
Steel and Composite Structures, Vol. 9, No. 2 (2009) 131-158 131

Nonlinear analysis of composite beams with partial shear 
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Abstract This paper presents a modelling technique for the nonlinear analysis of composite steel-concrete
beams with partial shear interaction. It extends the applicability of two stiffness elements previously derived by
the authors using the direct stiffness method, i.e. the 6DOF and the 8DOF elements, to account for material
nonlinearities. The freedoms are the vertical displacement, the rotation and the slip at both ends for the 6DOF
stiffness element, as well as the axial displacement at the level of the reference axis for the 8DOF stiffness
element. The solution iterative scheme is based on the secant method, with the convergence criteria relying on
the ratios of the Euclidean norms of both forces and displacements. The advantage of the approach is that the
displacement and force fields of the stiffness elements are extremely rich as they correspond to those required by
the analytical solution of the elastic partial interaction problem, thereby producing a robust numerical technique.
Experimental results available in the literature are used to validate the finite element proposed in the paper. For
this purpose, those reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and
Ansourian (1981) are utilised; these consist of six simply supported beams with a point load applied at mid-span
inducing positive bending moment in the beams, three simply supported beams with a point load applied at mid-
span inducing negative bending moment in the beams, and six two-span continuous composite beams
respectively. Based on these comparisons, a preferred degree of discretisation suitable for the proposed modelling
technique expressed as a function of the ratio between the element length and depth is proposed, as is the number
of Gauss stations needed. This allows for accurate prediction of the nonlinear response of composite beams.
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1. Introduction

During the last century, many investigations were undertaken to understand and predict the behaviour

of composite steel-concrete beams with partial shear interaction (PSI). In particular, the last decade or

so has seen an increasing number of contributions investigating the behaviour of composite beams with

PSI in the nonlinear range of material response being published. Newmark et al. (1951) demonstrated

that full interaction theory was not always satisfactory in describing the behaviour of composite beams.
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Many investigators have utilised or extended the work of this well-known paper and various nonlinear

formulations have been produced. Nevertheless, it is beyond the scope of this paper to provide a lengthy

discourse of the current state of the art, and useful reviews have been given by Pi et al. (2005a,b),

Spacone and El-Tawil (2004), Leon and Viest (1996) and others. Because the problem is generally intractable

to solutions in closed-form, numerical solutions must be used. Worthy of mention and relevant to the

present study is the contribution by Faella et al. (2003), who extended the applicability of the 6DOF

stiffness element previously derived (Faella et al. 2002) to account for the initial occurrence of material

nonlinearities of the shear connection and concrete only. Their study intended to investigate the effects

of the shear connection deformability on the service response of the beams and, for this purpose, they

validated their approach against experiments published in the literature considering only low ranges of load.

At face value, popular commercial software packages such as Ansys (2003) and ABAQUS (2003)

appear convenient for performing nonlinear analyses of composite beams, but some disquiet has been expressed

regarding their accuracy and, in particular, their treatment of the shear connectors (Pi et al. 2005a). These

packages can also suffer from being design tools, in which the underlying mechanics that describes the

structural behaviour is often nebulous. Because of this, an alternative robust and accurate computational

formulation has been sought in this paper.

The aim of the present study is to propose a novel modelling technique capable of depicting the

behaviour of composite beams with PSI accounting for the material nonlinearity of all components of

the cross-section. This is carried out by extending the applicability of two displacement-based elements,

viz. a 6DOF stiffness element and an 8DOF one, that were derived by means of the direct stiffness method

(DSM) and presented by the authors in the linear-elastic range of material response (Ranzi et al. 2004,

Ranzi and Bradford 2007). The main advantage of the direct stiffness approach was that no interpolating

approximations are introduced in the displacement and force fields. This work in the linear-elastic range

highlighted the occurrence of numerical instabilities in the calculation of some stiffness coefficients for

low values of the dimensionless stiffness parameter αL, that was identified by Girhammar and Pan

(1993), when these coefficients are derived using exponential functions (or hyperbolic functions) in the

expression for the slip, and it suggested a modelling procedure to avoid such instabilities. 

The nonlinear solution strategy developed herein relies on an iterative scheme that utilises a secant

procedure and whose convergence criteria is controlled by the ratios of Euclidean norms of both forces

and displacements. The model validation is then carried out using experimental data available in the

literature; the work by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998, 1999) and Ansourian

(1981) has been used here. In the validation stage, attention has been placed in ensuring that the material

and cross-sectional properties of the beams analysed are as close as possible to those utilised and specified

for the experiments (May et al. 2003), in order to provide more creditable comparisons of the computational

scheme and experimental results.

2. Generic assumptions

The composite beam considered by the proposed direct stiffness formulation comprises of a concrete

slab, steel reinforcement, a steel joist and shear connection as shown in Fig. 1. The top and bottom

elements are referred to as elements 1 and 2 respectively. The composite cross-section A  is represented

more generically as A = A1 A2, where A1 and A2 are the cross-sections of elements 1 and 2 respectively.

The area A1 represents the slab, and it is further sub-divided into areas Ac and Ar which are those of the

concrete component and of the reinforcement respectively (A1 = Ac Ar), while A2 represents the cross-
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section of the steel joist only and it is denoted as As. The strain diagram is defined uniquely by the strain

in the top fibre of the cross-section u0, the curvature  and the slip strain , where the prime denotes a

derivative with respect to the coordinate along the beam z. Implicit in this is the validity of the Euler-

Bernoulli hypothesis that plane sections remain plane (except at the interface) and a linearization of the

curvature for which  is deemed to vanish (Newmark et al. 1951). Similarly to Newmark’s model, no

vertical separation is assumed to occur between elements 1 and 2 (i.e. the top and bottom elements), so

that the curvature is the same in both elements.

The composite beam is assumed to occupy the prismatic spatial region V = A × [0,L] , where A

represents the composite cross-section which is assumed to be symmetric about the plane of bending,

while [0,L] is defined along the beam coordinate z (which is perpendicular to the cross-section at any

location along the beam length, and with z [0,L]).

For generality, the model is derived with reference to an arbitrary axis located at a distance y0 below

the top fibre of the cross-section from which the cross-sectional properties of the beam are defined. As

the axial displacement is controlled at the level of the reference axis, it will be assumed, without any

loss of generality, that the reference axis is located in the steel joist (i.e. bottom element) as often occurs

in real beams. 

