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Non-tubular bonded joint under torsion:
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Abstract. The paper analyzes the problem of torsion in an adhesive non-tubular bonded single-lap
joint. The joint considered consists of two thin rectangular section beams bonded together along a side
surface. Assuming the materials involved to be governed by linear elastic laws, equilibrium and
compatibility equations were used to arrive at an integro-differential relation whose solution makes it
possible to determine torsional moment section by section in the bonded joint between the two beams.
This is then used to determine the predominant stress and strain field at the beam-adhesive interface
(stress field along the direction perpendicular to the interface plane, equivalent to the applied torsional
moment and the corresponding strain field) and the joint’s elastic strain (absolute and relative rotations of
the bonded beam cross sections). All the relations presented were obtained in closed form. Results
obtained theoretically are compared with those given by a three dimensional finite element numerical
model. Theoretical and numerical analysis agree satisfactorily.
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1. Introduction

The use of light alloys and composite materials is spreading in automotive and mechanical
applications, as well as in aircraft construction. In addition, the development of epoxy resin-based
adhesives has brought a wide range of advantages, such as adhesives make it possible to reduce
structural weight, prevent the onset of corrosion, achieve better stress distribution in the adhesive
layer, join dissimilar materials (e.g., steel and composites), and produce smooth surface contours, a
major benefit for components exposed to a fluid current. All of these advantages encourage the
designer to consider adhesive bonding for structures which until recently were joined using
conventional techniques such as riveting, welding or threaded connections.

The drawbacks associated with adhesives in the past, including their limited service temperature
range and susceptibility to chemical attack, have to a large extent been overcome.

As the literature indicates, studies have hitherto concentrated on the effects of perpendicular stress,
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bending moments and shear on adhesive bonded joints. In certain situations, however, such joints
are also subject to a torsional moment. Research in this area is restricted to tubular structures, as
other cases are entirely lacking in the literature. A detailed bibliography of the literature on adhesive
bonded joints under torsion is given in this paper. The lack of work on non-tubular joints indicated
by this bibliography motivated the investigation presented in the work developed by Pugno (1998),
which was used as the basis for the works of Pugno (1999) and Pugno, Surace (1998b, c), as well
as for this paper.

This gap in the literature can perhaps be explained by noting that non-tubular adhesive bonded
joints are not designed to withstand a torsional moment, which can thus induce a non-shearing
stress state in the adhesive of such joints. As is well known, in fact, adhesive is by nature less
effective when subjected to normal stresses (as is illustrated by the differences encountered when
attempting to separate two pieces of adhesive tape by applying tensile or shear stresses). Though
this is likely to be the major reason that little work has been done with non-tubular joints, it cannot
be considered a justification. During its service life, in fact, a non-tubular adhesive bonded joint can
find itself called upon to withstand accidental torsional loading: as the joint is not designed for this
type of characteristic of internal reaction (the joint should be designed to tensile loading), even
modest torsional loads can prove to be critical.

2. Theoretical model
2.1. Equilibrium equations

The bonded joint consisting of two elements and the interposed adhesive is considered to be
subject to a torsional moment as shown in the Fig. 1:

Under these conditions, it is possible to isolate an element of infinitesimal length dx (—c <x < +¢)
belonging to the first beam and impose rotational equilibrium around the barycentric axis of the
cross sections parallel to the x axis (Fig. 2):
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In order to satisfy translation equilibrium along the z axis the last integral must be zero.

The increase in torsional moment is balanced by normal stresses 0,. The underlying adhesive
element will thus be stressed in the area of contact with the two beams by a stress field equivalent
to this increase.

2.2. Constitutive laws and kinematic hypothesis

It is assumed that all three of the materials making up the joint (beams and adhesive) are
governed by a linear elastic law (isotropic). While this is intuitively obvious for the beams (which
are typically metal), this is not the case for the adhesive, which is more likely to show a typically
nonlinear behavior. Under torsion, however, the stress state in the adhesive created in a non-tubular
bonded joint is basically normal. As it is well known that adhesive can withstand shear stresses
which are an order of magnitude higher than the ultimate normal stresses, we can conclude that the
stress values occurring during service for the condition considered herein are low. It is precisely
because of these low stresses that we can assume also for the adhesive a linear elastic law. This
linear behavior is experimentally well-shown (Pugno 1998).

