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Abstract. A methodology to design symmetrically laminated fibre-reinforced structures under transverse
loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and
the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint
implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band,
compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element
method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting
coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology
is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to
be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and
boundary conditions are optimally designed and compared.
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1. Introduction

Design for minimum weight is becoming popular as the necessity for improved structural performance

increases. This is particularly true of structures made from fibre reinforced composites, which offer

superior stiffness to weight and strength to weight ratios when compared to conventional materials. An

advantage of these materials over conventional ones is the possibility of tailoring their properties to the

specific requirements of a given application. The tailoring is mostly achieved by maximizing the

mechanical properties as a result of selecting the fibre angles and thicknesses of the layers optimally,

and thus realizing the full potential of fibre-reinforced composites.

A number of studies concerning the minimum weight design of composite structures appear in the

literature. Angle-ply laminates subjected to uncertain loads were studied by Adali et al. (1995) who

used a convex modelling approach in their analysis. Adali et al. (1994) investigated the minimum

weight and deflection design of thick sandwich laminates via symbolic computation. Optimal weight

design of shells was tackled by Min and de Charanteney (1986), who investigated sandwich cylinders

under combined loadings. A study by Ostwald (1990) considered the combined loading cases of
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external pressure and axial compression in the optimization of thin walled shells. The Bubnov-Galerkin

method was used to solve the stability problem. A paper by Walker et al. (1997) focuses on the minimum

deflection and weight designs of laminated composite plates. The finite element method using Mindlin

plate theory was used in conjunction with optimization routines in order to obtain the optimal designs.

Comparative results are presented for minimum weight priority design as an alternative to minimum

deflection/minimum weight priority design to investigate the effect of priority on the deflection and weight.

Various researchers have proposed design methodologies or techniques for the optimization of

composite structures. For example, Walker et al. (1997) describes a methodology that can be used to

select the best material combinations and optimize the design of hybrid composite plates for minimum

weight and cost. In two papers, Walker and Smith (2002, 2003) describe several different techniques for

the design optimization of composite structures. In the first, the fibre orientations, laminae thicknesses and

material combinations are used as design variables, and the technique is used to select the best

combination for minimum cost for plates subject to compressive loads. The second details a simple-self

design methodology that can be used to minimize the mass of composite structures. The procedure is

based on the finite element method, and suitable elements are removed without affecting the overall

structural integrity. Here, a failure criterion is implemented.

Tolerances of design variables due to variations in manufacturing processes and user environment

may affect the quality and performance of a product (Messac and Sundararaj 2002). It is usually

beneficial to account for such variances in the design process, and in fact, sometimes it may be crucial,

particularly when the effect is of consequence. Robust Design Optimization (RDO) is intended to yield

a system that performs with minimal variability in the face of input variations or uncertainties. RDO

methods generally seek to minimize the variation of an Aggregate Objective Function (AOF) and to

maintain design feasibility under input variations. The optimization outcome depends on (i) the

acceptable level of variations in performance, and (ii) the level of input variations (Bates et al. 2002).

Robust design, then, is an approach that explicitly recognizes the effects of these variations and seeks to

minimize their consequences - without eliminating their sources. 

Various researchers have used robust optimization techniques in the design optimization of structures.

For example, Liou & Jang (1997) describe a procedure for considering stress distributions in forged

products and use the finite element method together with a robust design approach. In order to extend

the operating life of products and satisfy the quality of operation during the customer usage, it is

necessary to monitor residual stresses during the forging operations. The finite element method and

robust design methodology were utilized to identify the controlling process parameters which can

monitor the residual stresses in forged products. Lee & Park (2002) describe a robust optimization

strategy for dealing with discrete constrained design problems. A relatively simple method is proposed

to select discrete and robust optimum. At first, the discrete design is achieved as the postprocess of

conventional optimization. An orthogonal array is established around a conventional optimum, and the

characteristic functions are evaluated. The characteristic function is defined by considering the robustness of

the objective and constraints. The parameter design of the Taguchi method is introduced to obtain the

robust solution in discrete space. The method is insensitive to variations of the design variables within

the selected discrete values enhancing the feasibility of constraints. Several structural problems are

solved to demonstrate the technique.

