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Abstract. The objective of this work is to describe the main steps involved in the derivation of a GBT
(Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel
members and also to illustrate the application and capabilities of this formulation. In particular, the paper
presents and discusses the results of a detailed investigation about the local and global free vibration
behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based
results dealing with the buckling and vibration behaviours of columns and load-free members, the paper
addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode
nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are
also compared with values obtained by means of 4-node shell finite element analyses performed in the code
ABAQUS.
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1. Introduction

It is a well-known fact that the proper assessment of the structural efficiency of a given cold-formed

steel member requires in-depth information concerning its local (local-plate or distortional) and global

buckling behaviour. In order to acquire it, one must inevitably identify the relevant buckling modes and

evaluate the corresponding critical bifurcation stresses. Moreover, the above information also plays a

crucial role in the development, validation and calibration of design rules and methodologies. Indeed,

such methodologies are only rational and fully efficient if they can be based on reliable and physically

sound models, a feature requiring a thorough knowledge concerning the member buckling and post-

buckling behaviour.

Given the strong mathematical resemblance between the equations governing the stability and

vibration behaviour of thin-walled members (they define similar eigenvalue problems), it is just logical

to expect the vibration behaviour of cold-formed steel members to be equally susceptible to the cross-

section in-plane and warping deformation. Since several commonly used applications of cold-formed

steel members (e.g., storage rack structures) involve the simultaneous presence of significant
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compressive applied loads and exposure to relevant dynamic actions (e.g., the effects due to heavy

machines/vehicles or seismic activity), designers must be able to evaluate the corresponding dynamic

response. Therefore, they must be equipped with efficient analytical and/or numerical tools to

determine their vibration behaviour, possibly taking into account the influence of more or less relevant

compressive internal forces.

Despite the available evidence concerning the relevance of the local vibration phenomena (e.g.,

Klaubruckner and Pryputniewicz 1995) and the influence of compressive axial forces on the global

vibration behaviour (e.g., Hashemi and Richard 2000), the amount of research work that has been

devoted to investigate the local vibration behaviour of axially compressed thin-walled members is still

extremely scarce. In particular, it is worth mentioning the studies carried out by Ohga et al. (1998) and

Okamura and Fukasawa (1998), who employed the semi-analytical finite strip method to assess the

influence of axial compression on the local vibration behaviour of box and I-section members subjected

to static and dynamic (periodic) forces. Nevertheless, one should also point out that this type of finite

strip analyses can only be employed to study the vibration behaviour of “simply supported ” thin-

walled members (i.e., members with end-sections that are pinned in both directions and can warp freely

- “fork-type” end conditions).

Generalised Beam Theory (GBT), which was originally developed by Schardt (1989) and has been

extensively used by the authors in recent years (Camotim et al. 2004, 2005), incorporates both local and

global cross-section deformation modes and has already been employed to perform free vibration

analyses in the context of isotropic thin-walled members (e.g., Schardt and Heinz 1991). The objective

of this paper is to present the derivation and illustrate the application and unique capabilities of an

extension of the above GBT vibration formulation, which makes it possible to take into account the

influence of the loads acting on the free vibrating member.

After a succinct description of the main concepts and procedures involved in deriving a GBT

formulation to analyse the vibration behaviour of loaded thin-walled members, the content of the paper

is focused on a particular application of this formulation: a detailed investigation about the local (local-

plate or distortional) and global (flexural or flexural-torsional) free vibration behaviour of cold-formed

steel lipped channel simply supported columns, i.e., uniformly compressed members with pinned and

free-to-warp end sections. First, one must briefly report some GBT-based results dealing with (i) the

buckling behaviour of columns and (ii) the vibration behaviour of load-free members, which have been

recently determined (Silvestre and Camotim 2003) and are indispensable to interpret and discuss the

column vibration analyses. Then, this paper addresses mostly issues that are concerned with an in-depth

assessment of the variation of the column fundamental frequency and vibration mode nature/shape with

its length and compression level, which is defined as a percentage of the relevant buckling loads. For

validation purposes, some GBT-based results are compared with values obtained by means of finite

element analyses, which are performed in the commercial code ABAQUS (HKS 2002) and employ fine

meshes of 4-node isoparametric shell elements to discretise the lipped channel columns.

2. GBT governing equations

Due to space limitations, it is only possible to present here a brief description of the steps and

procedures involved in the derivation of a GBT formulation making it possible to analyse the vibration

behaviour of cold-formed steel members subjected to axial compression. It seems fair to say that this

formulation combines the features of the ones previously developed by Schardt and his collaborators,
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which were intended to perform linear stability and free vibration analyses in thin-walled profiles (e.g.,

Schardt 1989, Schardt and Heinz 1991, Schardt 1994).

Let us consider the prismatic member depicted in Fig. 1, which exhibits an open cross-section with an

arbitrary shape and formed by n thin-walled plates (wall elements) that are rigidly connected along their

common longitudinal edges. A local coordinate system (x, s, z) is adopted in each wall, where x and s

define the corresponding mid-surface (longitudinal and transverse directions) and z is measured along

the wall thickness t. When expressed in this coordinate system, the displacement field components are

designated, respectively, as u, v and w.

In a GBT formulation, the displacement field at a given member cross-section is expressed as a linear

combination of deformation modes, a feature making it possible to write the member equilibrium

equations and boundary conditions in a rather unique and convenient fashion. Indeed, one is then

capable of performing, in a very straightforward and natural way, a modal analysis of the cross-section

deformed configuration, which provides a decisive contribution to a deeper and clearer understanding

about the thin-walled member structural behaviour. In a member with n walls, a cross-section

discretisation involving n+1 natural nodes (associated with the cross-section deformation due to

warping) and m intermediate nodes (associated with the cross-section deformation due to wall bending

alone, i.e., without any warping involved) leads to the identification of n+m+1 deformation modes: 4

global, n-3 distortional ones and m local-plate. For instance, Figs. 2(a)-(b) display cross-section

discretisations that can be used to analyse the buckling or vibration behaviour of plain and lipped

channel members, namely 9 (n=4, m=5) and 13 (n=6, m=7) nodes, respectively. