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Geometrically non-linear transient C° finite element
analysis of composite and sandwich plates
with a refined theory

J.R. Komminenit and T. Kant?
Department of Civil Engineering, Indian Institute of Technology, Powai, Bombay-400 076, India

Abstract. A C° continuous finite element formulation of a higher order displacement theory is presented for
predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite
and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displace-
ment components through the thickness of the laminate and the theory requires no shear correction coeffi-
cients. In the time domain, the explicit central difference integrator is used in conjunction with the special
mass matrix diagonalization scheme which conserves the total mass of the element and includes effects due
to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and
orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for cen-
tral transverse deflection, stresses and stress resultants are presented for square/rectangular composite and
sandwich plates under various boundary conditions and loadings and these are compared with the results
from other sources. Some new results are also tabulated for future reference.

Key words: plates; elastic plates; composite plates; sandwich plates; shear-deformable theory; refined theory;
higher-order theory; finite element analysis; large deflection analysis; geometrically non-linear analysis; tran-
sient dynamics; dynamics.

1. Introduction

In recent years, due to the increased use of composite materials in the aerospace and auto-
motive industries because of their superior mechanical properties such as high stiffness per
unit weight, high strength per unit weight and potentially low unit cost, a need has arisen for a
basic understanding of their response to dynamic loading. Because of high modulus and high
strength properties that composites have, structural composites undergo large deformation be-
fore they become in-elastic. Therefore, an accurate prediction of transient responses is possi-
ble only when one accounts for geometric non-linearity. Hence, studies involving the assess-
ment of geometrically non-linear transient response of composite and sandwich laminates are
receiving much attention by composite structural designers.

Geometrically non-linear analysis of isotropic plates was considered by Hinton (1976),
Pica and Hinton (1980) and Akay (1980). Hinton et al. used the Reissner-Mindlin element
while Akay used a mixed finite element in their works. Reddy (1983) and Nosier and Reddy
(1991) presented first order and third order shear deformation theories for predicting the geo-
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metrically non-linear transient responses of composite layered orthotropic plates. However,
the third order formulation did not include any numerical results in the non-linear context.

To the authors knowledge, investigations for predicting the dynamic linear and geometric
non-linear transient response of composite and sandwich laminates are scarce. To fill this gap,
in this paper, a third order shear deformation theory is constructed. In addition to the higher
order shear deformation theory, a first order shear deformation theory with five degrees of
freedom per node is also developed so as to enable the comparison of present formulation
with a parallel formulation both for composite and sandwich laminates. Several examples
drawn from the literature are analyzed and appropriate comparisons are made to show the
simplicity, validity and accuracy of the present formulation.

2. Theoretical background

A composite laminate consisting of laminas with isotropic/orthotropic material properties
oriented arbitrarily is considered (see Fig. 1). In present theory, the displacement components
of a generic point in the laminate are assumed to be of the form,
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Fig. 1 Laminate geometry with positive set of lamina/laminate reference axes, displacement components
and fibre orientation

where ¢ denotes the time, «,, v, and w, are the components of mid-plane displacements of a
generic point having displacements «, v and w in x, ¥ and z directions respectively. The pa-
rameters 8 , and @, are rotations of the transverse normal cross section in the xz and yz
planes respectively. The parameters u, v¥, 0% and 07 are corresponding higher order terms
in Taylor’s series expansion and also defined at the mid-plane. A total Lagrangian approach is
adapted and stress and strain descriptions used are those due to Piola-Kirchhoff and Green
respectively. In the present context large displacements in the sense of von Karman is consi-
dered here. Then the following are the Green-Lagrangian strain displacement relations,
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To develop the equations of motion of the composite and sandwich laminate, the Hamil-
ton’s variational principle is used here. According to Hamilton’s variational principle, the first
variation of the Lagrangian function must vanish, if ,=/1-F

t
o[ L, ar=0 3)
t

where & is variation taken during indicated time interval and integral of L, takes an extreme
value which can be shown to be a minimum. The parameters £ and // defines the kinetic and
potential energies of the system, respectively.