Very few researchers have dealt with the robust design of composite structures. Chiang (1996) used a

robust design approach to improve the accuracy of the Iosipescu shear test specimen. The statistical

design of experiments based on the finite element method was employed, and was able to identify the

influential design variables. Kristinsdottir (1995, 1996) describe a methodology which uses a random
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global search algorithm to explore near optimal designs with different tolerances. In two papers by

Walker and Hamilton (2005, 2005) a technique for optimally designing laminated plates with manufacturing

tolerances present in the design variable (which is the fibre orientation) is described. The objective is to

maximize the buckling load carrying capacity and in the first, a closed form solution for plates is

implemented, whilst in the second, the FEM is used. The techniques are aimed at optimally designing

for the worst-case scenario, and the results presented (as a means of illustrating the methodology)

demonstrate the importance of accounting for manufacturing uncertainties.

This paper describes a procedure to design symmetrically laminated structures under transverse loads

for minimum mass with manufacturing uncertainty in the ply angle. The ply angle and the ply thickness

are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. As in

Walker and Hamilton (2005, 2005), it is assumed that the probability of any tolerance value occurring

within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case

scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented,

and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used

as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element

formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the

procedure, laminated plates with varying aspect ratio and boundary conditions are optimally designed

and compared. The results show that if the manufacturing uncertainty in the fibre orientation is

neglected, for the tolerance scenario implemented, the plate thickness may be as much as 12%

underspecified, and consequently would fail in practice.

2. Bending of rectangular laminates 

Consider a symmetrically laminated rectangular plate of length a, width b and total thickness H under

a transverse bending load q(x, y), as shown in Fig. 1. The plate is located in the x, y, z plane and

Fig. 1 Geometry and loading of plate
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constructed of an arbitrary number K of orthotropic layers of thickness tk and fibre orientation θk where

k =1, 2, ..., K. The displacement of a point (x0, y0, z0) on the reference surface is denoted by (u0, v0, w0).

Different combinations of free (F), simply supported (S) and clamped (C) boundary conditions are

implemented at the four edges of the plate. In particular, four different combinations are studied,

namely, (C, S, F, S), (S, S, S, S), (C, S, C, S) and (C, C, C, C), where the first letter refers to the first plate

edge, and the others follow in the anti-clockwise direction as shown in Fig. 1.

3. Finite element formulation

We now consider a finite element formulation of the problem (based on Mindlin type theory, although

any suitable formulation can be substituted). Let the region S of the plate be divided into n sub-regions

Sr (Sr ∈S ; r = 1, 2, ..., n) such that

(1)

where  and Sr are potential energies of the plate and the element, respectively, and u is the

displacement vector. Using the same shape functions associated with node j ( j = 1, 2, ..., n), Sj(x, y), for

interpolating the variables in each element, we can write

(2)

where uj is the value of the displacement vector corresponding to node j, and is given by

(3)

The displacements {u, v, w, φ1, φ2} are approximated as

(4)

where ψj are Lagrange family of interpolation functions. From the equilibrium equations of the first

order theory, and Eq. (6), we obtain the finite element model of the first-order theory,

(5)

or

(6)
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values of w and its derivatives.

4. The Tsai-Wu failure criteria

The Tsai-Wu failure criteria stipulates that the condition for non-failure for any particular ply is

(7)

where the strength parameters F11, F22, F66, F1, F2 and F12 are given by

(8)

and Xt, Xc, Yt, Yc are the tensile and compressive strengths of the composite material in the fibre and

transverse directions, and G is the in-plane shear strength.

5. Optimal design problem and solution procedure

The objective of the design problem is to minimize the mass of the plate, with manufacturing

uncertainty in the layup angle θ accounted for. The problem can thus be stated as

Wmin ,  ,  (9)

where the mass of a plate is given by

(10)

and where H is the total thickness of the plate and ρ  the density.

