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Abstract. A rectangular plate made of a porous material is the subject of the work. Its mechanical
properties vary continuously on the thickness of a plate. A mathematical model of this plate, which bases on
nonlinear displacement functions taking into account shearing deformations, is presented. The assumed
displacement field, linear geometrical and physical relationships permit to describe the total potential energy
of a plate. Using the principle of stationarity of the total potential energy the set of five equilibrium equations
for transversely and in-plane loaded plates is obtained. The derived equations are used for solving a problem
of a bending simply supported plate loaded with transverse pressure. Moreover, the critical load of a bi-axially
in-plane compressed plate is found. In both cases influence of parameters on obtained solutions such as a
porosity coefficient or thickness ratio is analysed. In order to compare analytical results a finite element model of
a porous plate is built using system ANSYS. Obtained numerical results are in agreement with analytical ones.

Keywords: non-homogeneous plate; elastic buckling; rectangular plate.

1. Introduction

Plates of changing thickness properties are widely used, from furniture industries to aerospace projects.

The simplest example of such a construction is a laminated plate (laminate) which is built of few layers

made of materials of different mechanical properties. A sandwich plate is another particular example of

such constructions. It is composed of two stiff outer layers (facings) and a light core placed between the

facings. Mechanical properties of laminates vary discretely on thickness. More advanced examples of
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non-homogeneous plates are made of porous or graded materials. In these structures mechanical properties

vary continuously on thickness of plate. An extensive article describing the manufacturnig, testing and

applications of such materials is the work of Banhart (2001) that contains more than 300 references. Another

example of a work devoted to porous materials is the monograph of Mielniczuk (2000).

The simplest, widely used approach to modelling plates made of non-homogeneous materials is using

Kirchhoff-Love’s hypothesis for describing the displacement field and taking into account modified

forms of stiffness coefficients. This way of modelling was used for example in the monograph of

Ambartsumian (1987). Advantages of this approach are simplicity and ability to use solutions derived

for homogeneous plates, which may be found in Wozniak (2001) the rich monograph devoted to plates

and shells. The main disadvantage is neglecting shear forces and displacements, which restrict using

this approach to thin plates without rapid changes of mechanical properties.

Classical Laminated Plate Theory (CLPT) is based on the above assumptions. Its description may be

found in Jones (1975), where authors also deal with optimization of multilayered structures. The same

approach and its extension on First Shear Deformation Theory are presented in Vinson (1999) and in

the extensive monograph of Reddy (2004).

In order to overcome the aforementioned difficulties a lot of higher order hypotheses, which include

shearing, have been formulated. An example of a monograph devoted to this problem is the work of

Wang et al. (2000), where authors presented not only their own solutions but also a review of previous

attempts to model beams and plates. A thorough review of theories, including zig-zag ones, used for

modelling multilayered plates and rich bibliography may be found in the work of Carrera (2000),

review articles of Carrera (2001, 2003) devoted also to shells. A comparison of theories used for

modelling compressed and bent multilayered composite plates is presented in Chattopadhyay and Gu

(1996), Idlbi et al. (1997) and in the work of Noor and Malik (2000), where authors considered also

thermal loading.

Computational models for sandwich panels and shells are discussed by Noor et al. (1996).

There have already been attempts to model the mechanics of structures of changing properties. Their

results are papers devoted to porous beams Magnucki and Stasiewicz (2004a), and Magnucki and

Stasiewicz (2004b). This work is an extension of the ideas presented in the above papers to porous

plates.

2. Basic relations and differential equations of equilibrium

The subject of the work is a rectangular porous plate the dimensions of which are length a, width b

and thickness t (Fig. 1).

Fig. 1 Model of a plate
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Mechanical properties of a plate vary on the thickness of a plate and depend on porosity of a material

(Fig. 2). The functions expressing the change of moduli of elasticity are the same as those assumed in

the works of Magnucki and Stasiewicz (2004a, 2004b) and has a form

, (1)

where:

– the porosity coefficient of a plate, ,

E0, G0, E1, G1 – moduli of elasticity for ζ = 0 and ζ = ± ,

ζ =  – the dimensionless coordinate, ν – Poisson’s ratio.