3. Nonlinear Modelling

3.1. General

The applicability of two stiffness elements, i.e. the 6DOF and the 8DOF elements that were derived

by means of the DSM in the linear-elastic range, is extended in this paper to account for material

nonlinearities. The degrees of freedom of the 6DOF element are those related to the vertical displacement v,

the rotation θ and the slip s, as shown in Fig 2(a). In the case of the 8DOF element the relevant

freedoms include the vertical displacement v, the rotation θ, the slip s and the axial displacement ub at the

level of the arbitrary reference axis located y0 below the top fibre of the cross-section as outlined in Fig. 2(b).

The secant stiffness method is utilised to perform the nonlinear analysis and, in this procedure, the

load is incrementally and monotonically increased.

ν ″ s′

ν ′2

ℜ3∈

∈

Fig. 1 Composite cross-section and strain diagram
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3.2. General method of analysis

The analytical model utilised to derive both the 8DOF and 6DOF stiffness elements is constructed

based on equilibrium considerations, and adopting a set of three independent parameters that are

required to define the strain diagram; these unknowns are .

For simplicity and again without loss of generality, a single span beam is considered subjected to a

pattern of loading that produces a variation of the bending moment M(z) and of the axial force N(z)

(referred to as M and N for simplicity), whose variations are not necessarily known initially if the beam

is statically indeterminate. 

The governing system of equations can be written by enforcing horizontal and rotational equilibrium

at the composite cross-section, as well as horizontal equilibrium of a free body diagram of the top

element (Fig. 3) as

u0′ ν ″ and s′,

Fig. 2 Degrees of freedom of the 6DOF and 8DOF stiffness elements
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(1a,b,c)

where Ni and Mi are the internal axial force and moment resisted by the composite cross-section, σ is

the generic stress in the composite cross-section, N1 is the axial force resisted by the top element, and q

represents the force per unit length resisted by the shear connection. 

Based on Eqs. (1) and after some mathematical manipulation, the governing differential equation can

be obtained as (Ranzi et al. 2003)

(2)

where s is the slip along the member length, all cross-sectional variables are defined in the appendix.

The homogeneous and the particular solutions of the PSI problem in Eq. (2), sH and sP respectively, can

then be written in compact form as 

(3a)

(3b)

in which

(4a)

, (4b)

and where the actual expression for sP depends on the loading and support conditions of the problem,

and in which C1 and C2 are constants of integration. 

The other two unknown variables, i.e.  and , can then be determined as

(5a)

,
(5b)

where all the notation is defined in the appendix. Finally, the full set of variables depicting the displacement

field can be determined by integrating the parameters describing the strain diagram. In this process, the

Ni σ  Ad
A
∫ N          Mi; yσ  Ad

A
∫ M          N1′ q+; 0= = = = =

α̃s″ ks– αM ′ α1N′  ,+=

s sH C1 C2,( ) sp+=

s′ s′H C1 C2,( ) sp′+=

sH C1e
µz

C2e
µz–

+=

s′H µC1e
µz

µC2e
µz–

–=

u0′ ν ″

u0′ b1M b2N b3s′+ +=

ν ″ r1M r2N r3s′+ +=

Fig. 3 Free body diagram of the top element
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constants of integration can be determined utilising the appropriate static and/or kinematic boundary

conditions of the problem under consideration (Ranzi et al. 2004, Ranzi and Bradford 2007). Denoting

the generic stress in element 1 as σ1, the axial force resisted by element 1 (i.e. the reinforced concrete

slab), which is also needed for the direct stiffness technique, is calculated as

(6)

where all notation is defined in the appendix. 

3.3. Derivation of the 6DOF and 8DOF stiffness elements

The derivation of the 6DOF and 8DOF stiffness elements has already been presented in the linear-

elastic range and, with full detail being given by Ranzi et al. (2004) and Ranzi and Bradford (2007)

respectively. The stiffness coefficients are derived herein by means of the DSM utilising the modelling

procedure outlined in Eqs. (2) to (6) (Weaver and Gere 1990).

The main difference regarding the loading conditions considered by the 8DOF and the 6DOF

formulations is that in the latter one no axial force can be resisted by the composite cross-section while in

the former one the composite cross-section is able to resist axial loading. This difference is introduced

when enforcing horizontal equilibrium in the formulation utilised for the DSM. In the case of the 6DOF

element the sum of the horizontal forces resisted by the slab and steel joist is equated to zero. This

limitation is released for the 8DOF element in which case the expression for horizontal equilibrium

includes a term representing the external applied axial force. 

The system of equations to be solved based on the DSM method can then be expressed as:

(7)

in which m = 6 and 8 for the 6DOF and 8DOF stiffness elements respectively, and 

(8a)

(8b)

(8c)

(8d)

where  and  are the vectors of nodal actions and displacements shown in Fig. 2,  is the

N1 σ1 Ad
A
1

∫ q1M q2N q3s′+ += =

qm qeq.m+

k11 k12 … k1m

 k22   

  
.

.

.  

   kmm

dm Kmdm= =

q6 R0 M0 N10 RL ML N1L, , , , ,[ ]
T

=

q8 N0 R0 M0 N10 NL RL ML N1L, , , , , , ,[ ]
T

=

d6 ν0 ν0′ s0 νL ν L′ sL, , , , ,[ ]
T

=

d8 un0 ν0 ν0′ s0 unL νL ν L′ sL, , , , , , ,[ ]
T

=

qm dm qeq m,
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vector of equivalent nodal loads due to member loads, kij are the stiffness coefficients (i = 1,…,m;

j = 1,…,m), and  is the appropriate element stiffness matrix. In this definition, the slip may be

thought of as being conjugate in an abstract sense to the axial force within element 1. 

Based on the DSM method, the j-th column of the stiffness matrix equals the set of unknown

reactions determined for an unloaded member whose freedoms are all restrained except for the one

related to the j-th column, for which a unit displacement is imposed. The secant coefficients included in

the matrices  for both 6DOF and 8DOF elements are similar to those obtained in the linear-elastic

range by Ranzi et al. (2004) and Ranzi and Bradford (2007), but by modifying the elastic properties, i.e.

moduli and shear connection stiffnesses, with their appropriate secant values. 

Small monotonic increments are specified in this study to trace the loading path of the beams adequately.

