb 1776), recognised that the collapse load is not unique when
friction has to be taken into account. However, delimitations can be found for it. More recently
Drucker, by computing the dissipation due to friction, states safe and unsafe conditions to provide
some delimitations for the collapse load (Drucker 1954). The class of the load multiplier is therefore
bounded, and in order to evaluate the structural safety we search within this class the minimum
(safe) load factor corresponding to both admissible kinematical mechanisms and statical stress
states. That is, the minimum load multipliers such that the relations (1-6) are verified. This
corresponds, after some algebra, to solve the following problem of non linear programming (NLP)
with constraints

a.=min{ a} subject to
(AM,—-M,)A =0 (7)
(AN (Sfo + af, )TN, = (AN,) ], <0 (3)
AAM)'f,-1=0 ©)
AL (AM) (fy + af,)+[N; = (AN,)r} =0 (10)

with the unknowns @, r», A, and the bounds on the unknownsa =0 and A>0. The linear con-
straints (7-9) represent respectively the kinematic compatibility condition, the static admissibility
condition and the normalized positive work of the live loads; the non-linear constraint (10) repre-
sents the complementarity condition.

3. Non-linear programming: Computational aspects

Due to the non-linear equality constraint (10), the constrained programming problem of the previ-
ous section is non-linear and non-convex and its solution is mathematically and numerically difficult
to be found for several reasons. It is known that the solution of a convex problem of programming
corresponds to a Kuhn-Tucker point and that this point is certainly a global minimum. In non-
convex programming problems, however, this is not guaranteed because the Kuhn-Tucker conditions
(KT) are necessary but not sufficient conditions for a feasible point to be a minimum (Kirsh1993).
Moreover, it is not guaranteed that a feasible minimiser can define a global minimum. Further
computational problems are related to the numerical evaluation of the gradients of the objective
function and of the constraints performed by many algorithms of programming. Either because the
correct evaluation of the gradients guarantees the convergence to a Kuhn-Tucker point and because
it enhances the velocity of convergence to the optimal solution (Best ef al. 1979, pgs. 521-522).

Therefore, we here proposed some devices to cope with this difficult numerical task. First, we
used a minimisation routine based on the use of a Lagrange multiplier method that directly implies
the KT optimality conditions, which otherwise should be verified a posteriori. This routine exploits
the iterative solution of convex programming subproblems with linear constraints. The solution of a
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subproblem allows finding a search direction which is used to minimize the constrained objective
function through the minimization of a free constraint function (the augmented Lagrangian function)
(Schittkowski 1986). Secondly, we provided the routine with the symbolic evaluation of the
gradients of the objective function and of the constraints to avoid inaccuracy in their numerical
evaluation and the termination at a wrong point. Finally, in order to avoid the termination at a local
minimum, we performed sensitivity analyses by varying the initial guesses to check the optimal
point generated by the algorithm. Nevertheless, the procedure hardly performed as expected: the
solutions without a good initial estimate of the collapse mechanism was found to result in spurious
local minimum solutions. Thus it became necessary to define a method which performed well in
solving the NLP problem.

The convergence to the optimal solution strongly depends on the selection of the initial guess for
the variables of the problem. Therefore, by finding an initial estimate of the unknowns of the NLP
problem close to their actual values, and then by starting the program from this estimate it is easier
to obtain the convergence to the optimal solution. In the paper (Baggio and Trovalusci 1998) two
ways to select the initial estimate for the NLP problem were indicated. The first one, based on the
reduction of the statical undetermined unknowns, is such that the non-linear constraint becomes
quasi linear and also the NLP problem becomes quasi linear. This approach requires the
approximate knowledge ‘a priori’ of the collapse mechanism which often it is not easy to identify.
The second way outlined is based on the solution of a linear problem of programming and does not
require any user-decision. This approach was adopted and its effectiveness was verified here below
by analysing complex structures of practical interest with many degrees of freedom.

A suitable initial estimate for the variables o, A and r, is then obtained by solving a linearised
programming problem corresponding to the limit analysis in presence of associative flow-rules. This
program can provide lower or upper bounds to the safe collapse load. In particular, by reinterpreting
Drucker through the theorem of Radenkovic (Sacchi and Save 1968), it can be stated that the
collapse load for a block system with frictional interfaces is bounded from below by the collapse
load of the same assemblage in which the surfaces between the blocks are supposed perfectly
polished and cemented together by cohesion; that is, by the collapse load of a system with the same
flow rule but with the plastic potential as yield function. Otherwise, it is bounded from above by the
collapse load of the same assemblage in which the interfaces are supposed cemented together by a
dilatant material rather than by friction; that is, by the collapse load of a system with the same yield
surface but associative flow-rule. Here, due to lack of cohesion along the contact surfaces, the lower
bound corresponds to the trivial solution, a.=0, while the solution obtained through the latter
approach can be used to initialise the NLP problem.

