Structural Engineering and Mechanics, Vol. 10, No. 2 (2000) 111-123 111
DOI: http://dx.doi.org/10.12989/sem.2000.10.2.111

Snap-through buckling of single-layer squarely-reticulated
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Abstract. An asymptotic solution for snap-through buckling of single-layer squarely-reticulated shallow
spherical shells continuously supported on springs is developed in this paper. Based on the fundamental
governing equations and boundary conditions, a nondimensional analytical expression associated with the
external load, stiffness of spring and central transverse displacement (deflection) is derived with the aid of
asymptotic iteration method. The effects of stiffness of spring and characteristic geometrical parameter on
buckling of the structures are given by the analyses of numerical examples. In a special case, for reticulated
circular plates, the influence of stiffness of spring on the characteristic relation between load and deflection
is also demonstrated.
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1. Introduction

Owing to many mechanical and structural properties of space reticulated shell structures formed
by beam members, there have been wide applications of them in civil, mechanical, aecronautical and
astronautical engineering in recent years.

Reticulated shell structures have common features with both discrete (lattice) structures and
continuous (solid) shells, such that characteristic difficulties of both types of structures are
cumulated and amplified. Although the research development of such structures has been made
rapidly recently, one important problem has not yet been solved satisfactorily, and that is the
problem of buckling. Furthermore, for single-layer reticulated shell structures, the geometrical
nonlinearity is stronger while the material nonlinearity appears mainly for double-layer structures. In
addition, an increase use of soft filaments in acrospace structures, e.g., large-sized space shell-type
antennas continuously supported on springs, etc., has intensified the need for a better understanding
of buckling behaviors of such structures continuously supported by elastic media.

So far there exist some investigations on static and dynamic response and buckling analyses of
various (solid) shallow shell structures on clastic Winkler and Pasternak foundation, including
shallow cylindrical panels (Ramachandran and Murthy 1976, Massalas and Kafousias 1979, Chia
1990), shallow spherical shells (Nath and Jain 1983, Dumir 1985, Paliwal et al. 1986) and doubly
curved shallow shells (Nath and Mahrenholtz 1987, Chia 1988, Librescu and Lin 1997). However,
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little attention has been paid to analysis of non-linear buckling of single-layer reticulated shell
structures with large-number of beam members continuously supported by elastic media, e.g.,
supported on springs (in principle, i.e., Winkler foundation), etc (Nie 1994).

On the basis of the analyses of the internal forces and deformations of single-layer reticulated
shallow shell structures formed by beam members placed in two orthogonal directions, Nie et al.
(1991, 1994, 1995) propose a continuum shell model to perform non-linear analyses of such
structures with and without geometrical imperfections. The model has been examined by numerical
computations and experimental studies, and comparisons of results show exactness and effectiveness
of use of the proposed model (Nie and Cheung 1995, Nie and Liu 1995).

This paper is devoted to an asymptotic analysis of the snap-through buckling of the above-
mentioned structures subjected to uniform vertical load by solving the axisymmetrical fundamental
governing equations (coupled equilibrium equation and compatibility equation) in terms of the
nondimensional transverse displacement (deflection) and the membrane force with the help of an
asymptotic iteration method. For the resulting linear ordinary differential equations in the process of
iteration, the power series with rapid convergence has been adopted to obtain an analytical
expression for the non-linear characteristic relation related to the load, stiffness of spring and central
transverse displacement of the structure. Numerical examples are given to demonstrate the effects of
stiffness of spring and characteristic geometrical parameter on buckling of the structures for
immovable simply-supported (hinged) and clamped edge conditions. In a special case, for
reticulated circular plates, the influence of stiffness of spring on the characteristic relation between
load and deflection is also considered.

2. The mathematical formulation of problem

Let us consider a squarely-reticulated shallow spherical shell subjected to uniform vertical load ¢
and continuously supported on springs. All the beam members have the same material properties
and sizes, and are placed in the same spherical surface and in two orthogonal directions, the middle
surface of the shell is defined as the surface interwoven by the centroids of all the cross-sections of
the beam members, as shown in Fig. 1. Based on the non-linear analysis of internal forces and
deformations of a typical latticed element from the discrete structure, a continuum shell model is
adopted and the application of the principle of virtual work leads to the corresponding non-linear
governing equations. Taking into account the effect of stiffness of spring 4, non-linear governing
equations are expressed by the nondimensional transverse displacement (deflection) # and internal
force T as follows (Nie and Cheung 1995).
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Fig. 1 The geometry of the reticulated spherical shell
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and M,, M,, M;, M, Ms are nondimensional material constants, and listed in ‘Notation’. The
differential operators £, % are defined by
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For the case of a hinged structure, boundary conditions can be expressed by (Liu ef al. 1991, Nie
and Cheung 1995)
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where m=

conditions will change to the ones for the case of an immovable clamped edge. Hence, in the
following section only the case of a hinged edge will be considered in seeking the solutions for 17,
T by using an asymptotic method.