For each load step, different iterations have been performed to converge to the final solution, as is well-

documented in textbooks on nonlinear analysis (Reddy 2004). A layered model has been adopted as the

basis of the proposed nonlinear procedure to represent the composite cross-sectional properties (Reddy

2004, Zhang et al. 2006), which subdivides the composite cross-section into layers perpendicular to its

axis of symmetry. Reinforcing bars located at the same level from the reference axis are placed in the

same layer, whose centroid is located at the centroids of the reinforcing bars, while the concrete slab is

layered ignoring the areas filled by the reinforcement. The steel joist is modelled layering both the

flanges and the web. Material states at each layer are evaluated at their mid-height based on the nonlinear

constitutive law of the material under consideration. To evaluate the material state of an element, one or

more cross-sections can be considered along the element itself; these are located at the Gauss stations

commonly used for lengthwise integration by means of the Gauss-Legendre quadrature.

Based on the previous considerations, the secant composite cross-sectional properties and secant

shear connection properties to be used for each stiffness element m in Eq. (7) at the i-th iteration of the

l-th load step are determined as:

(9a,b)

(9c,d)

(9e,f)

(9g,h)

(9i,j)

where g is the Gauss station considered along member m, j identifies the layer of the cross-section, the

top element (i.e. reinforced concrete slab) is assumed to be subdivided into jmax1 layers with j = l,

Km
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…,jmax1, the composite cross-section is subdivided into jmax2 layers while the bottom element (i.e. steel

joist) is subdivided into jmax2− jmax1 layers with j = jmax1 + 1,…,jmax2, gmax is the number of Gauss stations

considered in the stiffness element, wg is the Gauss weight at the g-th Gauss station, Am.gj is the area of

the j-th layer at the g-th Gauss station of member m, Em.ligj is the secant modulus of the material located

at the j-th layer at the g-th Gauss station of member m at the i-th iteration of the l-th load step, ym.gj is the

distance between the reference axis and the centroid of the j-th layer at the g-th Gauss station of

member m, kS.m.lig is the secant shear connection stiffness determined based on the shear flow and slip

calculated at the location of the g-th Gauss station of member m at the i-th iteration of the l-th load step,

kS.m.li is the secant shear connection stiffness of member m at the i-th iteration of the l-th load step, and

 are the secant cross-

sectional properties calculated at the i-th iteration of the l-th load step of member m.

3.4. Numerical instabilities

The use of the stiffness relationship expressed by Eq. (7) can lead to numerical instabilities in the

calculation of the stiffness coefficients for both the 6DOF and 8DOF elements at low values of the

dimensionless shear connection stiffness µL, which is defined in appendix and is equivalent to the

dimensionless stiffness αL introduced by Girhammar and Pan (1993) and where L is the element

length. This problem has already been identified by the authors and originates from the lack of

numerical precision introduced by the large terms which arise when the exponentials in µL are inverted

within the stiffness relationships and are multiplied with other exponentials in µL, leading to a loss of

significant figures in the calculated number stored by the computer. These exponential functions appear

in the solution of the governing differential equation in Eqs. (3) and (4). It was noted that this

undesirable behaviour occurred only for very low values of µL, i.e. for µL < 0.05 as quantitatively

depicted in Fig. 4. In these cases the solution for the slip in Eqs. (3) and (4) has been modified by

replacing the exponentials in Eq. (4) with their Taylor series expansion truncated at the eighth term as 

(10)

By using this technique, the proposed modelling procedure relies on two stiffness matrices; one derived

expressing the slip with exponential functions (Eq. (4)) and one with their truncated Taylor series

expansion (Eq. (10)). Therefore, the stiffness coefficients calculated for an element whose dimensionless

stiffness coefficient µL is greater than 0.05 are based on the exponential expression for the slip, while

for µL less than 0.05 these are based on their truncated Taylor expansion. The dimensionless stiffness

µL is not just dependent upon the structural system considered, but also upon the discretisation utilised

as L represents the length of the stiffness element. This instability needs to be addressed in the nonlinear

modelling since low values of µL calculated for a certain element can be achieved due to a fine discretisation

of the beam analysed, or due to the material nonlinearities which affect the secant cross-sectional

properties included in µL. The robustness of the modelling technique is guaranteed by verifying that the

two stiffness matrices, i.e. those based on the exponentials and its counterpart based on the truncated

Taylor series, can be interchanged. This is carried out ensuring that the coefficients of both stiffness

matrices are identical for µL equal to 0.05 regardless of the actual value of µL for the element. 

In general, a robust numerical model to be used to describe the nonlinear behaviour of composite
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members requires to easily handle both situations of high and low stiffness values also reflected by high

and small values for µL calculated at the element level. This is particular important as the nonlinear

behaviour of the shear connection can lead to secant stiffness values ranging from extremely high ones

at locations of negligible slip, for example at an internal support of a two-span continuous beam, to very

small ones exhibited when large relative movements between the slab and steel joist have taken place,

usually occurring at the end supports of a beam system.

Finally, the solution convergence criterion utilised in the solution strategy of the nonlinear computational

model is based on the ratios of the Euclidean norms of both displacements and forces. The ratio of

the Euclidean norms of the forces has been utilised to ensure the stability of the iterative scheme as,

in the case of a uniformly distributed load, the equivalent nodal loads placed in the loading vector

conjugate to the slip degrees of freedom are expressed in terms of the cross-sectional properties of

the element.

Fig. 4 Numerical instabilities of the stiffness coefficient related to the slip using the exponential approach for
varying µL
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4. Validations

4.1. General

The nonlinear modelling technique presented is validated in this section against experimental results

available in literature. For this purpose, the following three benchmark experiments have been considered.

·Six simply supported beams subjected to a point load applied at mid-span tested by Chapman and

Balakrishnan (1964). (Beams A1, A2, A3, A4, A5 and A6). Their layouts are shown in Fig. 5(a) and

their cross-sectional and material properties are summarised in Table 1.

· Three simply supported beams subjected to a point load applied at mid-span, which induces

negative bending moment in the beam, reported by Fabbrocino et al. (1998, 1999). (Beams A, B

and C.) Their layouts are shown in Fig 5(b) and their cross-sectional and material properties are

summarised in Table 2.

Fig. 5 Layout, support and loading conditions of the beams used in the validation process
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·Six continuous two-span beams tested by Ansourian (1981). Two beams (CTB1 and CTB2) were

loaded by a point load applied at the centre of the left span while the right span remained unloaded;

four beams (CTB3, CTB4, CTB5 and CTB6) were loaded by point loads applied at the centres of

both spans. Their layouts are shown in Fig. 5(c) and their cross-sectional and material properties are

summarised in Tables 2 and 4 respectively.

4.2. Validation process

Three main issues have been investigated in modelling the experiments with the DSM: (i) the number

Table 1 Cross-sectional and material properties of the beam tests reported in (Chapman and Balakrishnan 1964)

Beams 

A1 A2 A3 A4 A5 A6

Depth of composite cross-section (mm) 457.2 457.2 457.2 457.2 457.2 457.2

Slab width (mm) 1219.2 1219.2 1219.2 1219.2 1219.2 1219.2

Slab depth (mm) 152.4 152.4 152.4 152.4 152.4 152.4

Concrete cylinder strength (MPa) 22.1 26.9 18.3 20.1 24.8 23.7

No of connectors 84.0 76.0 68.0 56.0 44.0 32.0

Spacing in pairs of connectors (mm) 144.8 158.8 177.8 215.9 274.3 378

Ultimate capacity of single studs (kN) Mean value of 121.4 (max of 127 and min of 113)

Steel joist 12” × 6” × 44 lb B.S.B.

Young’s modulus - flange of joist (MPa) 179263 184779 176505 176505 177884 191674

Young’s modulus - web of joist (MPa) 187537 183400 182021 186158 184779 184779

Yield stress - flange of joist (MPa) 215 217 274 276 263 239

Yield stress - web of joist (MPa) 208 208 229 229 210 214

Ultimate stress - flange of joist (MPa) 371 379 403 396 403 416

Ultimate stress - web of joist(MPa) 368 372 405 396 403 378

Ratio of strain at strain-hardening over yield strain
- flange of joist

12.4 7.6 1 1 1 1.5

Ratio of strain at strain-hardening over yield strain
-web of joist

9.6 4.9 1 1.8 1 1.7

* Yield strain - flange of joist 1200e-6 1175e-6 1555e-6 1563e-6 1481e-6 1247e-6

* Yield strain – web of joist 1108e-6 1135e-6 1257e-6 1232e-6 1138e-6 1160e-6

* Strain at strain-hardening – flange of joist 1488e-5 893e-5 155e-5 156e-5 148e-5 187e-5

* Strain at strain-hardening – web of joist 1064e-5 556e-5 126e-5 222e-5 114e-5 197e-5

* Ultimate strain – flange of joist 5439e-5 4879e-5 3458e-5 3245e-5 3706e-5 4395e-5

* Ultimate strain – web of joist 4950e-5 4623e-5 4536e-5 4285e-5 4845e-5 4217e-5

** Strain-hardening modulus – flange of joist (MPa) 3944 4065 3883 3883 3913 4217

** Stain-hardening modulus – web of joist (MPa) 4126 4035 4004 4095 4065 4065

Longitudinal 
 reinforcement, mm2

Top layer 200 200 200 200 200 200

Bottom layer 200 200 200 200 200 200

* values have been calculated based on a trilinear constitutive model for the steel material 
** a ratio of slope of strain-hardening line to Young’s modulus of 0.022 is assumed as adopted in the model-
ling presented in (Yam and Chapman 1968)
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of layers adopted for the cross-section, (ii) the degree of discretisation required to obtain an adequate

description of the experiments, expressed as a function of the ratioψL/D of the element length to its

depth, and (iii) the minimum number of Gauss stations required by the preferred degree of discretisation

to produce acceptable results. The number of Gauss stations is important in the calculation of the secant

cross-sectional and material properties in Eqs. (9) and the interplay of these with the discretisation in a

layered modelling has been shown to be significant (Sun et al. 1994).

A simple procedure is proposed here to determine the minimum number of layers that need to be

Table 2 Cross-sectional and material properties of the beam tests reported in (Fabbrocino et al. 1998, 1999)

Beams 

A B C

 Steel joist HEB180 HEB180 HEB180

 Depth of the composite cross-section (mm) 300 300 300

 Slab width (mm) 800 800 800

 Slab depth (mm) 120 120 120

 Concrete cubic strength (MPa) 30 30 30

 Steel reinforcement
4 off 14 mm
(dia.) bars

4 off 14 mm
 (dia.) bars

4 off 14 mm
(dia.) bars

 Shear connectors
16 mm dia.

100 mm high
16 mm dia.

100 mm high
16 mm dia.

100 mm high

NOTE: material properties for the steel joist and the steel reinforcement have been obtained from the experi-
mental stress-strain relationships reported in (Fabbrocino et al. 1999)

Table 3 Cross-sectional properties of the beam tests reported in (Ansourian 1981)

Beams

CTB1 CTB2 CTB3 CTB4 CTB5 CTB6

 Spans, m 4 × 5 4 × 5 4.5 × 4.5 4.5 × 4.5 4.5 × 4.5 4.5 × 4.5

 Jack loading
Centre of 
left span

Centre of 
left span

Centre of 
each span

Centre of 
each span

Centre of 
each span

Centre of 
each span

 Slab
Thickness, mm 100 100 100 100 100 100

Width, mm 800 1300 1300 800 1300 1300

 Joist

Section
IPE 200
× 22.4 kg

IPE 200
× 22.4 kg

IPBL 200
× 22.4 kg

IPE 200
× 22.4 kg

IPE 200
× 22.4 kg

IPE 200
× 22.4 kg

Area, mm2 2850 2850 5380 5380 3910 3910

Flange, mm 8.5 × 100 8.5 × 100 10 × 200 10 × 200 9.8 × 100 9.8 × 120

Web, mm 5.6 5.6 6.5 6.5 6.2 6.2

 Number of 19 mm × 75 mm Nelson studs 66 66 84 84 60 60

Percentage shear connection
Sagging 150 150 160 150 120 110

Hogging 160 135 130 130 105 95

Longitudinal reinforcement, 
mm2

Hog top 800 1230 1230 804 1260 1260

Hog bottom 316 470 470 767 470 767

Sag top - 360 360 160 320 380

Sag bottom 160 160 160 160 160 160

 Transverse reinforcement 10 mm diameter at 100 mm at bottom of slab
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specified in the analysis. Using elastic material properties, this procedure requires that the flexural rigidity

determined numerically with layering is within 0.01% of that determined analytically without layering,

since the flexural rigidity of a layer about its own centroid is ignored in the computational scheme. For

the three experimental series considered, the number of layers needed varied between 40 and 70.

No simple procedure can be utilised to determine the preferred degree of discretisation when using

the proposed DSM elements, i.e. preferred values for ψL/D, and the minimum number of Gauss stations

required by these preferred options. This was also concluded in the nonlinear layered finite element

analysis of reinforced concrete beams by Sun et al. (1993). For this reason, the model validation was

carried out varying the number of elements as outlined in Table 5, i.e. varying the degree of discretisation

as a function of ψL/D, and the number of Gauss stations utilised in the solution strategy. The number of

elements has been varied from the minimum number needed to model the applied loading and the cross-

sectional properties to a maximum number of elements (of equal length) whose element coefficient ψL/D

is approximately equal to 0.5. For each discretisation, the number of Gauss stations was varied between

3 and 24.