The simplified mathematical statement of Hamilton’s variational principle can be written
as

t
ft OU-3W-3E) dt=0 )

where SU, § E and W are the first variations of strain energy, kinetic energy and the work
done by the external loads respectively. By substituting the expressions for strain components
in above functional while carrying out the explicit integration through the laminate thickness
leads to the definition of stress resultant vector ¢ and is explained as follows
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where 6° =[0, Oy, Ty, Tz Tyz] and € =[e, €y, 7 v, ¥ 22 ¥ vz] are respectively vectors of stress
and strain components with respect to laminate axes (see Fig. 1). The stress strain relations
after usual transformations for a typical layer L with respect to laminate axes can be found in
Kant and Kommineni (1992).

Then the laminate constitutive relations can be obtained in compact form as

N D, D. 0 Em
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Qs 0 0 D,| |&s (6a)
or symbolically 6=D¢s (6b)
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Q¥ Sz, Syl and the stiffness coefficient matrices D,,, D, D,, D, are defined as follows
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In the above relations 7, j=1,2, 3 and /, m=4, 5 and H,= —(z L), k=1,2,3,4,5,6,7
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and NL is the number of layers and ¢ = (sm, E:),

bending and shear strain components respectively and are defined as follows

€ S) represents the mid-plane membrane,
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and & = (E;, E;, Ets) (Tb)

The discretization details of this element are available in Kommineni (1992). The strain
displacement relations can be written as follows (eg. Zienkiewicz 1977).
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de = (B,+B,;)da
d6=DBda (8)

where B, is the linear strain displacement matrix and B,, non-linear strain displacement ma-

trix which is linearly dependent upon the nodal displacement ai. e., a’ =(dt1, d., d. V. )

B is total strain displacement matrix and non-zero elements of B matrix corresponding to
membrane, flexure and shear terms are as follows.
Membrane and flexure terms :
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The expressions for the variation of strain energy, kinetic energy and work done by the ex-
ternal loads can be written as

SU = da (fA B' Gdzx dy)
SE= —da' (fA N mN dz dy) a

oW =da' (fA N q dx dy) (10

where a, a, ¢ respectively defined as nodal displacement, acceleration and load vectors. N
is defined as shape function matrix i. e., (V,, V2, *--, Nyn). Substituting Eq. 10 in Eq. (4) and
simplifying the equation we get

fzaa' (M+é+ P(a, t)— F(t)) dt = 0 (1)

Since this relation is valid for every virtual displacement J a then
Ma+ P(a, t) = F(¢) (12)
which is the global equation of motion, where M is the global mass matrix, P(a, ¢) and F(¢)
are respectively global internal and external load vectors at time ¢.

P, t)=L B'Gdzdy (13)
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The mass matrix M in the Eq. (12) is given by
M={ NmNdA
A

I 0
1,
I,
_ I,
where m= L
I
I
I
0] I

in which I, I,, I,, I, are normal inertia, rotary inertia and respective higher order inertia terms.
These are given by
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and o’ is material density of the L‘” layer. These diagonalized terms are scaled with respect
to translation (but hot rotation) terms in such away that the total mass is conserved (see
Mallikarjuna and Kant 1990).

The numerical solution to the ordinary differential equation (12) is obtained using an ex-
plicit central difference scheme. The advantage of using the central difference method should
now become apparent. Since no internal force vector and mass matrices of the complete ele-
ment assemblage need to be calculated, the solution can essentially be carried out on the ele-
ment level and relatively little high speed storage is required. Further the usual iterative solu-
tion procedure for the solution of a non-linear system of equations is completely avoided
since the solution in the time domain is obtained here for each degree of freedom indepen-
dently. Using the central difference scheme, systems of very large order equations can be
solved efficiently. This scheme can be written as,

a”l= M x (4t (—P"+F")—a™' - 2a”" (14)

where superscripts »—1, #, » +1 stand for three successive time stages and 4t is the time step
length. The main advantage of this approach is that when M is diagonal, the computations at
each step is trivial.

