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Abstract. The paper presents a generalized optimal active control algorithm for earthquake-resistant struc-
tures. The study includes the weighting matrix configuration, stability, and time-delays for achieving control
effectiveness and optimum solution. The sensitivity of various time-delays in the optimal solution is investi-
gated for which the stability regions are determined. A simplified method for reducing the influence of time-
delay on dynamic response is proposed.

Numerical examples illustrate that the proposed optimal control algorithm is advantageous over others
currently in vogue. Its feedback control law is independent of the time increment, and its weighting matrix
can be flexibly selected and adjusted at any time during the operation of the control system. The examples
also show that the weighting matrix based on pole placement approach is superior to other weighting matrix
configurations for its self-adjustable control effectiveness. Using the time-delay correction method can signif-
icantly reduce the influence of time-delays on both structural response and required control force.

Key words: active control; dynamic structures; earthquakes; optimal control algorithm; pole placement tech-
nique; stability analysis; time-delay.

1. Introduction

Several algorithms for optimal active control of seismic structures have been developed.
Among them, the algebraic Riccati algorithm was studied by Abdel-Rohman (1980), Yang
(1985) and Cheng (1988), and the instantaneous optimum active control (IOAC) algorithm
was early proposed by Yang (1987), and studied by Soong (1987) and Cheng (1986, 1987,
1988). Recent studies by Cheng (1991) reveal that in the IOAC closed-loop control algorithm
the feedback gain matrix is very sensitive to incremental time intervals used in response analy-
sis. For a given structure subjected to certain earthquake loading, using different time inter-
vals may yield various control forces and structural responses. The results are apparently not
unique. A technique called generalized optimal active control (GOAC) algorithm was conse-
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quently devseloped for linear and nonlinear seismic structures (Cheng 1991, 1992) and is fur-
ther studied in this paper.

In optimal active control algorithms, the optimal control forces are usually achieved
through trial and error of weighting matrices. For a multistory building structure equipped
with control at different floors, the dimensions of weighting matrices are numerous. Therefore
it is cumbersome to try all possible combinations of elements in these matrices to obtain the
optimum solution. For simplicity, diagonal weighting matrices are usually assumed. However,
it will be shown in this paper that the diagonal assumption may not lead to the optimum solu-
tion.

Studies also indicate that the dominant frequency of dynamic loading influences the con-
trol effectiveness. For a given control law, the control effectiveness could change when differ-
ent external excitations are applied. Since both algebraic Riccati and IOAC algorithms are de-
rived without considering the frequency of external excitations, this factor has been omitted
from the control laws of these algorithms.

In this paper, the function of weighting matrix in the control law of a closed-loop control
system is studied for its effectiveness based on the pole placement approach (Ogata 1990).
With this approach, the desired eigenvalues of the closed-loop system need to be selected.
Since the eigenvalues can be expressed in terms of frequencies and damping ratios, the desired
parameters can be properly chosen in order to avoid resonance and large amplitude of struc-
tural response.

The study also includes stability regions influenced by time delays. Two types of time de-
lays are considered: one is called on-line computation time delay, represented by ¢, and ¢,
which is caused by sensoring the structural response and computing the required control force;
the other is called control force build-up time delay, signified by @ or ¢,,, which is the time re-
quired for a mechanical system to build up a control force. The influence of the time-delays
on dynamic response is corrected on the basis that the time-delays can be considered as phase
angle lags for displacement and velocity, and the effects of time-delays are mainly applied to
dynamic response of the floors adjacent to the active control location.

2. Formulations of generalized optimal active control algorithm
2.1. Motion equation for active tendon control system

The motion equation for a plane N-story seismic structure equipped with active tendons at
some floors, as shown in Fig. 1, can be expressed as

[MI{2)} +[CHEO}+KHaA} = [r Hul®)} +(8) Ko (1) )

where, [M], [C] and [K] of NXN are mass, damping, and stiffness matrices of the building
structure, respectively; {x(f)} of Nx 1 and {u(#)} of »x 1 are vectors of the relative displace-
ment of the structure and the control forces of the active tendons, respectively, where » is the
number of active tendons; [y] of N X is location matrix for the control forces of the active
tendons; and {6} of N x 1 is the coefficient vector for the earthquake ground acceleration,
X (0).

By defining the state vector
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Fig. 1 Active Tendon Control System

{2(t)} = {..{.Jg(t,).}._}

Eq. (1) can be changed to the following state form
{at)} = [ANzt)} +[BHu(®)} +{C" ) X(0)

where

{a)} = {i(g)} 2Nx1

A= k) 10 v
8= [ 31151 L

€= 165 J v

The corresponding initial conditions in state form are
{2(0)} = {0}, {x(0)} = {0}, and X,(0) = 0

2.2. Generalized performance index

121

(2)

(3)

4

(%)

In order to obtain an optimal solution for state vector {z(#)} and control force vector
{u(#)}, a performance index needs to be defined and minimized. The standard quadratic per-
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formance index is expressed as
L (Y r r
J=1 ft ({2())7 [QU2(t)} +{u(®)}T [RI{u(t)} )dt (6)
0

in which [Q] of 2N X 2N is a positive semidefinite matrix; [R] of » Xy is a positive definite
matrix ; ¢, is the initial and /, the final time-instant under consideration. The duration be-
tween £, and ¢, should be defined as longer than that of the earthquake.

By dividing the duration [¢,, ¢,] into # segments, Eq. (6) can be written as

n t;
J= 27 ) (T QA0) + ) (Rttt} (7)
i—-1
It is noted that in Eq. (6) both of the two boundary values of the integrand are specified, i.e.,
{zt))} ={2(¢t,)} =1{0} and {u(to)} = {u(ty)} = {0}, while in Eq. (7) for each integration
from t,_; to 4 (=1, 2, --+, n), at least one of the two boundary values is unspecified. There-
fore the performance index J/, defined by Eq. (6), corresponds to a fixed end-point boundary
value problem, while the other /, defined by Eq. (7), is related to a free end-point boundary
value problem (Citron 1969).

Suppose that the performance index, /, is integrated step by step, and at each step “:”, the
initial value of the state vector, {z(f;-,)}, is specified from the previous step, but the final
value, {z(¢;)}, is unknown. Hence, {z(¢;)} should also be minimized, i.e., a function of {z(¢;)}
should be included in the expression of the performance index. For this reason, a new
performance index defined at the time interval [#,_;, £;], is selected as follows (Cheng 1991,
1992)

2
Ji= st +5 [ (01 TQNAO) + ) IR at) ) ®)

i—1
1 b -
= ety +3 [ Foat
24
where g(z{¢;}) could be chosen in the form of

g(a{t.) = 5 2(t) Y7 [SHa(t) ©)

in which [S] of 2N X 2N is a positive semi-definite matrix.

It is noted that J; defined by Eq. (8) will be identical to the standard form of J given in Eq.
(6) if ¢;_, and ¢; are chosen to be ¢, and ¢+, respectively. Therefore J; is called generalized per-
formance index.

2.3. Transversality conditions
Since the problem involved is a free end-point boundary value problem, in order to mini-

mize the generalized performance index, J;, not only Euler equation but also transversality
conditions should meet at end-point ;. Suppose that the end conditions relating the variables
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at the end-points are given by

b = to + gdtk
{2(t;-1)} =. {21} (10)
t; =ty + klgldtk

where 4t, is the time increment for the kth segment of the time duration [£,, ], since differ-

ent time segments can have time increments of different values. Eq. (10) can also be written
in the following form

o | ta-to-Zan
(1 ={1Qa} =1 (et =z (11)
e (t: = to) = 2 4t

By introducing multipliers {#} and {A(¢)} and forming the following augmented functions

G = glz{t;) + {x}" {Q} (12)
F) = {20} [QN{z()} + {u@®)}” [RI{u(t)}
+ (A0 ([AH=()} +[Bl{u(t)} +(C YXot)— ()} (13)
the tranversality condition can be expressed as
a6-({Ey) cor-rola|” +{ZH} ao|” =0y
Substitution of Egs. (12) and (13) into Eq. (14) yields
[SHa)} — {A¢:)} = {0} (15)

2.4. Determination of feedback gain matrix

By applying Euler equation in Eq. (13), the following expression of control force can be ob-
tained

{u@®)} = —[R [BI" {A()} (16)