The aim of the model validation is to establish whether or not the proposed nonlinear modelling

technique presented can adequately predict the structural behaviour of composite beams with PSI

accounting for material nonlinearities and, if this is the case, to determine the preferred values for the

element coefficient ψL/D for its use and the associated minimum number of Gauss stations. This is carried

out in two stages.

For Stage 1, graphical comparisons are carried out between the numerical results utilising predetermined

discretisations in order to determine which degrees of discretisation (defined in terms of ψL/D) adequately

describe the experimental behaviour; the discretisations relevant to the validations herein are given in

Table 5. Stage 2 compares the numerical solutions for each adopted discretisation relative to those

obtained using 24 Gauss stations. For this study, 3, 5, 7, 12 and 24 Gauss stations were utilised, and the

solution using ng Gauss stations was deemed to be acceptable when the error relative to that with ng =

24 Gauss stations was less than a predetermined difference η. This strategy requires the load

(11)P min Pmax ng, Pmax 24,
,[ ]=

Table 4 Material properties of the beam tests reported in (Ansourian 1981)

Beams

CTB1 CTB2 CTB3 CTB4 CTB5 CTB6

 200 mm cube  strength, N/mm2 30 50 43 34 29 41

 Density of concrete, kg/m3 2310 2310 2350 2280 2300 2300

 Lower yield stress, N/mm2

Flange 277 277 220 236 265 292

Web 340 340 235 238 278 310

Reinforcement 430 430 430 430 430 430

 Ultimate tensile stress, N/mm2

Flange 421 418 390 393 442 462

Web 440 477 411 401 428 450

Reinforcement 533 533 533 533 533 533

 Strain at strain-hardening, εsh 0.012 0.018 0.017 0.018 0.019 0.014

 Initial strain-hardening modulus Esh, N/mm2 6000 4200 5000 3000 4800 3800
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to be determined, where Pmax,ng and Pmax,24 are the maximum or peak loads obtained in the numerical analysis

with ng and 24 Gauss stations respectively, and the relative error eng(X) for a variable X (representing a

displacement, strain, stress or the like) to be determined from

(12)

For a particular variable X, the error is acceptable when eng(X) ≤ η, with η being somewhat arbitrarily

taken here as 1%. It is worth noting that in the analyses carried out as part of the proposed study it has

been observed that the number of Gauss stations specified in the solution process heavily affects the

computational time of the analysis and, therefore, needs to be kept to a minimum. Varying the number

of elements utilized in the mesh also affected the overall analysis time even if to a smaller extent. 

It is worth noting that the results obtained in the modelling of the experiments by means of the 6DOF

and 8DOF stiffness elements are identical as no axial force is induced along the beams considered. This

is possible as in all experiments considered there is no external horizontal restraint provided to the

tested beams.

4.3. Experiments by Chapman and Balakrishnan (1964)

Chapman and Balakrishnan (1964) reported material properties that are summarised partly in Table 1,

and this data was used to model the concrete using the CEB-FIB guidelines (1993) as highlighted in

Fig. 6, whilst the reinforcing steel and joist were modelled using the trilinear representation of Fig. 7. It

is worth noting that the ratios of the strain at the onset of strain hardening to the yield strain varied

significantly for the beams (being as low as 1 for the flanges of beams A3, A4 and A5), and so Yam and

Chapman (1968) also used a trilinear representation of the stress-strain relationship to model these

experiments.

eng X( ) Xng P( ) X24 P( )–[ ]/X24 P( ).=

Table 5 Discretisations adopted in the modelling of the experiments

Experiments reported in (Chapman and Balakrishnan 1964)

No. of elements (Beams A1, A2, A3, A4, A5 and A6) 4 8 14 26

ψL/D varies* ≈ 2 ≈ 1 ≈ 0.5

Experiments reported in (Fabbrocino et al. 1998, 1999)

No. of elements (Beams A, B and C) 2 6 12 24

ψL/D ≈ 6 ≈ 2 ≈ 1 ≈ 0.5

Experiments reported in (Ansourian 1981)

No. of elements (Beams CTB1 and CTB2) 5 15 30 60

ψL/D varies* ≈ 2 ≈ 1 ≈ 0.5

No. of elements (Beams CTB3 and CTB4) 6 18 32 64

ψL/D varies* ≈ 2 ≈ 1 ≈ 0.5

No. of elements (Beams CTB5 and CTB6) 6 16 28 56

ψL/D varies* ≈ 2 ≈ 1 ≈ 0.5

* for the coarsest possible discretisation, the element coefficient ψL/D varies along the beam length as the
discretisation considered is based on the minimum number of elements and, therefore, the element
lengths might vary as governed by the layout, cross-sectional properties, loading and support conditions
of the beam considered 
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The shear connection was modelled as described in Fig. 8, adopting the values α = 0.74 and β = 1.22,

based on the push-out test data, while the experimental values for the yield strains, strains at the onset of

strain hardening and strains at ultimate stress reported by Chapman and Balakrishnan (1964) were used

in the numerical modelling. The strain-hardening modular ratio Esh/Es (Fig. 8) was taken to be 1/45, as

was also assumed by Yam and Chapman (1968).

It is noteworthy that the deflection curves presented by Chapman and Balakrishnan (1964) seem to

contain an inconsistency: two different deflection curves have been referenced for the same beam

(beam A4). For the purpose of this study, the higher of the two curves has been utilised to compare the

deflection results for beam A4. Due to the same inconsistency, the second of these curves has been

considered in the comparison for the deflections of beam A5; this has been carried out on the basis that

this curve would provide more consistent results with the moment-curvature curve of beam A5 than the

deflection curve labelled with A5 of Chapman and Balakrishnan (1964).

Fig. 6 Nonlinear constitutive law for the concrete material (CEB-FIB 1993)
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The graphical comparison (Stage 1) for these beams is illustrated in Figs. 9 and 10, which show the

mid-span deflections and curvatures for beams A1~A4 (Fig. 9) and A5 and A6 (Fig. 10). In general, the

discretisations based on 14 and 26 elements (Table 5) predict both the load-deflection and the moment-

Fig. 7 Nonlinear constitutive law for the steel: trilinear model

Fig. 8 Nonlinear constitutive law for the shear connection
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curvature curves of the tests quite well, although sometimes the former discretisation overestimates the

beam stiffnesses and capacities. The results obtained using the 4 and 8 element meshes did not describe

the structural response of the beams adequately.