Since there is no estimate on the time step for the non-linear analysis is available in litera-
ture, in the present investigation, the initial estimate is calculated using the modified form of
Tsui and Tong (1971) by Mallikarjuna and Kant (1990).

o=
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in which dx is the smallest distance between adjacent nodes in any quadrilateral element
used. E, and E, are the Youngs modulii in 1 and 2 directions respectively (see Fig. 1) and R=
E\/E,. The final estimate is done after carrying out the convergence checks in order to save the
computational costs.
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3. Numerical results

In the present study the nine node quadrilateral isoparametric element is employed. Due to
the biaxial symmetry of the problems discussed only one quadrant of the laminate is analyzed
with a 2 X2 mesh except for angle-ply laminates which are analyzed by considering full lami-
nates with a 4 x4 mesh. In all the numerical computations, the selective integration rule is em-
ployed. The element mass matrix is evaluated using a 3 X 3 Gauss-quadrature rule. For numer-
ical computations two programs, a first order shear deformation theory (FOST) and a higher
order shear deformation theory (HOST) with five and nine degrees of freedom per node
respectively are developed. All the computations were carried out in a single precision on
CDC Cyber 180/840 computer at Indian Institute of Technology, Bombay, India. All the
stress values are evaluated at the Gauss points. The shear correction coefficient used in first
order shear deformation theory is assumed as 5/6.

In order to test the accuracy and efficiency of developed algorithm, and to investigate ef-
fects of transverse shear deformations, the following material property sets were used in ob-
taining the numerical results.

Material set 1:
a=y2, b=1, k=02, p=1, v=0.3 and E=1. (non-dimensional)
Material set 2:

E,=25E, ) G122623:G31:0.5E2 s, 0O =8x107% N s¥/cm*
vi:=0.25; E;=2.1x10°N/cm?®;, a=b=25cm; h=5cm

Material set 3:

Middle layer E=192x10° psi ; v=0.24; E,=1.56x10° psi
G,=082x10°psi ; v,=0.24 and p=0.00013 /b s*/in*
Outer layers E=20.83x10°ps: ; v=0.44; E,=10.0x10° ps;
G,=3.7x10°psi ; v,=0.44 and p =0.00013 /b s*/in*
Geometry alh=10; h=1; h=h=h/2

Material set 4:

E=100psi ; v=0.3; p=1017b s¥/in,
a=10in; b=lin; h=1lin; q¢,=0.02/bl/in’

Material set 5:

E=7.031%10° kglcm?®; v=0.25; 0=2.547x10"° kg s*/cm*
a=b=2438cm ; h=0.635cm ; q,=4.882x107* kglcm* (0<¢{ <o)

Material set 6:
a=b=100cm, h=10cm
Face sheets (Graphite/Epoxy prepreg system)
E=1.308x10" Nlem?*; E;=1.06x10° Nlcm?®; G.=G3=6X%10° N/cm?,
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Gu=3.9%x10N/cm?*; p=1.58%x10"°N &cm*; v:;=0.28

Thickness of each top stiff layer = 0.025 %
Thickness of each bottom stiff layer = 0.08125 %
Core (US Commercial al. honeycomb, 1/4 in cell size, .003 in foil)

Gs=1.772%10* Nlcm? ; G13=5.206 X 10* N/em® ; p =1.009 X 107® Ns*/cm*

Thickness of core = 0.6 2

The finite element displacement formulation developed in this paper is based entirely on
assumed displacement functions and thus, only displacement boundary conditions are re-
quired to be specified. The boundary conditions corresponding to the present higher order for-
mulation are specified in Table 1 for different types of supports used in the present investiga-
tion.

Table 1 Boundary conditions

Type x2=0/x=a z=al y=0/y=b y=b/2
= *— = *—

S1 ZO=% Uo*:% uo—o ur=0 gozo gizg Vo 0 U;‘:O
PR 0,=0 93=0 U= O 6,=0 63=0
u,=0 u¥=0 v,=0 v3=0 _ o

s2 0,20 63=0 W) W70 gm0 g3=0 Do) U0
wo=0 x w,=0 v v
u,=0 u*=0 u,=0 ur=0

S$3 v,=0 v}=0 u,=0 uX=0 v,=0 v¥=0 vo=0 v¥=0
6,=0 0%=0 6,=0 0%=0 0,=0 0*=0 6,=0 6}r=0
wo=0 Wo=
u,=0 u¥=0 u,=0 uX=0

c ;":% ”"*:% =0 u}=0 Z"Z% 2';:% 0o=0 v¥=0
ol : 6,=0 0%=0 T - 6,=0 6%=0
0,=0 0%=0 0,=0 6%=0
we=0 wo=0