3. The solution by asymptotic iteration method
Following the same procedures used in Liu ef al. (1991) and Nie and Cheung (1995), first, from

Egs. (1) and (2) in conjunction with conditions (4) and (5), a linear boundary-value problem
containing only W(p) is expressed by
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in which W, T correspond to the solutions for the first iteration. The solution for Eq. (6) is
expressed by using two power series and a particular solution as follows (Nie 1999)

4f+2 2Q
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where A,, 4, are unknown constants, the coefficients by, ¢, (k=1, 2, ...) depend on Ky and
bo=cy=1
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Snap-through buckling of single-layer squarely-reticulated spherical shells

_ 1 _ 1 _
frmk[(zkﬂ)!]z, &k oL (k=1,2, ...)

Using Eqgs. (8) and (9), the following equation is obtained
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in which coefficients J;, & are expressed in ‘Notation’.
Introducing Eq. (10) to Eq. (13), a linear relation between O and W, can be derived
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(12)
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Substitution of Eq. (15) into Eq. (7), 7'V can be solved by applying the corresponding conditions

(8) and (9), its result is
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Next, adopting the solutions resulting from the first iteration as reference variables, the
corresponding differential equation for W@, i.e., the solution for the second iteration, is formulated
as follows

aw'q0
dp
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The boundary conditions are
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The solution for the above differential equation has the following form
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in which A3, 4, are also two unknown constants, and the main part of particular solution resulting
from 7" and WV, denoted by W'(p), is

W (0= [V (W + Va(p) W + V(o))

where the mathematical formulae for Vi(p), V2(p) and V3(p) are omitted due to their lengthy
algebraic formulations. Utilizing the conditions (21)-(23), and considering Eq. (16), a nonlinear
relation between load O and central transverse displacement /7, is established as follows
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where the function D(7) is defined by
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the expression for & can be found in ‘Notation’, and
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The coefficients a; (i=1, 2, 3) are related to nondimensional stiffness of spring K and
characteristic geometrical parameter, namely A;. Using the extremum condition (dQ/dW,)=0 in
Eq. (24), the critical loads can be obtained by determining the corresponding values of W,

expressed by
- -yt o -3a,a,

m- 3 a,
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Especially, for a given value of K, a§ —30a,0;=0 determines the critical value of characteristic
geometrical parameter denoted by M., corresponding to the case that snap-through buckling just
occurs. For the case, the critical load has the following result

a,a,
9a,

0= (28)

4. Numerical results and analysis

For the purpose of checking the derived analytic expressions, based on present model and finite
element method (FEM), respectively, some comparisons are made for two clamped reticulated
structures with specific geometrical sizes and material constants, i.e., their spans 2a=2m, each beam
member having length L=0.2m and the same circular cross-section with 5.8 mm diameter. The
curvature radii are R=15m and R=oo, respectively. The latter corresponds to a reticulated circular
plate structure. Poisson’s ratio is 0.3, and elastic modulus £=1.99x10'" kg/m> The stiffhess of
supporting spring k,=104.17 kg/m>. The results for the relation between central transverse
displacement and the load are presented in Figs. 2 and 3, respectively. From the two figures, a good
agreement between present and numerical models can be observed. Especially, for reticulated
structures without supporting springs, the present model has been compared with numerical model
by using a versatile program for structural analysis-COSMOS (Nie and Cheung 1995). The
computational results indicate that, even if the present structural model behaves as anisotropic one,
the structure has approximately an axisymmetrical deformation when beam elements are placed
densely, e.g. the length of each beam member does not exceed one-eighth of the span of the shell.
Accordingly, the present problem can be simplified by considering the case of axisymmetry.

In the present paper all nondimensional numerical computations have been carried out for the
given nondimensional parameters #/L=0.029 and L/a=0.2. According to Eq. (12), the values of f;
and gi(k=1-6) are listed in Table 1. It can be noted that they rapidly decrease with the increase of
value of k. For a given value of K}, the values of coefficients by, c; have similar changes with %, this
leads to fast convergence for all undetermined variables and quantities expressed in series.
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Fig. 2 A comparison of the present results with cor-
responding data by finite element calculations
for the clamped reticulated circular plate

Fig. 3 A comparison of the present results with cor-
responding data by finite element calculations
for the clamped reticulated spherical shell
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Table 1 Values of f; and g, (k=1-6)
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Fig. 4 The relation between the critical characteristic
geometrical parameter of the reticulated
spherical shells and the stiffness of spring

Fig. 5 The relation between the critical load of the
reticulated spherical shell and the stiffness of
spring

The changes of critical values of characteristic geometrical parameter M, and load Q.. with the
value of stiffness of spring K, are displayed in Figs. 4 and 5 respectively. When K increases, M,.,
will become larger which corresponds to “deeper” reticulated shallow spherical shell. Simultaneously,
the corresponding critical load is also larger for a harder spring. This coincides with the behaviors
of reticulated shallow shell structures on elastic Winkler foundation and with rectangular boundaries
(Nie 1994).