The deflections and the curvatures at mid-span have also been considered in the comparisons of results

Fig. 9 Experimental results for beams A1 and A4 (Chapman and Balakrishnan 1964)
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for different numbers of Gauss stations (Stage 2). Table 6 shows the results for the coarser discretisations

(higher values of ψL/D) for 3, 5, 7 and 12 Gauss stations needed to keep the error eng relative to that for

24 Gauss stations below η = 1%, when based on the same discretisation. From the results of all

numerical simulations, 3 Gauss stations were found to be sufficient with 14 and 26 elements, except for

beams A3 and A6 which needed a larger number of elements to keep eng < 1%. Beams meshed with 4

or 8 elements required 5 or more Gauss stations. 

4.4. Experiments by Fabbrocino et al. (1998, 1999)

The experiments reported by Fabbrocino et al. (1998, 1999) have been used to model the material

properties for the numerical simulations of beams A, B and C. For these, the CEB-FIB guidelines

(1993) have been used for the concrete slab (Fig. 6). For these kinds of problems it is very important to

select an appropriate constitutive model for the tensile behaviour of the concrete in order to be able to

well depict not only the generalised displacements of the problem but also its deformation state, i.e.

strains and curvature. The quadrilinear representation of Fig. 11 was used for the steel joist and

reinforcement as it better represents the experimental stress-strain curves reported by Fabbrocino et al.

(1998, 1999). The representation of the shear connection in Fig. 8 was used with α = 0.3 and β = 0.3 to

match the push test results reported by Fabbrocino et al. (1999).

The graphical comparisons (Stage 1) carried out for beams A, B and C considered several variables as

shown in Figs. 12 and 13. These variables are the deflection at mid-span, the curvature measured 210

mm from mid-span, the slip at the beam ends and the compressive and tensile strains in the top and

bottom fibres of the steel joist measured 210 mm from mid-span for beams A and B. For beam C, the

variables considered were the deflection at mid-span, the curvature measured 140 mm from mid-span,

the slip at the beam ends and the compressive and tensile strains in the top and bottom fibres of the steel

joist measured 680 mm and 140 mm from mid-span respectively.

Fig. 10 Experimental results for beams A5 and A6 (Chapman and Balakrishnan 1964)
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For all beams, the analyses based on 12 and 24 elements (equivalent to ψL/D = 1 and 0.5 respectively)

model the experimental behaviour of the three beams very well, while the results with 6 and 2 element

meshes overestimate their capacities. To remain within the η = 1% error of the numerical results obtained

using 24 Gauss stations, 3~5 stations were needed for the 24 element discretisations, while a slightly

larger number was required for the other meshes. In general, the 12 and 24 element discretisations (i.e.

ψL/D = 1 and 0.5) adequately model the behaviour of the three specimens with a minimum of 12 and 3

Gauss stations respectively. In particular, the proposed direct stiffness method was able to predict the

strain distribution very well at different locations along the beam length, as depicted in Figs. 12(d),

13(c), 13(g) and 13(h).

4.5. Experiments by Ansourian (1981)

Ansourian (1981) reported a series of experiments on continuous beams, whose material and cross-

Table 6 Nonlinear modelling results for beams reported in (Chapman and Balakrishnan 1964)

B
E

A
M

V
a
ri

a
b
le

P = peak load of the analysis in kN
A = deflection at mid-span in mm at peak load [error %]
B = curvature in 1/m at peak load [error %]

3 Gauss stations 5 Gauss stations 7 Gauss stations 12 Gauss stations

A1

Mesh 14 elements 8 elements 8 elements 8 elements

P 420.0 530.0 530.0 530.0

A 75.5 [-0.5816%] 167.0 [0.0632%] 166.8 [-0.0167%] 166.9 [-0.0001%]

B 6.40 e-2 [-0.3611%] 8.23 e-2 [0.1429%] 8.23 e-2 [0.0411%] 8.22 e-2 [0.0171%]

A2

Mesh 14 elements 8 elements 8 elements 8 elements

P 460.0 580.0 580.0 580.0

A 87.4 [-0.3848%] 177.8 [0.0019%] 177.7 [-0.0016%] 177.7 [0.0004%]

B 6.78e-2 [-0.3724%] 8.87e-2 [0.1001%] 8.87e-2 [0.0592%] 8.86e-2 [0.0195%]

A3

Mesh 26 elements 8 elements 8 elements 8 elements

P 475.0 640.0 640.0 640.0

A 50.9 [0.2658%] 124.7 [-0.1938%] 125.0 [0.0138%] 124.9 [-0.0357%]

B 4.70e-2 [0.5600%] 6.13e-2 [-0.0514%] 6.14e-2 [0.0650%] 6.13e-2 [-0.0116%]

A4

Mesh 14 elements 8 elements 8 elements 8 elements

P 500.0 640.0 640.0 640.0

A 62.1 [0.1127%] 114.8 [0.1135%] 114.8 [0.0563%] 114.8 [0.0432%]

B 4.88e-2 [0.3330%] 5.69e-2 [0.3558%] 5.68e-2 [0.1973%] 5.68e-2 [0.1525%]

A5

Mesh 14 elements 14 elements 14 elements 14 elements

P 500.0 500.0 500.0 500.0

A 72.8 [0.2828%] 72.8 [0.2390%] 72.7 [0.1358%] 72.6 [0.0170%]

B 5.75e-2 [0.4260%] 5.76e-2 [0.4968%] 5.75e-2 [0.2993%] 5.73e-2 [0.0365%]

A6

Mesh 26 elements 26 elements 26 elements 8 elements

P 450.0 450.0 450.0 550.0

A 75.3 [-0.9438%] 75.4 [-0.8306%] 76.0 [0.0793%] 113.2 [-0.0285%]

B 6.87e-2 [-0.8658%] 6.89e-2 [-0.5772%] 6.94e-2 [0.1489%] 5.72e-2 [-0.2627%]
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sectional properties were given in detail. Based on these properties that are given partly in Tables 3 and

4, the concrete was represented by the CEB-FIB modelling (1993) (Fig. 6), while the model proposed

Fig. 11 Nonlinear constitutive law for the steel: quadrilinear model

Fig. 12 Experimental results for beam A (Fabbrocino et al. 1998)
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in CEB-FIB (1998) and that is reproduced in Fig. 14, was used to describe the stress-strain response of

the steel joist and reinforcement. The model given in Fig. 8 was adopted for the shear connection.