In addition, the low stresses exchanged via the adhesive between the two beams also make it
possible to assume that the latter also behave as de Saint Venant solids in the bond area (Technical
theory of beams).

Under these assumptions, the adhesive’s specific dilation &, will be linear along the joint thickness
(z axis), given that, unless warping occurs, the adhesive will connect two rigidly rotated beam cross
sections (Fig. 3). The strain assumption which was made concerning rigid cross section rotation is
compatible with warping in the section: while beam kinematics will in fact cause the section to
warp (longitudinal displacements), along the y and z co-ordinates the displacements can effectively
be expressed as a rigid rotation around the center of torsion, which in this case coincides with the
section's centroid. In any case the warping in the two beams, as first approximation, will be
negligible, since the two beams have a thin rectangular cross section (but for a T section, for
example, this could be not negligible).

As consequence this dilation &, is the predominant strain field in the adhesive (Fig. 3) and, as first

Fig. 3 Kinematic resulting from rigid rotation of the cross sections of the two beams
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approximation, the normal strain fields &, and & will be negligible by comparison. This, which in
any case is intuitively obvious, is also clear from numerical analysis (Pugno 1998).

The corresponding predominant stress field g, will be equivalent to the applied torsional moment.
Determining this stress field is thus of paramount interest.

In view of the assumptions made concerning strains and the linear elastic laws governing the
materials, the predominant stress field will be linear along the joint thickness (z coordinate), as will
be the corresponding specific dilation.

For the equilibrium Eq. (1) to be satisfied, bearing in mind that the stress field perpendicular to
the beam-adhesive contact surface is linear along z, it must be possible to write the following
equation:

dM,
Walr) 2 @
X7

X

o,(x, z)=-

3

where ]i=f—2 is a moment of inertia per unit length.

The strain field in the adhesive is obtained from the linear elastic law o,(¢,, €, . [10) governing
the adhesive material, given by the following relation:

(1 + V{/)(] _2V(1) O-y(xa Z) dMlu(x) z
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being E,, v, the Young’s and Poisson’s moduli for the adhesive (E:, is its fictitious Young’s
modulus).

2.3. Compatibility equation

The torsional moment M,,(x) in the joint between the two beams can be written as:
Mlul(x):]\/[lﬂx) (4)
M, (x)=M,(1 —f(x)) ®)

as the sum of the moments absorbed by the two elements must be equivalent to the applied
torsional moment A,

Function f{x) has the real range [—c, +c] as its domain and, in order for the boundary conditions
for the torsional moments

Mlul(_c):M Mtul(+c):0 (6)
Mtu'l(_c):() Mlu2(+c):M (7)

to be satisfied, must be unity at the extreme left and zero at the extreme right of the domain.

Function f{(x), and thus the torsional moment absorbed by the two elements at the joint, can be
found thanks to the compatibility established for the rotations of the two beam cross sections. These
rotations are expressed as follows:

0,(x)- | Mt

—

di+6) (8)
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Table 1 Coefficient 3 as a function of the ratio b/a

bla 1 1.5 2 3 10 00
B(b/a) 0.141 0.196 0.229 0.263 0.312 1/3
_ : Mtu'l(t) 0
ez(x)_Jc G—[’dﬁ'ez 9)

as G is the shear elastic modulus, /; is the factor of torsional rigidity for each beam, and 8° is the
absolute rotation of the initial section (x=—c¢) of beam i. Through an appropriate choice of reference
system, we can always have 6,°=0 (rotations calculated starting from the strained configuration of
the first element’s initial section).

The factor of torsional rigidity for a rectangular section can be expressed through a tabular
coefficient (Table 1) as a function of the ratio of the lengths of the major and minor sides of the
section as indicated below (in the considered case, 3 ~1/3):

1-825s (10)

Assuming linearity for the adhesive, the compatibility equation dictates that the infinitesimal
moment dM,(x) occurring at the ends of an adhesive clement and equivalent to the stresses
exchanged at the interface zones be proportionate to the variation in rotation between the element’s
bases (interface segments, Fig. 4).