Figs. 6-8 illustrate the effects of stiffness of spring on buckling of hinged reticulated shallow
spherical shells for A,=6.482179 and M;=17.825993 respectively and clamped one for M=
17.825993. It can be observed that loop shapes always appear for small values of K, which
indicates that there is a large increase in the value of the transverse displacement when the value of
the load increases to a critical value, i.e., the snapping phenomena will happen. Softer springs with
a smaller value of K correspond to a lower critical load. Meanwhile, Fig. 7 presents an phenomenon
of having negative O values for K,<100.00. It states clearly that, after snapping phenomena occur,
during resilience residual deformation remains until an opposite vertical load is exerted on the shell.
When the value of the opposite load increases to a critical value, the shell bounces back. Then the
residual deformation will disappear when the opposite load decreases to zero. For enough hard
supporting springs, when K> 41.46 and K,> 326.99 for the two hinged structures, and K> 121.34
for the clamped one, the corresponding zones of negative rigidity disappear and show that snapping
phenomena no longer exist. Also, for the same structure, there is a bigger value of K corresponding
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Fig. 8 The effect of stiffness of spring on buckling  Fig. 9 The effect of characteristic geometrical para-
of the clamped reticulated spherical shell for meter on buckling of the hinged reticulated
M,=17.825993 spherical shells for K,=20.00

to which snap-through buckling becomes possible for the case of hinged edge (see Figs. 7 and 8).

For hinged and clamped reticulated spherical shells with various curvature radii determined by
nondimensional characteristic geometrical parameter M,;, supported on the same springs with
K;=20.00, the effects of this geometrical parameter on buckling of the structures are shown
graphically in Figs. 9 and 10, respectively. For “flatter” shallow shells with smaller values of M, or
larger curvature radii R, e.g., when M, <5.219910 for hinged structures while £,<10.642385 for
clamped ones, the values of of the transverse displacement increase with the increasing load, and
there are no loop shapes appearing. However, for “deeper” shallow shells, snapping phenomenon
will happen when the values of M; exceed the above given values for the two boundary conditions.
A bigger value of M, results in a larger critical load.

In a special case, for the reticulated plates, i.e., M,=0, the curves for the relation between the load
and central deflection are plotted in Fig. 11. It is clear that central deflection monotonically
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ated spherical shells for K,=20.00

increases when the load becomes large, there is never snapping phenomenon. It can be also noted
that, for an identical load, the value of transverse displacement is larger for a smaller value of K
corresponding to softer springs. The conclusion agrees with available results for the same kind of
structures and solid anisotropic plates (Chia 1980, Nie 1994).

5. Conclusions

In the present work an asymptotic analysis of snap-through buckling of reticulated shallow
spherical shells continuously supported on springs is given.

The analysis and computation results show that stiffness of spring plays an important role in
buckling behaviors of such structures while the geometries of the structures also influence these
behaviors. The action of springs can result in an increase in the load-bearing capacity of the
structures and prevent them from buckling. In special, for the reticulated plates, application of
springs can decrease the deformation and enhance the safety of use of the structures.

It should be noted that the present shell model is based on the use of shallow shell theory, the
model is thus applicable to shallow shell structures only. Meanwhile, beam elements must be placed
densely, as has already been stated, the length of each beam member does not exceed one-cighth of
the span of the shell. In addition, in the process of solution resulting from power series, stiffness of
spring, k, or K; can not be taken zero. However, when k,=0 corresponding to the shell without
supporting springs, the fundamental governing equations will change to the known ones and the
corresponding solution has been obtained by the same asymptotic iteration method (Nie and Cheung
1995).

It may be also concluded that the developed and used method in this paper may be extended to
non-linear buckling analysis of anisotropic and composite shell structures on elastic Winkler
foundation.
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Notation
L : length of each beam member
A : area of cross-section of each beam member
R : radius of curvature of the shell
h : thickness of the shell
2a : span of the shell
El : transverse bending stiffness
Ely : lateral bending stiffness
GJ : twisting stiffness
q : uniform vertical load
o : nondimensional uniform vertical load
K, : stiffness of spring
Ky : nondimensional stiffness of spring
M, ' da 2
03 L” 0
+ =+
R/\/(3EI GJ)EEA 2ELD
2
M GJL 2
03 L 0
ElLR El+ — + ——
8EL «/B Sy 12E1,0
M,
L 03, L0
M, L El+ +
N 2R4/ GEI G 12E1,0
(GJ—ENL’
My
32EIla
by, ¢ : coefficients in power series
S Y (4k—4j-2)(4k+4j+ 1+ m)byc,
5 K=o f=o

i (4k +2)(4k+ 1 +m)c,
k=0

i 4k(3k=1+m)b,

52 . k=0
S (4k+2)(4k+ 1 +m)e,
k=0

©

Ck
k=0
62 P
/Z (4k+2)(4k+ 1 +m)c,
=0
w : transverse displacement (deflection)
w : nondimensional transverse displacement (deflection)
W, : nondimensional central transverse displacement (deflection)