In presence of dilatancy, the sliding along the joints is allowed only if the blocks move both in the
direction tangential and normal to the joints. The rate of dilatancy, defined as the ratio between the
normal and the tangential component of the relative displacement between the blocks, is calculated
in such a way that the direction of that displacement is normal to the corresponding yield face. In
this circumstance the yield domain (3) remains unchanged while, since the normality rule holds, the
flow rule becomes associative

q=NA, (11)

where N is the transpose of the block-diagonal gradient matrix (made of the submatrices in Baggio
and Trovalusci 1998, p. 298).
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In this way the first member in Eq. (6) corresponds to the work of the interactions in the inelastic
strains and, under the hypothesis of perfect plasticity, the non-linear constraint (10) is identically
fulfilled.

In this formulation, both the static and the kinematical limit theorems can be used to determine
the sole collapse multiplier. The use for example of the upper bound theorem requires only the
kinematic compatibility and the positiveness of the work of the live loads. Thence, the following
linear programming problem (LP) must be solved

a‘=min {-A"(AN)f}

subjected to
(AN,=N2)A=0 (12)

AANY ' f,-1=0 (13)

with the bound on the unknown A = 0. It can be noticed that the lower bound approach, sometimes
used to avoid the normality rule (Livesley 1978), corresponds to a problem solved by taking into
account dilatancy instead of friction.

The procedure adopted to solve the NLP problem is based on two steps. In the first step the LP
problem is solved. At the end of the process of minimizing, the algorithm produces the vector of
inelastic multipliers A, the vector of the inelastic strains ¢, and, as a by-product, the vector of the
dual statical unknowns r,. In the second step, the NLP problem is solved using the solutions of the
first step as initial guesses for the unknowns. In this way the analysis easily converges to the
optimal point. This procedure is completely automatic and can be easily adopted by anyone by
introducing the geometry of the structure and the coefficient of friction as sole input data.

It is worth noting that the LP solution, obtained by replacing friction with dilatancy, can be
considered sufficiently close to the actual solution because of the real importance of the
phenomenon of dilatancy. Due to the asperity of the contact surfaces between bricks, tangential
sliding is generally accompanied by normal displacement, with a high rate of dilatancy in the
presence of low compressive stresses and small cumulative tangential displacements (Lofti and
Shing 1991). Moreover, several numerical analyses performed for various block systems verify that
the solutions of the LP and the NLP codes are often comparable, both in terms of collapse loads
and in terms of collapse mechanisms. In particular, when sliding mechanisms are predominant the
two solutions coincide. This result can be clarified by focusing the attention on a single block
system resting on a horizontal plane and subjected to an inclined body force (Fig. 1a). If the block
moves horizontally and friction is present the collapse multiplier is the coefficient of friction. The
linearised solution, obtained accounting for the presence of dilatancy such that the normality rule is
satisfied, corresponds to the block considered moving on a plane inclined of the angle of friction
(Fig. 1b). With frictionless planes, the virtual work is limited to the work of active forces and the
collapse multiplier is still the coefficient of friction. Therefore, in some cases the approximate
solution obtained at the first step of the procedure by the LP program can be accepted avoiding the
burden of non-linear programming.
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Fig. 2 Collapse mechanism and collapse multiplier of vaulted structures under the dead self weight and a live
extra-charge

4. Non standard limit analysis of masonry structures

Thanks to the various block assemblages considered here below, we could test the effectiveness of
the proposed two-step procedure in evaluating the ultimate behaviour of real masonry structures.
Moreover, the different results obtained at each step, the solutions of the linear and the non-linear
programming problem, are discussed pointing out in some cases the suitability of the sole linearized
analysis.

The double level arches of Fig. 2 belong to an old dwelling site in South Italy, “I Sassi”, in
Matera. As often happens to vaulted structures, the number of interfaces (74 in the case of Fig. 2a)
does not greatly exceed the number of units (55). This gives rise to a relatively simple optimization
problem, easily solved by the two-step procedure, owing to the low level of indeterminacy. The two
models are subjected to dead loads, the self weight of each stone of the piers, and to live vertical
loads, applied only to the arch voussoirs, proportional to the self weight through the multiplier a.
Due to the unequal texture of the pier units, the two collapse mechanisms, obtained using the NLP
code, are very different: the first assemblage is unable to carry the full weight of the arch (Fig. 2a),
whereas a suitable arrangement of stones not only prevents the breaking down of the second arch
under its self weight but also allows an additional load of 15 percent of the self weight (Fig. 2b).
By comparing Figs. 2b and 2c¢, where the results of the linearised and the non linear analyses of the
same double arch are showed, we can find a very small numeric difference in the collapse load. In
the two details the effect of dilatancy can be observed (Fig. 2b) compared with the absence of
dilatancy (Fig. 2c¢). The small difference in the geometry of the collapse mechanisms, due to the
presence of many little stones affected by small displacements because of dilatancy, explains the
small difference in the collapse loads. Since the non linear analysis run lasts for some time and
requires the selection of an acceptable estimate of the starting parameters, then the linearised
procedure, which ends safely in few seconds without these starting parameters, could be preferred.