The compatibility equation is written as:

dMlul(x)
dx

with K™ as the adhesive’s stiffness per unit length. This can be determined with reference to Fig. 4,
from which it is possible to conclude that the following relation is valid (tan(A6/2) OAG2):

brh bAB(x)
R 12

=K (6,(x) — 6,(x))=-K AB(x) (11)

Inserting Eq. (3) in Eq. (12) and through comparison with Eq. (11), the expression for the
adhesive’s stiffness is obtained:

Fig. 4 Adhesive element belonging to a cross section under strain
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K == (13)

3. Solution of the problem

Inserting the rotation expressions (8) and (9) in the compatibility Eq. (11) gives the integro-
differential relation:

lzll(t) Mzm(t) K*eg

I

Iul ) K Jc (14)

This relation can be expressed with a single unknown f{x), remembering the relations (4, 5),
derivation gives the following second order differential equation in f(x):

d'f(x) 2K K Ef(—c) 1

dx’ G[zf( ) Gl f(c)=0 (15)
Table 2 Analytical relations
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This differential equation, together with the boundary conditions shown alongside, make it
possible to determine the torsional moment section by section at the overlap. Using Eqgs. (2) and (3)
yields the predominant strain and stress field. Relations (8, 9, 11) yield joint strain in terms of
absolute and relative rotations. Comparing the differences between Eq. (8) and Eq. (9) and Eq. (11)
makes it possible to determine constant 6,° once the reference system has been established with
010:0.

The analytical relations which were obtained are presented in Table 2. For each relation, a
qualitative curve is plotted. Fig. 5 shows the curve for the function f{x) governing torsional moment
transmission in the joint, while Fig. 6 shows its derivative, which governs relative rotations and
stresses in a constant z plane. Fig. 7 illustrates its integral governing absolute rotations, and Fig. 8
illustrates stresses on the bond plane. Fig. 9 presents the most common nondimensionalized curves
for f{x), its derivative and its integral; the maximum value of the plotted function is shown for each
of the preceding figures.
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Fig. 9 Nondimensionalized qualitative curves for the function f{x), the opposite of its derivative and its
integral for common bonded joints (nondimensionalized constant 4c=2.4)

4. Stress concentration factor and gain parameter

In the light of the formulas found above, a stress concentration factor can be defined which
indicates the extent to which maximum stress departs from the mean. Focusing attention on the
plane z=5/2 (critical), the stresses are:

__Mbdf(x)
o =5 (16)

and their mean value is:
+c

1 M b
=7 :[; 0,(x)dx= 7 ke (17)
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*

With 4= zGil’ the maximum stress is given by:

t

Vmax

M,
=0,(x = c)=[—;147bctanh(Ac) (18)

X

Consequently, the stress concentration factor is given by:

g,
A=z2=ctanh(4c)4c (19)
ym\:an
Greater interest attaches to the gain parameter A", i.e., the index of the gain in maximum stress
levelling which can be obtained by increasing the bond length. In this connection, it should be noted
that as the bond length tends to infinity, the maximum stress tends asymptotically to a minimum
nonzero value.

. M, 4b
o= 1M O ]— v (20)
The gain parameter can thus be defined as:
* ay v|min
A (Ac)=(;#=tanh(Ac) 2D
Ymax

and must be as close to unity as is compatible with the need for a compact joint. Under this
assumption the stress concentration factor, prudently overestimated, is detailed as follows:

AOdc for A" 01 (22)

Fig. 10 shows that gain parameter A" presents little variation after a certain value of the
nondimensionalized parameter Ac (~3); consequently, further increases in bond length are pointless
for the torsional load. Under these assumptions the stress concentration factor appears close to three,
a well-known numerical value in elastic problems. However it should be borne in mind that the
bond length depends prevalently on the tensile load for which the joint is designed.
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Fig. 10 Gain parameter A" (4c)
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Fig. 11 Single-lap joint investigated using the FEM code

In order to obtain a unit value for the stress concentration factor given by Eq. (19) it is possible to
modify the joint profile (Pugno 1999). This is achieved by chamfering the edges, which are in any
case not involved in the stress flow induced by a tensile load. The corresponding joint is optimized
for uniform torsional strength and is thus both lighter and stronger.