The corresponding boundary conditions for the first order shear deformation theory is sim-
ply obtained by omitting the higher order starred (*) displacement quantities. For example
there are nine displacement quantities required to be specified at x=0, a for C type of bound-
ary conditions in this higher order formulation (HOST), whereas in first order formulation
(FOST) the corresponding boundary conditions shall be five only. The boundary condition
types S1, S2 and S3 have been especially chosen in order to compare our results with those of
other authors. Incidentally, the S1 type condition corresponds to the usual diaphragm type of
simple support. The edge conditions, which have been derived in a variationally consistent
manner in the present higher order theory may not appear so (except in the case of fully
clamped edge specified by C), because, in any way, the natural boundary conditions can not
be prescribed in the displacement based finite element method.

The results that are to be discussed are grouped in to two categories, viz.; 1. Linear analy-
sis and 2. Non-linear analysis
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3.1. Linear analysis

3.1.1. Isotropic plate subjected to patch load at the center

In order to validate the present theory, a problem for which analytical solution exists has
been solved. The problem consists of a simply supported (S1) rectangular plate with geometry
and material properties as per material set 1 subjected to an uniform pulse load on a square
(side=0.4b) area at the center of plate. A non-uniform 4 X4 mesh of elements was employed.
A comparison of non-dimensional center deflection and bending moments obtained by pre-
sent theory and Reismann and Lee (1969) is shown in Figs 2a and 2b. The classical plate theory
(i.e., not accounting for transverse shear strains) is also given in Figures to show the influence
of shear deformation on the results. The present finite element solution for the center deflec-
tion is in excellent agreement with a thick plate analytical solution. Since the bending mo-
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Fig. 2 Rectangular isotropic plate under suddenly applied patch load (g,=1, 4¢=0.02 sec)



96 J.R. Kommineni and T. Kant

ments in the present study were calculated at the Gauss points, it is not expected to match ex-
actly with that at the center of the plate. The non-dimensional quantities used are as follows

- _ o —[woFah 1. +_[ 12aM, (16)
= [ M [ Al
3.1.2. Cross-ply laminate

A two layer cross-ply (0°/90°) square laminate with geometry and material properties as
per material set 2 and subjected to a suddenly applied sinusoidal distributed load is consi-
dered. For the same problem Reddy (1982) presented a closed-form solution with a first order
shear deformation theory. The present solution and the closed-form solution for central deflec-
tion, central normal stress and corner in-plane shear stress are compared in Fig. 3 and Table

0.6

3

, Wox107 cm
o
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£

@ 0.2 a/h=5

° oocoo FSDT5, Reddy (198Z)
g ssaas Present FOSTS

Present HOSTS

0.0

LIS LA O B S st B e B S A S B B |
0 50 100 150 200
Time, t u sec

Fig. 3 Central displacement vs. time for a simply supported(S1) square cross-ply (0°/90°) laminate under
suddenly applied sinusoidal transverse load (g,=10 psi, 4¢=0.5 x sec)

Table 2 Comparison of stresses obtained in the present study with those obtained by the
Reissner-Mindlin’s plate theory for a two layer square cross-ply (0°/90°) lami-
nate under suddenly applied sinusoidal transverse load.

At=0.25 u sec (Linear analysis)

Time Normal stress 0, N/cm? Shear stress 7, N/cm?

#%€  FOSTs*  Present’  %Differ ~ FOSTS*  Present’  %Differ
20 28.48 39.745 28.34 1.611 2.594 37.90
40 113.60 126.70 10.34 8.506 10.525 19.18
60 227.20 241.01 5.73 16.470 19.364 14.95
80 319.10 324.69 1.72 23.850 27.030 11.76

100 357.80 357.22 0.16 26.270 29.103 9.73
120 323.10 314.47 2.74 24.120 26.069 7.48
140 233.00 223.93 4.05 17.050 18.103 5.82
160 119.60 111.59 7.18 8.848 8.988 1.56
180 30.40 28.06 8.34 2.029 1.947 421

% Closed form solution from Reddy (1982)
+ Present HOST9
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2. From these results, it is clear that Reissner-Mindlin theory under predict stresses for lay-
ered composite plates.