The samples of Fig. 3 are two-dimensional assemblages made of polygonal stones modelling the
masonry walls of three different historical centres in Italy. These are part of a research work on the
evaluation of the seismic resistance of ancient masonry to out of plane horizontal forces. These
assemblages are characterised by the presence of many contact surfaces for each stone and by their
scattered orientation (Fig. 3a). The load condition for each wall is the self weight as dead load and
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Fig. 3 Masonry textures (a), collapse mechanism and collapse multiplier (b) of walls in ‘opus poligonale’
subjected to inclined body force
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Fig. 4 Collapse mechanism and collapse multiplier of a wall in ‘opus africanum’ subjected to inclined body

force: (a) NLP solution with arbitrary initial guess; (b) LP solution (step 1); (¢) NLP solution starting
from the LP solution (step 2)
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an increasing horizontal body action, the self weight factorised by a real multiplier a, as live load.
As in the previous examples, the results of the linearised limit analysis can be accepted. These show
a quasi-monolithic behaviour of all the three specimens in spite of the scatter size, texture and
orientation of stone in the masonry. The attempt to model the actual masonry texture, also shown in
the figure, appears to be successful and the procedure is able to give account of a sound collapse
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mechanism (Fig. 3b).

The structure in Fig. 4 deserves a more accurate description: it is a model of a masonry typology
called ‘opus africanum’, sometimes but not extensively used during the Roman Empire, as in
Pompei or in the radial walls of the Coliseum. The main feature of this wall is the presence of large
vertical stones, as pilasters or framing of the other stones of common size. In this example the
number of stones (57) and the number of joints (138) are well within the possibility of the described
programming algorithm; but the fact that the vertical stones are in contact with dozen of little stones
makes the problem more complicated. External forces in the analysis are the self-weight, input as
dead load, and horizontal mass actions factorised by @, input as live load. Fig. 4a plots the result of
the non-linear limit analysis started with a casual initial guess for the unknowns. The result is poor
in terms of geometry of collapse mechanism as well as in terms of collapse load: the value
a,=0.106 is far from the actual one and the collapse mechanism is badly mistaken, based on the
interpenetration of two stones at the foot of the wall. The linearised solution in Fig. 4b is far more
accurate: there is no interpenetration and the collapse load value is acceptable. In the right upper
part of the figure we can observe the effect of dilatancy: the slipping of the pilaster with respect to
the stone stack in the right enforces the separation along all the slipped joints. Using the results of
the linearised solution to evaluate the initial guesses for the NLP problem, the solution of Fig. 4c
can be obtained at the end of the second step of the procedure. As in this problem the effects of
dilatancy are not negligible, due to the presence of large stones, the solutions of the two steps of
programming are quite different.

If we focus our attention on real structures, using either the linear or the non-linear approach, we
need to deal with three-dimensional models. Particular importance in studying the collapse
behaviour of buildings must be attributed to the problem of connections, for example those between
intersecting walls or between column rows in trilithic systems. From an operating point of view, the
introduction of spatial problems highly complicates the numerical task. In systems of blocks
connected together in three-dimensional arrangements, the number of contact interfaces per block
generally increases, the yield domain of each interface is at least composed of ten faces and the
contact actions introduce in the problem six unknowns per each interface. If we hold to the linear

@) (b)

Fig. 5 3D failure behaviour of a trilithic structure under inclined body force



192 Carlo Baggio and Patrizia Trovalusci

L[]

(b) (c)

Fig. 6 3D failure behaviour of intersecting walls under inclined body force: (a) Axonometric view; (b) Section;
(c) Plan

approach the problem is simplified by the vanishing of these last unknowns. Thus, the cases studied
below pertain to the restricted approach only.