A flat plane of a cross-section perpendicular to the mid-plane of a plate before deformation changes

after deformation to a surface, which is perpendicular only to the outer planes of a plate (z = ±t/2). This

hypothesis of deformation is presented in Fig. 3.

The displacement field of the considered plate is defined on a basis of the previous works of

Magnucki (2003), Magnucki and Stasiewicz (2004) and have the following form:

(2)

(3)

w(x, y) – deflection of a plate (the mid-plane) (4)

and components of strain state – geometrical relations are included in Annex.
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Fig. 2 The variability of Young’s modulus on the thickness of a plate
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(5)

where:

– the elastic strain energy,

– the work of load.

p [MPa] – transverse pressure,

Nx, Ny[N/mm] – intensity of in-plane load.

Taking into account linear physical relations (Hooke law) and Eq. (1), the elastic strain energy may

be written in the form

(6)

From the principle of stationarity of the total potential energy of a plate Eq. (5), after integrating over

the thickness of plate (−1/2 ≤ ζ ≤ 1/2) and integrating by parts over the mid-plane a system of five

partial differential equations is obtained
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Fig. 3 Displacements of a cross section of a plate wall
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δw) =

(7)

δψ1)

(8)

δφ1)

(9)

δψ2)

(10)

δφ1)

(11)

where the form of coefficients Ci is presented in Annex.

The system of partial differential Eqs. (7) – (11) is solved in an approximated way by assuming five

unknown functions having a form

j = 1,2 (12)

where:

wa – the amplitude of deflection,  ψaj, φaj – parameters of functions.
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From Eqs. (8), (10) and (9), (11) it is obtained 

,        (13)

where

These relations are obtained assuming simplifications specified below

,  ,     for (14)

Remaining two parameters of the functions ψ1(x, y) and φ1(x, y) are expressed in the following way

,       (15)

where  is the dimensionless amplitude of deflection and the form of coefficients α1, β1

is presented in Annex.

The first Eq. (7) of the system of five equations includes loads. After solving it the deflection of a

plate  or the critical load Nx,KR may be obtained.

3. Strength of a bending porous plate

It is assumed that a porous rectangular plate is loaded with uniformly distributed transverse pressure

p0[MPa]. From the orthogonalization condition of Galerkin method for Eq. (7)
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which coincides with the classical solution presented for example in the monograph of Bažant and

Cedolin (1991).

Normal stresses basing on Hooke law are expressed as follows

,      .

They have maximum values in the middle of plate (x = a/2, y = b/2). Taking into account Eqs. (1),

(A1), (A2), (13), (15) and (17) the maximum stresses are equal to:

(19)

where

A numerical analysis was carried out for the family of rectangular porous plates with the following

parameters:
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Fig. 4 Normal stresses σx[MPa] vs. the thickness of a plate (e0 = 0.9)
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Graphs of maximum normal stresses σx[MPa] that vary on the thickness of square plates t/a = 1/10

and t/a = 1/15 are presented in Fig. 4.

Graphs of maximum normal stresses σx[MPa] that vary on the thickness of square plates (t/a = 1/15)

for different porosity coefficients e0 = 0, 0.9 and 0.99 are presented in Fig. 5.

4. Critical load of in-plane compressed porous plate

Rectangular porous plate is bi-axially loaded with compressive in-plane forces. Intensity of these loads Nx

and Ny is constant on the edges of a plate (Bažant and Cedolin 1991). From the orthogonalization

condition of Galerkin method for Eq. (7)

(20)

where (x, y) is the left side of Eq. (7), the dimensionless critical load is obtained and has

a following form

(21)

where

, ,      
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Fig. 5 Normal stresses σx[MPa] vs. the thickness of a plate (t/a = 1/15)
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obtained from Eq. (21) and has a form

,      where  (22)

which coincides with the classical solution presented for example in the monograph of Bažant and

Cedolin (1991).

A numerical analysis was carried out for the family of rectangular porous plates with the following

parameters:

       ;            

Influence of the ratio of load (Cxy = Ny / Nx) on the longitudinal critical load ( fx,CR) is shown in Fig. 6.

5. Numerical tests with the use of FEM analysis

A numerical analysis of an isothropic beam made of a porous material was carried out by Magnucki

and Stasiewicz (2004). Deflection and stresses obtained analytically and numerically (FEM) were

presented by them.