3.1.3. Layered orthotropic plate

To validate the present theory further, another problem for which closed-form higher order
solution exists has been solved. For this purpose, a three layer (thickness of each outer layer e-
quals half of the thickness of middle layer) simply supported (S1) orthotropic laminate with
geometry and material properties as per material set 3 and subjected to a step, a triangular

0.25 o Step pulse
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SR PO R N0 VY S SR N B B
—
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3
re) 2
c e
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C o
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(vl
4
>
B
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£ ! § A '
@ b i Y
§ —0.05 Vel i I
B v — g L y
= ¥ { N I, » a/h=10
o ~ | | l\\“ | !a\EfcnoTOSTs
—-0.15 | [ ' | | HOSTQ’
P , " \“ asa TOST
Symmetric N wave \*\ ; W P 'T_‘gSSTTgs
025 Y " HOST9
0.00 G.20 0.40 0.60 0.80 1.00 1.20 1.40

Time, tx10° sec

Fig. 4 Central displacement vs. time for a simply supported(S1) square orthotropic 3 layered plate (g, =4500
psi, 4t=1 r sec). ($ indicates values given by Nosier and Reddy 1991)

and a symmetric N wave with durations 0.002sec, 0.001sec and 0.001sec respectively is con-
sidered. The present responses are compared with a closed form higher order solution
responses given by Nosier adn Reddy (1991) and are presented in Fig. 4. The non-dimension-
al quantity for representing displacement is

w,=[2] (17)

The present results exactly match with closed-form third order solution given by Nosier
and Reddy (1991).

3.2. Non-linear analysis

3.2.1. Infinite long plate

To validate the present theories in non-linear context, a clamped (C) isotropic plate, which
is infinitely extended in one direction is modelled, invoking symmetry by 5 plate bending ele-
ments. The loading is a suddenly applied uniformly distributed pulse load and geometry and
material properties are as per material set 4. The present results are compared with Pica and
Hinton (1980) and are presented in Fig. Sa. The present results exactly match with the Pica &
Hinton (1980) results. This validates the present formulation in non-linear context.
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Fig. 5a Central displacement vs. time for an infinite long isotropic plate under suddenly applied uniform
pulse load (g,=0.02 kg/cm?, 4¢=0.06 sec)
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Fig. 5b Central displacement vs. time for a simply supported(S3) square plate subjected to uniform pulse
load (3,=4.882 x 107* kg/cm?, 4¢=0.5 p sec)

3.2.2. Isotropic plate

A simply supported (S3) isotropic plate with geometry and material properties as per mate-
rial set 5 and subjected to a uniform pulse load is considered. This problem was solved by
Akay (1980) using four noded isoparametric quadrilateral mixed finite elements with 2 x2
mesh in a quadrant with a time increment 4¢=0.005sec. In the present study, only one ele-
ment in a quadrant is used. The same problem with same material properties is also solved by
Bayles et al. (1973) who developed a finite difference scheme for dynamic von Karman equa-
tions, and employed an 8 X 8 mesh with time increment of 4¢=0.0005sec.

The variation of center transverse deflection with respect to time for different load magni-
tudes g,, 5g0, 10g, is shown in Fig. 5b. The effect of load magnitude on non-linear response is
clearly seen in the plots. It is observed that the nine noded quadrilateral isoparametric element
is capable of rendering good accuracy with relatively coarser mesh.
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3.2.3. Convergence study

In order to investigate the numerical convergence of the transient behaviour of the ele-
ment, two simply supported (S1) 0° orthotropic and (0°/90°) cross-ply laminates with geome-
try and material properties as per material set 2 and with a suddenly applied uniform pulse
load were analyzed. Tables 3 and 4 present the center deflection and normal stress values for
different meshes and time steps. From the results it is found that Eq. (15) is valid to estimate
the initial time step in non-linear analysis of fibre reinforced composite laminates.