For a closed-loop control system, the relation between the state vector {z(¢)} and the control
force vector {u(¢)} can be given by

{u@®)} = [GI{2(t)} (17)

where [G] is called feedback gain matrix. Since Egs. (16) and (17) hold at every end-point ¢ =¢
(=1, 2, -, »), substituting the transversality conditions Eq. (15) into Eq. (16) and comparing
with Eq. (17) gives the expression of feedback gain matrix

[G1= —[R]" [BY [S] (18)

which is valid at every end-point #;.
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It is noted that the feedback gain matrix [G] shown in Eq. (18) is neither a function of
time ¢; nor a function of time increment 4¢;. Therefore, during the computation process, A¢;
can be arbitrarily changed within the range of precision. It is also noted that if [S] is chosen to
be the algebraic Riccati matrix [P], i.e., let [S]=[P)], the feedback gain matrix will be of the
form

[G] = — [R]"" [B]" [P] (19)
which is identical to the feedback gain matrix of the Riccati closed-loop control algorithm.
Therefore the Riccati closed-loop control algorithm is also included in this generalized algo-
rithm.

2.5. Solution technique

Substitution of Egs. (17) and (18) into the motion equation, Eq. (3), yields

{2(t)} = [D1{2(t)} + {C"}X,(t) (20)
where [D] is the plant matrix of the closed-loop system defined by
[D] = [A]— [BIRI"! [B]" [S] (21)

Let {z(#)} be expressed in terms of the modal transformation matrix, [T], of the closed-
loop plant matrix, [D], i.e.,

{z)} = [THu)} (22)
in which [77] has the following property
[T17 [DIIT] = [¢] (23)

where elements of [¢] are eigenvalues of the plant matrix [D]. Substituting Eq. (22) into Eq.
(20) and premultiplying by [7]™' yields

{d)} = [} +{I @) (24
where
e} =177 {C"1Xo0) (25)
Corresponding initial conditions are
{9(0)} = {0}, {«(0)} = {0}, and X,(0) = 0 (26)

The solution of Eq. (24) is given by

W = [ exo @I —Nr@)dr @7)

which can be performed by numerical integration. After {¢(¢)} is determined, {z(¢)} and {u(?)}
can be obtained by using Eqs. (22) and (17), respectively.
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3. Determination of the weighting matrix [S]

It is found that in this generalized optimal closed-loop control algorithm, optimum solu-
tion is assured through selecting optimum weighting matrices [S] and [R]. Traditionally, opti-
mum weighting matrices are searched only by trial-and-error. Since the dimensions of the
weighting matrices are numerous (2N x 2N for [S] and » X7 for [K]), it is cumbersome to try
all possible combinations of the elements in these matrices to obtain the optimum solution.
Therefore, some simplified assumptions can be made. For example, assume that [S] and [R]
are diagonal matrices and all the diagonal elements in a matrix have the same value. However,
this may not yield the optimum solution. Herein a better technique of searching for optimum
solutions is suggested.

3.1. Further discussion of feedback gain matrix

Let [S] be expressed in the form of submatrices as
_[[Su] [Sel
s1={ (521 tsiq ] 28)

If there is only one active tendon control installed on the 7th floor of a structure, i.e., [R] = 7,
Eq. (18) can be expressed as

[6] = [IGIGA] = [ =0} [M] " [Sa] = {7 )7 (MY [Sa] ] (29)

Assume that the elements in the 7th row of [S.:] and [S::] are the only non-zero elements in
[S21] and [S2] (this assumption will not produce any approximation since [S.] and [S»] are
not unique matrices). The elements of the submatrices [G.] and [G:] can then be written as

G =0 ana (G =0 =1 0w (30)

Hence, the expression of the control force #(¢) can be obtained as

1 N

2 ((S2)is A1)+ (Su)is Z:(t)) (31)

YM; 5=1

ut) =

which reveals the influence of the elements of the weighting matrix [S] on the control force
u(t). It is found that the effect of relative displacements x () on «(¢) depends solely on the 7th
row elements of [S. ], and the effect of %, (¢) on «(¢) depends solely on the 7th row elements of
[S2], and that [Q], [S.:], [S::] and the elements (S..),; and (S:),; (/#7) do not influence the
value of «(f). Hence, trial-and-error is only necessary among the ratios (Sz);;/7 and (Sz);;/7.

3.2. Pole placement technique

Although the optimum solution can be tried by assuming that the 7th row elements of [S:)]
and [S:.] are identical, i.e.,

S)is =Cn)is =S G=1,2,-,N) (32)
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numerical studies indicate that for some cases the distribution of the 7th rows of [Sx] and [S2.]
is crucial, and identical elements may not lead to the optimum solution for achieving an effec-
tive control system. In order to obtain a good distribution of the ith row of [S:] and [S2] and
improve control effectiveness, the following approach, called pole placement technique (Odaga
1990), can be used. The pole placement approach begins by selecting 2V values Aiy Az, vy Aoy
as the desired closed-loop poles (i.e., eigenvalues of the closed-loop system). Determination of
the desired closed-loop poles is based on structural transient and frequency response require-
ments, such as displacement, velocity, damping ratio and bandwidth.

It can be proven that the desired closed-loop poles may be arbitrarily chosen if the system
is completely state controllable, i.e., the rank of the controllability matrix defined by

[W1=10{(B}  [AB} | [A{B} - [APY Y4B} lavxen (33) .

is equal to 2N, or the inverse of [U] exists (Ogata, 1990). In Eq. (33), [A] and {B} are,
respectively, the plant matrix of the open-loop system and the control force influence vector
defined by Eq. (4).

After choosing the 2NV desired closed-loop poles, the non-zero ratios, (Sa1);,; /7 and (Sz),; /7
(G =1, 2, -+, N), can be determined by using the following formula

[ (S;i)il (SZ;)iN (SZ;)z'l (SZ;)iN ] —[00 -0 —m; ] [U]"* O(LA]) (34)

where [[U]™! is the inverse of the controllability matrix, and
O([A]) = [AP" + e [APY T + @[ APV 72 + o + aoy-1[A] + aan [ 1] (35)

in which @, @5, -+, @an-1, @2y are the coefficients of the characteristic polynomial of the de-
sired closed-loop system defined by

(A=12y) (A=2z) -+ (/1'“71-21\/) = AZN"'G’MZN_l + a’z/lw_z + oty (36)

The desired closed-loop poles can also be expressed in terms of natural Erequencies and
damping ratios. Since the relation between the desired eigenvalues Az.-; and Az, and the de-
sired natural frequencies w, and damping ratios &, (=1, 2, ---, N) can be expressed as

72k—l = ay+ by }

72k = ap— by (37
where
ar = ——ékak
b - iak\/ 1 _51 for Ek< 1 (38)
k w/ Ea—1  for&y,>1
then
(A=Ton-)(A=T) = 2 + 2804 + @, (0<E,<0) (39)

Therefore the nonzero elements in the weighting matrix [S] can also be determined by directly
choosing the desired natural frequencies and damping ratios.
After finding the elements (Sz); and (Sz); and (j=1, 2, -+, N) and defining the following
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distribution factors
(§21)i.7’ = (Su);; /So and (§22)ij = (Sn)i; /So (40)

where S, =(S2);:, the optimum solution can be obtained by trying various ratios of So/7.

From Eqgs. (37) and (38) it can be seen that if w, and &, are greater than zero, then the
real parts of A,,-; and A,, will be always less than zero, which implies that the system is sta-
ble. Since w; and &, are always chosen to be positive, it can be concluded that control systems
obtained by using the pole placement method are free of the stability problem if the influence
of time delays can be neglected.

4. Stability analysis and time-delay correction

Stability analysis determines the stable region for an active control system and examines
the influence of parameters of time delays on the stable region (Soong 1990, Chajes 1992). It
is of paramount importance because 1) for a system to be stable, the optimal ratio of the
weighting matrices, Sy /7, should be located inside the stable region; 2) for some structural pa-
rameters, such as natural frequencies and damping ratios which defy perfect accuracy, compu-
tation errors are transferred to the deviation of the ratio S, /7; hence, for the control system to
perform robustly, a neighborhood of S,/ should also be inside the stable region; 3) for any
practical control system, time delays exist inevitably; therefore the influence and sensitivity of
time delays on a control system as well as their correction must be investigated.