In this case the minimum mass is found by determining

(11)

at each value of θ until Hmin (and thus θopt) is obtained.

When composite laminates are manufactured, the desired fibre orientation in different plies may

deviate from their intended design values by a few degrees. These deviations are referred to as manufacturing
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required plate thicknesses for a (CCCC) laminated plate with four symmetric layers of equal thickness

and with θ1 = −θ2 = −θ3 = θ4 = θ. The plate has dimensions a = 1.25 m, b = 1m and is subjected to a

uniform transverse bending pressure of 100,000 Pa. The material properties are those for a typical

T300/5208 graphite/epoxy material with E1 = 181 GPa, E2 = 10.3 GPa, G12 = 7.17 GPa and γ12 = 0.28.

There are three trendlines given, and these represent the nominal layer thickness (viz. the value at θ),

along with the upper and lower bounds (viz. the values at θ + g and θ + h; thus the plate thickness

required is Hlower ≤ H ≤ Hupper due to the presence of tolerance in the layup angle). Note that each value

in the trendlines has been determined by using Eq. (11). It is evident that the effect of the upper and

lower tolerances is to shift the nominal trend right and left. The design problem becomes one of

determining the value of θ at which the layer thickness is minimized thus reducing the weight of the

Fig. 2 Effect of manufacturing tolerance in θ on the minimum plate thickness with a/b = 1.25 and (CCCC)
boundary condition

Fig. 3
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laminate, with the tolerances accounted for, which effectively becomes one of determining the value of

θ for which the trend described by the upper solid line in Fig. 3 (which needs no explanation) is

minimized (viz. designing for the worst case scenario). In addition, in the event that two or more values

of θ correspond to equal minimum thickness values, the one that gives the best value contained within

the lower solid line should logically be selected. In this case, the optimal value is 51.43o which

corresponds to a plate thickness of 10.89 mm. The optimal values for the nominal case are 48.84o and

10.10 mm. It is apparent from this example that the values of the actual optimal results are different

from those of the nominal, and that if we were to ignore the manufacturing tolerances and choose

48.84o as the optimal fibre orientation, the corresponding minimum thickness required could be as high

as 11.32 mm (viz. the value at 48.84o−7o), which is 12% more than the optimal value. Alternatively, if

the nominal design values are selected, the plate would fail in practice. This fact emphasizes the

importance of carrying out optimization in design work with the effects of manufacturing tolerances

included.

The optimization procedure thus involves the stages of determining the minimum layer thickness

required for a given θ, θ + g and θ + h to satisfy Eq. (11), selecting the greatest of the three values, and

improving the fibre orientation to minimize the greatest value. Thus, the computational solution

consists of successive stages of analysis and optimization until convergence is obtained and the optimal

angle θopt and layer thickness tmin is determined within specified accuracy. In the optimization stage

here, the Golden Section method is employed to determine both θopt and tmin, and θopt is determined to

within 0.01o, whilst tmin is determined to within 0.01 mm.

6. Sample results and discussion

In order to further illustrate the methodology described above, plates with four equal thickness

symmetric layers and with aspect ratios ranging from a/b = 0.5 to 2 are studied. In addition, the effect of

the boundary condition is also considered. The plates have the same material properties and loading as

that used for Fig. 2.

The effect of the aspect ratio is illustrated in Tables 1 and 2, for (CCCC) and (SSSS) plates (respectively).

Also, the nominal optimal fibre angle and corresponding Hmin are reported, for comparison purposes.

For Table 1, the trend in both the nominal thickness and actual thickness values is generally as

expected, viz. as the plate gets longer, so the thickness increases. In addition, the actual values are

greater than the nominal values (as expected), with the difference for the square plate being the largest

(9.7%). The optimal fibre orientation values show the same (increasing) trend although the actual

values are less than the nominal values for 0.5 ≤ a/b ≤ 1. When a/b>1, the values are greater. The

greatest difference occurs for the plate with a/b = 0.5.