Similar material representations have been utilised by Zona (2003) in the simulation of these

experiments. The selection of the material properties as close as possible to the experimental stress-

strain curves observed for the different materials is very important in the validation process. Similarly

Fig. 13 Experimental results for beams B and C (Fabbrocino et al. 1998, 1999)
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to the hogging region tests, an adequate representation of the concrete behaviour is essential to well

depict the deformation state of the composite members.

The graphical comparison (Stage 1) given in Fig. 15 for beams CTB1 and CTB2 shows that the 30

and 60 element meshing (equivalent to ψL/D = 1 and 0.5) predicts the load-deflection curves in the sagging

and hogging moment regions (in the left and right spans respectively) quite well, while modelling based

on fewer elements leads to overestimates of the beam capacity (a slight overestimate with 15 elements

and a large overestimate with 5 elements). For beams CTB1 and CTB2, 3 Gauss stations are adequate when

discretised with 60 elements, 5 Gauss stations are adequate when discretised with 15 and 30 elements,

while 24 Gauss stations are needed in the case of a 5 element discretisation to remain within the selected

1% margin.

In the case of beams CTB3 and CTB4, a meshing based on 32 and 64 elements (equivalent to element

coefficients ψL/D of 1 and 0.5 respectively) predict the experimental curve well, while the other meshes

overestimate the beams’ capacities. In these cases, 3 Gauss stations are sufficient for the meshing with

64 elements, 5 Gauss stations for 18 and 32 elements, and 24 Gauss stations for 6 elements. 

For beams CTB5 and CTB6, the discretisations based on 28 and 56 elements provide good predictions

of the experimental curve, but with a slight overestimation with the 16 element discretisation. The curve

obtained using 6 elements overestimates the experimental one. 3 Gauss stations are sufficient for the

discretisation with 56 elements, 3 to 5 with 28 elements, while 5 and 24 Gauss stations are required using

16 and 6 elements respectively. 

Based on the above, the discretisation using ψL/D equal to 1 and 0.5 adequately model the behaviour

of the six specimens with 5 and 3 Gauss stations respectively. 

Fig. 14 Nonlinear constitutive law for the steel: model proposed in (CEB-FIB 1998)
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5. Conclusions

This paper has presented a modelling technique that is able to depict the nonlinear behaviour of

composite beams with partial shear interaction. The proposed approach extended the applicability of

two stiffness elements, i.e. the 6DOF and the 8DOF elements, which were derived previously by the

Fig. 15 Experimental results for beams CTB1, CTB2, CTB3, CTB4, CTB5 and CTB6 (Ansourian 1981)
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authors in the linear-elastic range (Ranzi et al. 2004, Ranzi and Bradford 2007) to account for material

nonlinearities. The elements were derived by means of the direct stiffness method, whose freedoms

include the vertical displacement, the rotation and the slip at both ends for the 6DOF stiffness element,

as well as the axial displacement at the level of the reference axis for the 8DOF stiffness element.

The iterative scheme of the solution strategy was based on the secant method, while the convergence

criteria relied on the ratios of Euclidean norms of both forces and displacements. The main advantage

of this approach is that the displacement fields of the stiffness elements considered are very rich, as they

are equivalent to the analytical ones describing the elastic behaviour of the composite beams with

partial interaction. The numerical formulation was found to be robust.

The proposed modelling technique has been validated against experimental data available in the

literature, using the experiments reported by Chapman and Balakrishnan (1964), Fabbrocino et al. (1998,

Table 7 Nonlinear modelling results for beams reported in (Fabbrocino et al. 1998, 1999)

B
E

A
M

V
a
ri

a
b
le

 

P = peak load of the analysis in kN 
A = deflection at mid-span in mm at peak load [error %]
B = curvature in 1/m calculated at 210 mm from mid-span at peak load [error %]
C = extreme tensile strain of steel joist calculated at 210 mm from mid-span at peak load [error %]
D = extreme compressive strain of steel joist calculated at 210 mm from mid-span at peak load [error %]
E = curvature in 1 /m calculated at 140 mm from mid-span at peak load [error %]
F = slip in mm calculated at the supports at peak load [error %]
G = extreme tensile strain of steel joist calculated at 680 mm from mid-span at peak load [error %]
H = extreme compressive strain of steel joist calculated at 680 mm from mid-span at peak load [error %]
I = extreme tensile strain of steel joist calculated at 140 mm from mid-span at peak load [error %]
J = extreme compressive strain of steel joist calculated at 140 mm from mid-span at peak load [error %]

3 Gauss stations 5 Gauss stations 7 Gauss stations 12 Gauss stations

A

Mesh 24 elements 6 elements 6 elements 6 elements

P 312.0 360.0 360.0 360.0

A 226.9 [−0.2975%] 658.5 [−0.1418%] 659.4 [−0.0041%] 659.6 [0.0293%]

B 3.02e-1 [−0.2226%] 7.48e-1 [−0.1387%] 7.49e-1 [0.0018%] 7.49e-1 [0.0319%]

C 1.93e-2 [−0.3059%] 3.82e-2 [−0.0545%] 3.83e-2 [0.0796%] 3.83e-2 [0.0266%]

D −3.51e-2 [0.1768%] −9.64e-2 [0.1720%] −9.66e-2 [0.0291%] −9.66e-2 [−0.0340%]

B

Mesh 24 elements 6 elements 6 elements 6 elements

P 312.0 360.0 360.0 360.0

A 226.9 [−0.2975%] 658.5 [−0.1418%] 659.4 [−0.0041%] 659.6 [0.0293%]

C 1.81e-2 [−0.5913%] 3.64e-2 [−0.0767%] 3.65e-2 [0.0650%] 3.64e-2 [0.0200%]

D −3.32e-2 [0.2976%] −9.19e-2 [0.1815%] −9.20e-2 [0.0353%] −9.21e-2 [−0.0312%]

C 

Mesh 24 elements 24 elements 24 elements 12 elements

P 288.0 288.0 288.0 292.0

A 169.2 [0.1394%] 169.5 [0.3034%] 169.3 [0.2149%] 171.3 [0.4342%]

E 3.42e-1 [0.3312%] 3.42e-1 [0.4575%] 3.42e-1 [0.3262%] 3.00e-1 [0.5191%]

F 8.01 [0.3370%] 8.02 [0.5144%] 8.01 [0.3671%] 8.01 [0.7758%]