5. Numerical validation

The ANSYS 5.3 code was used for numerical finite element analysis in the work of Pugno
(1998). The simulated three dimensional model is shown in Fig. 11.

The finite element used is the brick (a square prism element with 20 nodes, in the vertices and
centers of the edges) which makes it possible to consider parabolic shape functions.

The adhesive is divided into 8 x 8 x 3=192 elements. In this context the surface shown in Fig. 8 is
numerically obtained using 17 X 17=289 nodes to have a sufficient number of points to estimate the
stress field and the concentration factors (not-singular) at the four corners. Each of the two beams,
along the overlap zone, is divided into 8 x 8 x 1=64 elements. This mesh appears a good
compromise between a sufficiently good precision and the time spent to solve the numerical
problem.

Reference dimensions and values of the elastic moduli are shown in Table 3 (numerical inpur data
for the calculation code). The value of applied forces £ is 10 N.

In Figs. 12 and 13, the predominant stress field curves predicted theoretically (light lines, see
Table 2) are compared with those obtained numerically (dark lines). As can be seen, theoretical and
numerical analysis agree satisfactorily.

Focusing attention on the stress peak, the theory developed in the investigation predicts a peak
value of:

thcory:

ymax

ay%Zic, Z=i§a=1807 00’ Pa (23)

whereas the value resulting from numerical analysis is:

3
Oj;f;';’XZ 1878 000 Pa 24)
Table 3 Reference dimensions and elastic moduli
a (mm) b (mm) ¢ (mm) h (mm) EL, (GPa) E (GPa) 1%
3 20 10 0.3 1 45 0.31




Non-tubular bonded joint under torsion: Theory and numerical validation 135

25 1
Gy(x=ic,z)

20 +

15 1 /\

1.0 T /
05T
0

05T

<10 1 g
15 -_\/
2.0 T

25—

Fig. 12 Comparison between numerical (black line) and theoretical (grey line) transverse stress field curves,
(end planes x=+c). Predominant stress (MPa)-Position in bond (mm)
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Fig. 13 Comparison between numerical (black line) and theoretical (grey line) longitudinal stress field
curves, (critical planes z = £5/2). Predominant stress (MPa)-Position in bond (mm)

The relative error on the stress peak is thus:

num theory

max — Oy max
62%23.78% (25)

ymax

The difference between numerical and theoretical approaches can be justified remembering the
simplified hypothesis took into account in the theory developed. In particular the inversion of the
sign of the predominant stress, varying the x co-ordinate, obtained from the numerical approach is
not obtained using the theoretical approach. However we must remember as this component of the
stress is an order of magnitude less than the stress peak.

This comparison shows as the theory developed can be used to estimate the predominant stress
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Fig. 14 Predominant and von Mises stresses at the corners of the adhesive (x=+c, z=+b/2)

field and its stress peaks at the four corners of the adhesive in a non-tubular bonded joint subjected
to torsion. Theoretical and numerical approaches agree satisfactorily.

To determine the non-predominant stress fields we would have to remove the kinematic hypotesis,
but, in any case, the von Mises equivalent stress at the most highly stressed points, the four corners
of the adhesive (Pugno 1998), can be estimated by calculating the peak stress of the predominant
field oy; indeed at the corners of the adhesive the predominant and von Mises stresses are
coincident (Fig. 14).

However, it is important to note that adhesive bonded joints, non-tubular ones in particular, are by
nature susceptible to brittle collapse. If no appropriate technological measures are introduced to
ensure that joint collapse cannot involve mechanical fracture phenomena, brittle collapse will
precede tensile collapse. Starting from the elastic analysis (that shows the points of high stress-
concentration in the adhesive from where the cracks propagate) it is possible to predict the brittle
collapse of the joint, in agreement with the experimental results (Pugno 1998).

6. Conclusions

The analytical relations which describe the static torsional problem for adhesive bonded single-lap
joints were determined on the basis of reasonable simplifying assumptions. Considering equilibrium
and compatibility, and assuming linear elastic constitutive laws, the analytical relations governing
torsional moment transmission in the joint, the predominant interface stress field and the elastic
strain in the joint were determined in closed form.

The procedure used was validated by comparing the theoretical stress field in the adhesive with
the stress field obtained following three dimensional finite element analysis.
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