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Abstract. This paper discusses the error propagation characteristics of the Newmark explicit method,
modified Newmark explicit method and a-function dissipative explicit method in pseudodynamic tests.
The Newmark explicit method is non-dissipative while the a-function dissipative explicit method and the
modified Newmark explicit method are dissipative and can eliminate the spurious participation of high
frequency responses. In addition, error propagation analysis shows that the modified Newmark explicit
method and the a-function dissipative explicit method possess much better error propagation properties
when compared to the Newmark explicit method. The major disadvantages of the modified Newmark
explicit method are the positive lower stability limit and undesired numerical dissipation. Thus, the o-
function dissipative explicit method might be the most appropriate explicit pseudodynamic algorithm.
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1. The step-by-step pseudodynamic test procedure

The pseudodynamic test procedure (Takanashi et al. 1975) is basically the same as the step-by-
step integration procedure to evaluate the time history response of the tested structure. At first, the
test specimen is idealized as a discrete system and thus the equations of motion to govern the
dynamic behaviors can be easily derived. Then, a step-by-step integration method must be used to
solve the governing equations in performing a pseudodynamic test. It should be mentioned that the
inertial and damping properties in the equations of motion are analytically prescribed while the
restoring forces are no longer formulated as the product of the stiffness matrix and displacements as
usually seen in a step-by-step integration procedure. In fact, in order to overcome the difficulty in
mathematically modeling the stress-strain or load-displacement relations accurately for nonlinear
structures, the restoring forces will be experimentally measured in performing a pseudodynamic test.
This strongly indicates that pseudodynamic tests will provide more accurate test results than for the
step-by-step time history analysis since the idealized mathematical models are not employed. The
displacement responses in each step of the pseudodynamic test are computed and imposed upon the
test structure through hydraulic actuators.

Unlike the quasi-static or cyclic loading tests, pseudodynamic errors will be propagated and
accumulated (Chang et al. 1998, Shing et al. 1987, Shing et al. 1990). In the pseudodynamic testing
procedure, the computed displacements may not be perfectly imposed upon the specimen due to
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control errors and thus lead to the restoring force errors. The experimentally measured restoring
forces with errors will be returned to the on-line computer and be used to compute the next step
displacements. This implies that once the pseudodynamic errors are introduced at any time step they
will be carried over to the rest of the test. Therefore, it is very important to explore the error
propagation characteristics of a step-by-step integration method before its application to perform
pseudodynamic tests since the pseudodynamic test errors must be controlled within a certain limits
in order to have reliable test results. In this paper, the error propagation effects for the Newmark
explicit method (Newmark 1959), the modified Newmark explicit method (Shing and Mahin 1987)
and the a-function dissipative explicit method (Chang 1997, Chang 2000) in pseudodynamic tests
will be theoretically analyzed and cautiously compared. In addition, numerical illustrations will be
provided.

2. Explit pseudodynamic algorithms

All the above mentioned three explicit pseudodynamic algorithms can be obtained from the
following expressions:
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where M and C are the mass and damping matrices; d;1, v,1 and a;; are the vectors of
displacements, velocities, and accelerations; f;.; is the external force vector; and r;, is the restoring
force vector. The subscript (i+1) indicates the time step at =(i+1)(Af). For linear elastic systems, the
restoring force vector can be further expressed as r.,;=Kd,.; where K is the structural stiffness
matrix. In this general formulation, the symbol o can be used to represent a constant or a matrix for
multi-degree-of-freedom systems and is a constant for single-degree-of-freedom systems. Various
forms of a can lead to the following three different algorithms:

a=0 Newmark explicit method

a:al+[( )JMK_l modified Newmark explicit method 2)
At

a=c(AYKM™ a-function dissipative explicit method

where I represents an identity matrix. In addition, o denotes a scalar for the Newmark explicit
method (Newmark 1959) while it is a matrix for the other two methods (Chang 1997, Shing and
Mahin 1987) where the coefficients a, b and ¢ are some appropriate constants. For the modified
Newmark explicit method and the a-function dissipative explicit method, a is computed based on
the initial stiffness matrix K and kept constant for a complete test since the stiffness matrix is not
determined during a pseudodynamic test.
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3. Results of error propagation analysis