The first three-dimensional sample shown is the assemblage of Fig. 5a, made of 17 blocks and 26
joints. This represents a trilithic structure (columns connected by architraves) acted upon by the self
weight as dead load and by a live horizontal body action, the self weight factorised by a, parallel to
the x-axis. The interconnection level is low: only 26/17=1.5 joints per block, so the linearized
numerical problem is quite simple: 260+1 unknowns to deal with, using the simplex method. The
collapse factor comes out to be a,=0.086. The plot clearly shows a minor slippage of the transversal
lintel beam (see also Fig. 5b). Due to the architraves connection, the rotations around the y-axis of
all the piers are equal to each other. The two equal column rows undergo equal horizontal force, in
such a way that the connecting beam, leaving aside its self-weight, should not exert any effect on
the collapse mechanism or load, but it is forced to rotate with respect to the architraves and, due to
dilatancy, the interposed joint opens.

Since the walls resistance to out of plane actions strongly depends on the quality of the
interlocking with the orthogonal walls, the study of the problem of angular connections between
intersecting walls is the first step of a research on the behaviour of masonry viewed as a spatial
structure. The load condition is the same of the structure above: the dead self weight and a live
body action parallel to the x-axis. Figs. 6a (axonometric view), 6b (section) and 6¢ (plan) represent
a block wall restrained by the interlocking with a pilaster or intersecting panel. The interconnection
level is higher than the preceding sample: 61/25=2.4 joints per block; a non-linear treatment would
give rise to 610 kinematical unknowns plus (61-25) X 6=216 unknowns (undetermined statical terms
due to contact actions), the 826+1 unknowns would create a severe numerical non linear
optimization problem, but, due to linearisation, the whole computer run of the procedure lasts few
seconds. It can be observed, mainly in plan and section, that the horizontal body force along the x-
axis enforces the rotation of the entire structure but the stones near the angle, more constrained,
show minor displacement and rotate about the vertical z-axis.

Figs. 7a (axonometric view) and 7b (plan) show a partial model of a gothic fountain: the upper
basin of the “Fontana Maggiore” in Perugia, under restoration in 1998. The analysis is aimed at
suggesting the restoration techniques for the monument. Horizontal body forces along the x-axis
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(a) (b)

Fig. 7 Collapse mechanism of the ‘Fontana Maggiore’ in Perugia: (a) Axonometric view; (b) Plan

simulate a seismic (static) action with the scope of accepting or rejecting the presence of simple
contact actions between pilasters and marble entablatures. The full model involves 48 blocks and 96
joints but symmetry is directly accounted for in the program, reducing the data size. The problem is
thus limited to about 500 kinematical unknowns. The good behaviour of this space model brought
to a “soft” restoration of the monument.

5. Conclusions

This work aims to contribute to the study of the collapse behaviour of brick-block structures with
particular reference to ancient masonries made of stones dry assembled together or with joints filled
with scattered and poor mortar. Since the mechanical behaviour of such assemblies strongly depends
on the geometry of the units and on their texture, besides the mechanical properties of the
constituents, the discrete approach seemed to be an appropriate tool to model these structures.

The study of the collapse behaviour of masonry, described as Lagrangian systems of blocks in
unilateral and frictional contact, has been approached using the theorems of limit analysis in the
presence of non-associative rules. This led to the formulation of a problem of non-convex and non-
linear mathematical programming under constraints whose solution gives the collapse load and the
collapse mechanism.

The analyses performed show how limit analysis of such structures through non-linear
programming algorithms can only be approached by resorting to special devices. In this framework,
remarkable results are obtained by requiring the preliminary solution of a linearised problem of
programming achieved by replacing friction with dilatancy.

The effectiveness of the proposed procedure based on two different steps of mathematical
programming-one linear and the other nonlinear- has been investigated by analysing non trivial, two
and three-dimensional, problems with many degrees of freedom (with about a thousand unknowns).
Real structures in fact are made of many bricks or stones with a large number of contact surfaces,
and their study using discrete models could not be proposed without a numerical code able to deal
with many unknowns. Moreover, the effectiveness in solving real problems is related to the
possibility of dealing with three-dimensional structures.



194 Carlo Baggio and Patrizia Trovalusci

In short, the results of the samples analysed suggest the following remarks. First, the suitability of
the discrete approach and in particular of the limit analysis approach, especially when compared to
other discrete approaches (Baggio and Trovalusci 1995). Secondly, the NLP problem starting from a
random estimate does not always converges or terminates at a wrong point; if the initial estimate is
the output of the LP problem the NLP program converges at an optimal point. It is worth noting
that without resorting to two-steps programming, the linearised approach should be preferred to the
non-linear one. Finally, the two-step procedure is able to deal with practical problems characterised
by many degrees of freedom. Moreover, apart from the standard or non-standard approach, the
three-dimensional code proposed allows to study real block structures.
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