G 1.49e-3 [−0.0115%] 1.49e-3 [−0.0125%] 1.49e-3 [-0.0089%] −1.78e-3 [0.0073%]

H −1.77e-3 [0.0038%] −1.77e-3 [0.0041%] −1.77e-3 [0.0029%] 1.50e-3 [−0.0221%]

I 2.41e-2 [0.6441%] 2.42e-2 [0.7913%] 2.41e-2 [0.5642%] −3.16e-2 [−0.2686%]

J −3.74e-2 [−0.1300%] −3.74e-2 [−0.2430%] −3.74e-2 [−0.1732%] 1.87e-2 [0.9923%]
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1999) and Ansourian (1981). These consist of six simply supported beams with a point load applied at

mid span inducing positive bending moment in the beams, three simply supported beams with a point

Table 8 Nonlinear modelling results for beams reported in (Ansourian 1981)

B
E

A
M

V
a
ri

a
b
le

 

 P = peak load of the analysis in kN 
 A = deflection at mid-span (downwards in left span) in mm at peak load [error %]
 B = deflection at mid-span (downwards in left span) in mm at peak load [error %]
 C = deflection at mid-span (upwards in right span) in mm at peak load [error %]
 D = curvature in 1/m calculated in the sagging moment region at peak load [error %]
 E = curvature in 1/m calculated in the hogging moment region at peak load [error %]

3 Gauss stations 5 Gauss stations 7 Gauss stations 12 Gauss stations

CTB1

Mesh 60 elements 15 elements 15 elements 5 elements

P 201.0 249.0 249.0 435.6

B 38.8 [0.0746%] 66.7 [−0.1262%] 66.8 [0.0567%] 152.9 [0.0137%]

C 8.58e-2 [0.0003%] 6.01e-2 [0.0962%] 6.01e-2 [−0.0424%] 2.65e-1 [−0.3348%]

D 14.5 [−0.0011%] 22.1 [−0.0766%] 22.2 [0.0333%] 71.0 [−0.1065%]

E 1.08e-2 [0.3310%] 2.68e-2 [−0.0033%] 2.68e-2 [0.0868%] 7.19e-2 [0.0053%]

CTB2

Mesh 60 elements 15 elements 15 elements 15 elements

P 259.2 302.4 302.4 302.4

B 76.9 [−0.2560%] 140.6 [−0.0135%] 140.7 [0.0135%] 140.7 [0.0230%]

C 1.51e-1 [−0.6058%] 1.63e-1 [0.0198%] 1.63e-1 [0.0296%] 1.63e-1 [0.0228%]

D 20.7 [−0.1813%] 29.6 [−0.0265%] 29.6 [−0.0650%] 29.6 [0.0357%]

E 2.96e-2 [−0.0966%] 9.29e-2 [0.0053%] 9.29e-2 [0.0014%] 9.29e-2 [0.0681%]

CTB3

Mesh 64 elements 18 elements 18 elements 18 elements

P 604.8 652.8 652.8 652.8

A 63.2 [0.6998%] 80.5 [0.0088%] 80.4 [−0.1063%] 80.5 [0.0035%]

D 1.24e-1 [−0.9114%] 1.42e-1 [0.0271%] 1.42e-1 [−0.2677%] 1.42e-1 [0.0133%]

E 4.75e-2 [0.6221%] 9.00e-2 [−0.0216%] 8.99e-2 [−0.1517%] 9.00e-2 [0.0099%]

CTB4

Mesh 32 elements 18 elements 18 elements 18 elements

P 576.0 614.4 604.8 614.4

A 67.7 [−0.3347%] 75.8 [0.2377%] 67.9 [−0.0263%] 75.7 [0.1241%]

D 1.23e-1 [−0.2971%] 1.42e-1 [0.0455%] 1.34e-1 [0.0188%] 1.42e-1 [−0.0171%]

E 1.02e-1 [−0.3831%] 8.17e-2 [0.3079%] 7.30e-2 [0.0017%] 8.16e-2 [0.1365%]

CTB5

Mesh 28 elements 16 elements 16 elements 16 elements

P 640.0 672.0 672.0 672.0

A 77.3 [−0.5164%] 77.2 [0.0667%] 77.2 [0.0545%] 77.2 [0.0403%]

D 1.32e-1 [−0.6264%] 1.33e-1 [0.0472%] 1.33e-1 [0.0269%] 1.33e-1 [0.0219%]

E 1.09e-1 [−0.6744%] 7.51e-2 [0.1040%] 7.51e-2 [0.0765%] 7.51e-2 [0.0527%]

CTB6

Mesh 56 elements 16 elements 16 elements 16 elements

P 688.0 752.0 752.0 752.0

A 65.9 [−0.2397%] 71.7 [0.0205%] 71.7 [0.0006%] 71.7 [0.0053%]

D 1.19e-1 [−0.4064%] 1.26e-1 [0.1003%] 1.26e-1 [0.0035%] 1.26e-1 [−0.0023%]

E 1.27e-1 [0.2776%] 6.96e-2 [0.0602%] 6.95e-2 [0.0064%] 6.95e-2 [−0.0077%]
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load applied at mid span inducing negative bending moment in the beams, and six two-span continuous

composite beams respectively.

Based on the parametric studies and numerical considerations given in the validation process, it can

be concluded that the nonlinear modelling technique based on the direct stiffness approach is able to

describe the nonlinear behaviour of composite beams with partial interaction very well if the

discretisation based on an element whose length to depth ratio ψL/D is in the approximate range 0.5~

1.0. In this case, 3~5 Gauss stations are needed. Coarser discretisations may require significantly larger

numbers of Gauss stations, and the recommendation from the study is that optimal and accurate numerical

modelling of the nonlinear response of composite beams based on the direct stiffness approach is

achieved with a meshing with ψL/D = 0.5 and with 5 Gauss stations per element.
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APPENDIX

Ac, Ar, As = area of concrete component, reinforcement and steel joist respectively

Bc, Br, Bs = first moment of area of concrete component, reinforcement and steel joist respectively,

calculated about the arbitrary reference axis

Ec, Er, Es = secant modulus of concrete component, reinforcement and steel joist respectively

Ic, Ir, Is = second moment of area of concrete component, reinforcement and steel joist respectively,

calculated about the arbitrary reference axis

AẼ1 AcEc ArEr      ; AẼ2+ AsEs       ; AẼ AẼ1 AẼ2+= = =

BẼ1 BcEc BrEr      ; BẼ2+ BsEs       ; BẼ BẼ1 BẼ2+= = =
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