Table 1 Effect of varying the plate aspect ratio for (CCCC) plates

a/b θopt Hmin Optimal fibre angle (nominal) Hmin 

(nominal)

0.5 7.59o 4.46 35.46o 4.37 

0.75 29.54o 7.65 39.64o 7.26 

1 41.97o 10.20 45o 9.30 

1.25 51.43o 10.89 48.84o 10.10 

2 56.71o 11.09 52.15o 10.36 
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For Table 2, the trend in the thickness values is the same as that observed in Table 1, except when

a/b >1, at which point the values start reducing. Nonetheless, the actual values are always greater than

the nominal values due to the uncertainty in θ, and the greatest difference is 12.7% (in the case of the

plate with a/b = 0.75). The values of the optimal fibre orientations are not particularly interesting,

except in the case of the longest plate, which has a nominal θopt which is neither 0o or 90o (although

close to 90o).

The effect of the boundary condition on the results for plates with a/b = 1.25 is illustrated in

Table 3. There are no apparent trends in either the thickness or fibre orientation values (although,

as usual, the actual thickness values are greater than the nominal values). The greatest difference

in the thickness values is 7.6% in the case of the (SSSS) plate. Interestingly, the plate with the free

edge, viz. the (FSCS) plate, is almost double the thickness of the thinnest (for both actual and

nominal values).

7. Conclusions

A technique for designing symmetrically laminated structures under transverse loads for

minimum mass with manufacturing uncertainty in the ply angle has been presented. The ply angle

and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design

constraint implemented. It is assumed that for a specified value of the fibre angle θ (for

0o ≤ θ ≤ 90o) there may be a maximum variation of +g or -h, with 0o ≤ g, h ≤ 90o, and also that the

probability of any tolerance value occurring within the tolerance band, compared with any other, is

equal. In addition, when accounted for, it is assumed that θ + g ≤ 90o and 0o ≤ θ + h. It is obvious

then that for a specified value of θ, the actual outcome could vary between the values θ + g and θ

+ h, and thus also the corresponding minimum plate thickness could vary between the values H(θ

+ g) and H(θ + h). The technique that has been described is designed to determine the value of θ at

which the greatest corresponding thickness is minimized. Thus the worst case scenario is always

Table 2 Effect of varying the plate aspect ratio for (SSSS) plates 

a/b θopt Hmin Optimal fibre angle (nominal) Hmin (nominal)

0.5 0o 6.06 0o 5.73 

0.75 0o 9.79 0o 8.69 

1 90o 12.50 0 or 90o 11.78 

1.25 90o 12.46 90o 11.57 

2 90o 12.43 86.81o 11.62 

Table 3 Effect of boundary condition for plates with a/b = 1.25

Boundary condition θopt Hmin Optimal fibre angle (nominal) Hmin (nominal)

(SSSS) 90o 12.46 90o 11.57 

(CSFS) 38.73o 21.23 39.98o 19.84 

(CSCS) 84.14o 7.88 79.69o 7.82 

(CCCC) 51.43o 10.89 48.84o 10.10 
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accounted for. The search routine implemented is the Golden Section method, although any

suitable one can be substituted. Similarly, the Tsai-Wu failure criterion is implemented, but any

suitable alternative could also be substituted.

In order to illustrate the technique, the designs of symmetrically laminated plates are optimized. The

plates are subjected to similar uniformly disctributed loads, and the effect of changing the aspect

ratio and boundary condition is studied. In addition, the value of θopt is determined to within 0.01o

whilst H is determined to within 0.01 mm, and the optimized designs are compared to those for

plates not subjected to manufacturing variations (termed here ‘nominal’). The results demonstrate

that if the manufacturing tolerances are neglected in the optimal design stage, for the tolerance

scenario implemented, the plate can be as much as 12% heavier if it were to carry the load without

failure, or would be too thin, and fail in practice. Finally, it should be noted that different finite

element formulations can also be substituted into the technique when more appropriate.
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