Table 3 Convergence of center deflection and stress values for different time steps
for an orthotropic laminate (Non-linear analysis)

Time At wec - 0.25 0.5 0.6668
#SEC quantity 2%2 3x3 4x4 2%2 2%2
0 w, 0.45844  0.4561  0.4558  0.46152 0.4638
o 25.61786 25.0786 24.9702 25.81500  25.9710
" w, 0.96218  0.9608  0.9603  0.96173 0.9614
7o 53.07500 51.8880 51.0643 53.08200  53.0655
120 w, 0.42290  0.4265 0.4268  0.42084 0.4191
Gy 21.25360 20.2035 19.9429  21.14500  21.0012
160 w, ~0.06468 -0.0632 -0.0617 —-0.06494  —0.0652
Oy -3.88702 -3.5708 -3.2046 -3.87905  -3.9083
200 w, 0.60674  0.5895  0.5852  0.60937 0.6119
5:: 35.15710 32.7238 32.0107 35.23810 35.3381

Table 4 Convergence of center deflection and stress values for different time steps
for a two layer cross-ply (0°/90°) square laminate (Non-linear analysis)

Time 4t usec — 0.25 0.5 0.6668
#S€€ quantity 2x2 3x3 4x4 2x2 2x2
‘0 w, 048958 04872 04871  0.49312  0.4957
Fo 2231670  21.3240 21.3240 22.48700  22.5964
% w, 1.10249  1.1060  1.1013  1.10275 1.1029
&y 52.90360 52.4060 51.2036 52.91070  52.8881
120 w, 0.64812  0.6846  0.6909  0.64504  0.6424
Ga 31.02140 32.1650 33.1845 30.88810  30.7821
60 @, 0.01650  0.0095  0.0107  0.01630  0.0161
Gu 0.55830  0.5058  0.6322  0.54785  0.5772
200 w, 0.35451  0.3251 03211 035720  0.3599

Ox 15.69762 13.0770 12.6036  15.80950 15.8857
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(c) Stress vs. time

Fig. 6 A clamped(C) angle-ply sandwich laminate (0°/45°/90°/CORE/90°/45°/30°/0°) under suddenly ap-
plied uniform transverse load (g,= 5000 N/cm?, 4¢=5 p sec)
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3.2.4. Sandwich laminate
A clamped (C) angle-ply (0°/45°/90°/CORE/90°/45°/30°/0°) sandwich laminate with ge-
ometry and material properties as per material set 6 subjected to a suddenly applied uniform
pulse load is considered. The plots for displacement, stress resultant and stresses vs. time
respectively are presented in Figs 6a-6¢ for linear and geometrically non-linear analyses by
using first order shear deformation theory as well as higher order shear deformation theory
along with corresponding linear analysis results of Kant (1987). The non-dimensional quanti-
ties used are defined as follows
= _Wo, » _Ozrdqy
wo“_h_, G.Z‘_Ez[h] (18)
The present linear results exactly match with Kant (1987). From the resuits it is confirmed
that even at a/k=10 first order shear deformation theory under predicts displacements as well
as stresses in linear as well as non-linear analyses. It is also to be noted that due to non-line-
arity the amplitude of vibration reduces when compared with linear responses.

4. Conclusions

Numerical results of the linear and geometrically non-linear analyses of isotropic, ortho-
tropic and layered composite and sandwich laminates are presented. The simple C°
isoparametric formulation of an assumed higher order displacement model employed here is
stable and accurate in predicting the linear and geometrically non-linear transient responses of
composite and sandwich laminates. In contract to first order shear deformation theory, the
present theory does not require the usual shear correction factors generally associated with
first order shear deformation theory. The present finite element results in linear and geometri-
cally non-linear analyses agree very well with the available analytical and other finite element
solutions in literature. The simplifying assumptions made in classical plate theory (CPT) and
first order shear deformation theory (FOSTS) are reflected by high percentage of errors espe-
cially in the predictions of sandwich laminates. It is believed that the refined shear deforma-
tion theory presented here-in is essential for predicting accurate responses of sandwich lami-
nates. The present results of linear and geometrically non-linear analyses of sandwich lami-
nates should serve as reference results for future investigations.
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