Employing the same procedure developed by Shing and Mahin (1990) to complete the error
propagation analysis of a single-degree-of-freedom system if using the step-by-step integration
procedure of Eq. (1), the cumulative displacement error is found to be:
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In this equation, Q=w(At), @ is used to represent the computed natural frequency. The symbols
ej-j and e, denote the displacement error and force error introduced at step i, respectively. In
addition, efd is introduced to denote the amount of displacement error corresponding to e, and has
the relationship of ekaefd. It will be more convenient to compare the propagation effects of the
displacement and force errors and to derive the cumulative Eq. (3) if the new error term e;‘d is
defined as such. The first and second terms on the right hand side are the cumulative errors due to
displacement feedback errors and force feedback errors, respectively. The coefficients D; and F; are
the amplification factors for the displacement feedback errors and the force feedback errors and are:
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where Q=w(Ar), and w=./k/m is the natural frequency of the single-degree-of-freedom system.
The symbols & and m are used to represent the stiffness and mass of the system. It is clear that D,
and F; depend on the values of a and (n—i), where #n is the number of total time steps and 7 is the
specific i-th time step. In addition, /;=QD; can be easily obtained. It is worth noting that for the
case of a=0, Eq. (4) becomes:

!
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This clearly reveals that the amplification factors for the Newmark explicit method are independent
of (n—i).

Variations of D; and F; versus Q for all the three algorithms are shown in Fig. 1 and Fig. 2,
respectively. In this study, ¢=0.25, b=-0.012 and ¢=0.10 are considered and the number of total
time steps is assumed to be #=500. For the Newmark explicit method, D; and F; increase with
increasing Q. These curves for D; and F; are increased starting from 1 and 0 each very slowly for
the small value of Q and they grow up very rapidly as Q tends to stability limit 2, which is the
maximum value of Q=w(Af) to have stable computations for the Newmark explicit method. It
should be mentioned that the stability limit is shortened for the modified Newmark explicit method
and the a-function dissipative explicit method due to the presence of numerical dissipation. Unlike
the Newmark explicit method, the curves for D; and F; of the modified Newmark explicit method
and the a-function dissipative explicit method are varied with 7/ for a given value of ». In fact, for
the two methods, D; and F; curves which correspond to a specified time step i move upward as the
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Fig. 1 Error amplification factor for displacement feedback error
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Fig. 2 Error amplification factor for force feedback error

step i increases from 0 to 500. In this example, for the most time steps (say i between 0 and 490),
all the D; curves drop from 1 to 0 as Q increases from 0 to 2 and they are all under the D; curve for
the Newmark explicit method. For the last few steps (say 490 <i<500), the Newmark explicit
method still has larger amplification factor D; than those of the other two methods and only at
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i=500 it shows a smaller value. Very similar results are also found for the amplification factor F.
Generally speaking, the modified Newmark explicit method and a-function dissipative explicit
method possess much less error propagation effect for both the displacement feedback errors and
the force feedback errors when compared to the Newmark explicit method.

4. Numerical simulation

In order to illustrate that the a-function dissipative explicit method can effectively eliminate the
spurious growth of high frequency response due to the presence of errors and thus has improved
error propagation characteristics, a computer simulation of a pseudo dynamic test is investigated. In
this simulation, the imposed displacement increment Ad at each step is assumed to be a random
variable X with a truncated normal distribution (Chang 1992, Chang and Mahin 1993), since abnormally
large displacement errors do not occur in a properly adjusted system. In fact, the probability density
function of the random variable X with truncated normal distribution is taken to be:

1 —

1.001356—55*—0"15r
agl2m

where 0O is the standard deviation and U is the mean value of the random variable X. Fig. 3 shows
the probability density function of the truncated normal distribution, in which the curve with p=Ad
stands for the probability density functions of a properly adjusted system. In the following simulations,
the case of 0=0.0001m and U =Ad for each degree of freedom is further assumed.