When time delays are considered, the relation between control force u(f) and structural
response {x(f)} and {Z(¢)} can be expressed as

7307 lt) + u(t) = [Gil{att—t )} + [Go) (it —t3)) 41)

where w, is the /th natural frequency of the structure; ¢, and ¢; are the on-line computational
time-delays; and @ = 1/(w; t;,), the control force build-up time delay.

By introducing the generalized coordinate vector {g(¢)} and the modal transformation ma-
trix [¢] to the motion equation of an N-story seismic structure with an active tendon installed
on a given floor, the following decoupled equation can be obtained

[1Ha®)} + [260){d(®)} + [0a@®)} = [e) {7 Yu(t) + [2]" {8 } Xo(?) (42)
where
{z(®)} = [e]{a®)}
[e]'(M][e] = [1]
[¢)"[C1le] = [26w] (43)
[PI'[K][¢] = [2]
By defining

{g@®)} = {p@)} = [1 o)} (44)
Eqgs. (42) and (41) can be written as
{B()y = —[wa(®)} — [280){p®)} + []" {7 Yult) + [2]" {8 Y Xo(t) (45)

a(t) = aw, % [Gil{p(t 1)} + aw, % [Gol{p(t—t2)} — aw, u(t) (46)
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where
(Gal = = () M1 Sl le] and (Sl = 5180 (6=1,2) (47)

Solving the corresponding homogeneous equations of Egs. (44), (45) and (46) leads to the fol-
lowing characteristic equation

All] —[1] {0}
(0] AlI1+[26w] {c} |=0
[a] [&] Ataw, (48)
where
[a] = —aw, i e "*[G]
b _ ﬁ —At g E
[6] = —ew, e [G,] (49)
{c} = — o] {7}

It is known that inside the stable region the real parts of all eigenvalues are negative.
Therefore the stability boundaries in the plane of the parameters S./» and S./» should be de-
termined by points which yield either a zero root (eigenvalue) or a pair of pure imaginary
roots of the quasi-polynomial, Eq. (48). The cases of A=0 and A= %70 (0<w <) define two
bifurcation boundaries between stable foci and unstable foci.

Eq. (48) can be expanded to

(A +aw) - 3 {(a.+b.+/1) = } =0 (50)
AL A+ 260+ 0))

Setting A = 0 yields
(51)
where g,; is the jth element of the matrix [G;] given by Eq. (47). Setting A={w and equating

the real and imaginary parts of the resulting equation to zero leads to the following linear
equation

S, _
[ A cos wtz+ By sin wtx w(A, sin wty — B, cos (Ut.i')] r _ 2) )
— A, sin wtz+ By coswty — w(Ay cos wtz+ By sin wtz) 1| Sy T aw, (52)
”
where
2 2
No_ (w, — w")Cr
A= 2
SRR (=12 (53)
7=1,
% 2 —2&, wy w Cy,

2
k=1 (a)i -o®)?+ 4Ei w, »°

in which gj, G=1, 2) is defined in Eq. (47) and ¢, (k=1, 2, ---, N) is the k£ th element of {c}
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given in Eq. (49).

It is noted that the optimal ratio of weighting matrices, So/7, is located on the straight line
Si/lr=S8,/r of the S,—S: plane. Since the above solution is derived from the homogeneous
equation of motion, the stability region obtained may not be exactly the same as that for
earthquake excited structures. However, it can be considered a good reference.

If the values of ¢, and {; can be measured, the influence of time-delays on the relative dis-
placement and velocity of the 7th floor, x; and x; can be corrected by using the following for-

mula:

, 1 .

e[ sin 1]

{r‘,}:[cosw,.x o simw; tz ]{x} (54)
i —wiSin wity coswy ty :

where x;” and x;’ are the corrected displacement and velocity of the 7th floor, respectively,
and w, is the frequency of the /th mode which is stimulated by the time-delays.

Numerical results indicate that the influence of time delays on the dynamic response main-
ly exists at adjacent floors of the active tendon. Therefore only those floors’ displacements and
velocities need to be corrected.