In the considered problem the FEM analysis of a porous plate was done in ANSYS. A discrete model

of a plate was built from finite elements SHELL99, in which 22 layers were defined. The mechanical

properties E and ν in the mid-plane of each layer were calculated from Eq. (1).
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Fig. 6 Dimensionless critical load for a bi-axially compressed plate
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5.1. Bending of a porous plate

A numerical analysis was carried out for the same group of rectangular porous plates that was used in

analytical calculations. The graphs of the normal stresses in the middle cross section of plates obtained

from FEM analysis σx[MPa] for a/b = 1 with a thickness ratio t/a = 1/10, 1/15 and porosity coefficient

e0 = 0.99 and e0 = 0.9 are presented in Figs. 7 and 8.

It may be seen in the figures that stresses vary linearly on the thickness of each layer. The maximum

stresses in the outer layers are equal to 101.17 MPa for t/a = 1/15; e0 = 0.90 and 107.0 MPa for t/a =

1/15; e0 = 0.99. Obtained results are consistent with the analytical calculations.

Fig. 8 The normal stress for the middle cross section of square plates (e0 = 0.90)

Fig. 7 The normal stress for the middle cross section of square plates (e0 = 0.99)
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The ratio of analytical results to FEM results are shown in Fig. 9. Its maximum value is equal to 1.112

for t/a = 1/10; e0 = 0.99 and 1.072 for t/a = 1/15; e0 = 0.90. The number of layers in a FEM model

should be increased if more accurate numerical results are needed.

In order to compare the results the ratio of analytically obtained relative deflection to numerically

obtained one is shown in Fig. 10. Its maximum value is equal to 1.215 for e0 = 0.99 and 1.018 for

e0 = 0.90. For less values of t/a the difference between analytical and numerical results become smaller

and approach one.

The example of the deflection shape of a porous plate is shown in Annex.

5.2. Buckling of a porous plate

Numerical analysis of buckling of a porous beam was presented in the work of Magnucki and

Stasiewicz (2004).

In the considered problem finite elements used for buckling analysis were the same as in the problem

of a bending plate. Investigation was done in the ANSYS environment. The eigenvalue and eigenvector

problems, which are connected with a buckling analysis, are solved with the use of the subspace

method including Jacobi algorithm.

The graphs representing dimensionless critical load  depending on the ratio a/b of a plate are

shown in Fig. 11.

The dimensionless critical load  is bigger for bigger values of a/b ratio and becomes smaller

with the increase of the porosity ratio e0. Different porosity coefficients e0 and ratios of load Cxy are

considered. Comparison of numerical results  with analytical ones  is presented in Fig. 12.

The maximum difference between analytical and numerical results does not exceed 0.6% and is largest

for Cxy = 2 and a/b = 1.

The example of the buckling shape of a porous plate is shown in Annex.

 fx CR,

FEM

 fx CR,

FEM

 fx CR,

FEM
 fx CR,

Fig. 9 The ratio of the normal stress of square plates Fig. 10 The ratio of the dimensionless deflection of
square plates
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6. Conclusions

The data obtained for considered bending porous plates with a porosity coefficient e0 = 0.90, 0.99

show that differences between maximum normal stresses obtained numerical and analytical are smaller

than 12%, whereas differences between relative deflections do not exceed 22%. These differences

become even smaller for thinner plates, in other words when a ratio t/a is smaller. They are also smaller

for small values of a porosity coefficient. For example, the maximum difference of the relative

deflection of a plate with parameters a/b = 1, t/a = 1/10 is equal to 1.8%.

Fig. 12 Relative difference between  and  as a function of the ratio a/b fx CR,

FEM

 fx CR,

Fig. 11 Dimensionless critical load  as a function of the ratio a/b fx CR,

FEM
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In the case of stability of considered porous plates the increase in the porosity of an inner structure

causes the value of critical load to become lower. A difference between dimensionless critical loads

obtained numerically and analytically does not exceed 0.6% and is the biggest for a square plate

(a/b = 1). It can be underlined that not only analytical values of buckling load are in agreement with

numerical ones but also the buckling shape, i.e., the number of buckling waves m = 1 and n = 1 for a

square plate.
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Annex

The components of strain state – geometrical relations:

(A1)

(A2)

(A3)

(A4)

(A5)

The stiffness coefficients of a porous plate

,    ,     ,

,    ,     ,

,    ,     

The coefficients of shear functions

,       

,

,    ,

εx
∂u

∂x
------ t ζ

 ∂
 2

w

∂x
2

------------
1
π
---

∂ψ1

∂x
---------sin πζ( )

∂ψ2

∂x
---------sin 2πζ( )cos

2 πζ( )+–
⎩ ⎭
⎨ ⎬
⎧ ⎫

–= =

εy
∂v

∂y
----- t ζ

 ∂
 2

w

∂y
2

------------
1
π
---

∂φ 1

∂ y
--------sin πζ( )

∂φ 2

∂ y
--------sin 2πζ( )cos

2 πζ( )+–
⎩ ⎭
⎨ ⎬
⎧ ⎫

–= =

γxy
∂u

∂y
------

∂v

∂x
-----+ t 2ζ

 ∂
 2

w

∂x∂y
------------

1
π
---

∂ψ1

∂ y
---------

∂φ 1

∂ x
--------+⎝ ⎠

⎛ ⎞ sin πζ( )
∂ψ2

∂ y
---------

∂φ 2

∂ x
--------+⎝ ⎠

⎛ ⎞ sin 2πζ( )cos
2 πζ( )+–

⎩ ⎭
⎨ ⎬
⎧ ⎫

–= =

γxz
∂u

∂z
------

∂w

∂x
-------+ ψ1 x y,( )cos πζ( ) ψ2 x y,( ) cos 2πζ( ) cos 4πζ( )+[ ]+= =

γyx
∂v

∂z
-----

∂w

∂x
-------+ φ 1 x y,( )cos πζ( ) φ 2 x y,( ) cos 2πζ( ) cos 4πζ( )+[ ]+= =

C1

1

12
------ 1 6

π
2

8–

π
3

--------------e0–⎝ ⎠
⎛ ⎞= C2

1

π
2

-----
2

π
--- 1

e
---e0–⎝ ⎠

⎛ ⎞= C3

1

π
2

-----
3

16
------ 32

75π
---------e0–⎝ ⎠

⎛ ⎞=

C4

1

π
2

-----
1

2
--- 2

3π
------e0–⎝ ⎠

⎛ ⎞= C5

1

π
2

-----
8

15π
--------- 1

8
---e0–⎝ ⎠

⎛ ⎞= C6

1

π
2

-----
5

32
------ 128

315π
------------e0–⎝ ⎠

⎛ ⎞=

C7

1

2
--- 4

3π
------e0–= C8

8

15π
--------- 1

4
---e0–= C9 1

832

315π
------------e0–=

α1

a22b1 a12b2–

a11a22 a12

2
–

-------------------------------= β1

a11b2 a21b1–

a11a22 a12

2
–

-------------------------------=

a11 C4 C5C10+( ) 1
1 ν–

2
------------

n

m
----

a

b
---⎝ ⎠

⎛ ⎞
2

+ mπ
t
a---⎝ ⎠

⎛ ⎞
2 1 ν–

2
------------+ C7 C8C10+( )=

a12

1 ν+

2
------------ C4 C5C10+( )mnπ

2 t
2

ab
------=

a22 C4 C5C10+( ) 1 ν–

2
------------ n

m
----

a

b
---⎝ ⎠

⎛ ⎞+
2

mπ
t
a---⎝ ⎠

⎛ ⎞
2 1 ν–

2
------------+ C7 C8C10+( )=

b1 C2 1
n

m
----

a

b
---⎝ ⎠

⎛ ⎞
2

+ mπ
t
a---⎝ ⎠

⎛ ⎞
3

= b2 C2 1
n

m
----

a

b
---⎝ ⎠

⎛ ⎞
2

+ m
2
nπ

3 t
3

a 2
b

--------=



Bending and buckling of a rectangular porous plate 333

CC

Example of deflection of a porous plate wa
FEM [m] (e0 = 0.9, a/b = 1, t/a = 1/15, p0 = 1 MPa)

Example of buckling of a porous plate (e0 = 0.99, Cxy = 1, a/b = 1/3, t/a = 1/160)