In this example, a four-story shear-beam type structure is studied. The mass and stiffness for each
story are assumed to be 1 kg and 1000 N/m. The structure is subjected to the El Centro 1940 (NS)
ground acceleration whose peak ground acceleration is scaled to 0.35 g. Numerical results are

flx)= U-30<x< utio (6)

W =mean value
o = standard deviation
Ad = displacement increment

36 30

w=Ad

Fig. 3 Probability density function of truncated normal distribution
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Fig. 4 Comparisons of numerical damping ratio

obtained by employing all the three algorithms using At = 0.02 second. For the modified Newmark
explicit method, a=0.25 and 5=-0.012 are chosen and for the a-function dissipative explicit
method, ¢=0.10 is used. This will lead to roughly the same maximum numerical dissipation. For
these specified coefficients, the numerical dissipation properties for all the three algorithms are
depicted in Fig. 4. It is manifested from this figure that the Newmark explicit method does not
exhibit any numerical dissipation while the numerical damping ratio for the modified Newmark
explicit method is almost linearly proportional to the natural frequency and the a-function
dissipative explicit method can have desired numerical dissipation. The numerical damping ratio for
the a-function dissipative explicit method has a zero slope at the origin and then turns upward
gradually. This indicates that the high frequency responses can be eliminated while lower modes are
integrated accurately. For the convenience of subsequent discussions, the natural frequencies of the
four-story structure and numerical damping ratios & of the four modes for all the three algorithms
are summarized in Table 1.

The stability range for the modified Newmark explicit method is 0.219 < Q < 1.606 for the given
values of ¢=0.25 and »=—0.012 (Shing and Mahin 1987). In this numerical experiment, in order to
have very small numerical damping for the first mode the step size of 0.02 second is used. Thus, it

Table 1 Numerical damping ratio

w (rad/sec) 10.98 31.62 48.45 59.43
Q =w(A) 0.220 0.632 0.969 1.189
5‘ Newmark explicit method 0.000 0.000 0.000 0.000
& modified Newmark explicit method 0.000 0.070 0.117 0.147

& a-function dissipative explicit method 0.000 0.012 0.045 0.082
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Fig. 5 Bottom story response of a 4-story structure

will result in Q;=w;(A)=0.220 which is slightly larger than the lower stability limit. It is clear that
the value of Q; may become smaller than the lower stability limit 0.219 as the structure yields.
Thus, instability or negative damping might occur during a nonlinear oscillation (Shing and Mahin
1987).

Numerical results of the computer simulations are plotted in Fig. 5. The displacement responses
obtained from the Newmark explicit method significantly deviate from the correct solutions due to
the errors introduced since it does not possess any numerical dissipation to suppress the spurious
growth of high frequency responses. Excessive numerical dissipation is manifested by the results of
the modified Newmark explicit method. This is because that the modal responses of the second,
third and fourth modes are quickly eliminated by large numerical dissipation as listed in Table 1.
The results for the a-function dissipative explicit method indicates that this method can appropriately
eliminate the spurious growth of higher modes while the lower modes are integrated very
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accurately. For this explicit method, numerical damping ratios for the first two modes are very small
as indicated in Table 1. Thus, responses for these two modes can be integrated very accurately. The
third mode is appropriately suppressed by the numerical damping ratio of 4.5% and the fourth mode
can be entirely filtered out by the numerical damping ratio of 8.2%. In addition to desired numerical
dissipation, the improved error propagation characteristics for the a-function dissipative explicit
method lead to less error propagation effect for the higher modes. Thus, it gives pretty good results.

5. Conclusions

For all the three explicit pseudodynamic algorithms, the Newmark explicit method is shown to
have the worst error propagation characteristics. In addition, it can not provide any numerical
damping to suppress or eliminate the spurious growth of high frequency responses. Even though the
modified Newmark explicit method is dissipative, the lower modes except the fundamental mode
might be damped too strongly for a structure with uniform spread frequencies since its numerical
dissipation is frequency-proportional. Furthermore, the positive lower stability limit indicates that
the softening of the specimen might lead to an instability problem. The a-function dissipative
explicit method possesses the desired numerical dissipation to damp out the spurious growth of
higher modes while the lower modes can be obtained accurately. Furthermore, its applications in
pseudodynamic tests are significantly enhanced by the improved error propagation characteristics.
Thus, the use of o-function dissipative explicit method in explicit pseudodynamic tests is
recommended.
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