5. Numerical examples

A six-story shear building is used to illustrate the advantages of this generalized active con-
trol algorithm. Structural properties are as follows: 1) mass coefficients »,=109.78, m,=109.
62, m;=109.24, m.=108.86, m:=108.48, ms=107.03 (tons); 2) stiffness coefficients A, =
351284, k,=225167, k;=169665, k,=124242, k:=87872, ks=59532 (kN/m); 3) undamped
natural frequencies w,=9.79, w,=24.05, w:=37.40, w.=49.56, ws=63.44, w;=83.76 (rad/
sec); 4) 2% structural damping ratio. For dynamic time-history analysis, N-S component of
El-Centro earthquake (1940) is employed.

In the following examples, only one active controller is installed on the first floor. In order
to show the influence of the [S] matrix configuration on control effectiveness, the ratio S,/» is
selected for the following three types of [S] matrix: 1) diagonal matrix, S,=(S);;; 2) identi-
cal zth row elements of [S:] and [S::], So=S,, where S, =(S5,),; (=1, 2);;=1,2, -+, 6 and :
is the number of floor where the controller is located; 3) elements (S2);; and (S:);; obtain-
ed by using pole placement technique, Sy=(S:),;.

Example 1 : In this example, the influence of time-increment 4¢ on the instantaneous opti-
mal active control (IOAC) and generalized optimal active control (GOAC) algorithms is com-
pared. The weighting matrices [¢] and [S] are formed, with only the first row of [@.], [@::],
[Sa1] and [S2:] as nonzero elements: (Q2);;/7=(Q):;;/r=1.2x10* for IOAC and (S.);;/»=
(Sz)/ r=6.0x10° for GOAC, (j=1, 2, -+, 6). Figs. 2(a) and (b) show the influence of 4¢ on
top floor displacement and control force of the structure, respectively. For IOAC algorithm,
when two different time~increments, 4¢f=0.0025 sec and 0.01 sec are used, both the displace-
ment and control force associated with these time-increments differ significantly. However, a
change in 4¢ does not influence the response obtained by using GOAC algorithm. Apparently,
IOAC is sensitive to time-increment while GOAC is independent of it. In actual engineering
practice, both structural response and control force should be free from the selection of A¢.
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Fig. 2 Influence of 4¢ on Displacement and Control Force

Example 2 : This example shows the influence of different selections of [S] matrix on the
control effectiveness. In this example, three kinds of [S] matrix are used. For the [S] matrix
based on pole placement approach, the desired closed-loop frequencies are selected as w1 =15,
=25, ws=35, w:=50, ws=65, ws=80, rad/sec; selecting w,= 15 rad/sec is to keep the fun-
damental frequency of the structure away from the dominant frequency of the applied earth-
quake, which is about 10.5 rad/sec. The desired damping ratios are selected as £,=1.0, &,=&,
= .- =&=0.5, for primarily controlling the first mode. Figs. 3(a), (b) and (c) show the influ-
ence of S/ on maximum displacement, maximum control force and associated performance
index for the three kinds of [S] matrix, respectively. Observations may be summarized as fol-
lows: 1) for the case of diagonal [S] matrix, maximum displacement can only be reduced a
small amount; at the optimal S, /»=2 X 10%, maximum displacement is 92.2% of uncontrolled
maximum displacement; raising S /7 ratio gives a larger control force but does not reduce
maximum displacement; 2) for the [S] matrix composed of one row of identical elements,
maximum displacement can be significantly reduced; at the optimal S/» =7 x 10°, maximum
displacement is 47.9% of uncontrolled maximum displacement; 3) employing the [S] matrix
based on pole placement approach can yield the best control result; at the optimal So/» =3 X
10°%, maximum displacement is reduced to 40.7% of uncontrolled maximum displacement.
Table 1 summarizes the influence of different configurations of [S] matrix on optimal results.
It is evident that both the maximum displacement and control force obtained by pole place-
ment approach are smaller than those based on the [S] matrix composed of one row of identi-
cal elements.

Table 1 Influence of Different Configurations of [S] Matrix on Optimal
Results of Example 2.

Types of [S] Matrix In{cm) U (KN) P.L/(P.1)mr
Diagonal 10.77 1550 1.00
Identical Row 5.59 9427 0.25

Pole Placement 4.75 8394 0.21
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Example 3 : This example shows the influence of the selection of different kinds of [S] ma-
trix and time-delay parameters, /., {; and @, on the stability region of the control system.
Figs. 4(a) and (b) give the stable regions for the [S] matrix composed of one row of identical
elements and composed by using pole placement technique, respectively, without taking time-
delays into account. Note that for both cases the first quadrant of S,—S; plane is included in
the stable regions. Since the parameters S| and S, are always chosen to be positive, the system
should always be stable. It is also worth noting that the stable behavior is a special case and
only observed when the control is on the first floor; if the control is on another floor, such as
on the fourth floor, a stability region can exist. If time-delays are taken into account, the sta-
bility boundary will invade the first quadrant and the system will have stability problems.
Figs. 5(a) and (b) give the stability regions with various time-delays. In Fig. 5(a), the stability
region is based on the [S] matrix with only one row of identical elements. The control force
build-up time-delay « is set to infinity (or #,= 0), and on-line computation time-delays ¢,
and ¢; are 0.01, 0.02 and 0.03 sec, respectively. Fig. 5(b) shows stability regions based on pole
placement approach and various time-delays as ¢=co and £=¢; =0.003, 0.004 and 0.005
sec, respectively. From these two figures, it can be seen that stability regions are very sensi-
tive to time-delays. When time-delays increase, the optimal S,/7 ratio of the system is located
outside the stable region, and the optimal active control system then becomes unstable. Also
note that the more effective the control system is, the more sensitive it will be to time-delays.
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Fig. 4 Stability Region without Time Delay
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Example 4 : This example demonstrates the influence of time-delays on optimal structural
response and required control force. The [S] matrix is based on pole placement approach.
Structural response and required control force are evaluated at the optimal So/»=23 % 10°. Four
cases of time-delay are investigated: 1) {,=¢;=0; 2) {,=¢t3;=0.003 sec; 3) {,=13=0.004 sec;
4) t,=t;=0.00461 sec. For all four cases, the control force build-up time-delay is ignored
with @ chosen to be infinity. The results show that the influence of time-delays on the top
floor response is sligth, but is significant on the first floor. First floor displacement and re-
quired control force are shown in Figs. 6(a) and (b), respectively. The figures reveal that 1)
when time-delays are slight (z,=¢;=0.003, 0.004 sec), their influence on structural response
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Fig. 6 Influence of ¢, and ¢; on Displacement and Control Force
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and required control force is very small; when time-delays ¢, and ¢; are increased to 0.00461
sec, first floor displacement and control force diverge and the system becomes unstable; 2) for
the case of £,=¢; =0.00461 sec, time-delays affect first floor displacement and control force
by fluctuating with very high frequencies and gradually increasing amplitude; 3) control force
is more sensitive to time-delay than displacement is.

Example 5 : In this example, the proposed time-delay correction method is employed to
show that the effect of time-delays can be significantly reduced through using this approach.
Two cases, {,=t;=0.00461 with time-delay correction and without time-delay, are used
for comparison. As shown in Figs. 7(a) and (b), amplitudes of dynamic response and control
force are reduced almost to the level seen without time-delay, and high-frequency fluctuations
are also eliminated.
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(a) Displacement; (b) Required Control Force

Fig. 7 Effect of Time Delay Correction on Displacement and Control Force

6. Conclusions

This paper presents a generalized optimal active control (GOAC) algorithm, optimal con-
figurations of the weighting matrix based on pole placement technique, the influence of vari-
ous time delays on the stability region, and the correction of time-delay effects on structural
response and control force.

Five numerical examples are provided to show that the proposed optimal active control al-
gorithm is advantageous over others currently in vogue such as instantaneous optimal active
control (IOAC) algorithm. In IOAC, feedback control law is dependent on the time increment
used in numerical computation while in the GOAC it is not. Compared to the algebraic
Riccati algorithm, GOAC offers flexibility in selecting the weighting matrix [S] which can be
adjusted at any time during the operation of the control system. Numerical examples also
show that the proposed [S] matrix configuration based on pole placement approach is superior
to other [S] matrix configurations for it can improve the control effectiveness by adjusting the
closed-loop frequencies and damping. The sensitivity of time-delays on stability regions has
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also been studied extensively and a correction method is proposed to eliminate the time-delay
effect on stability.
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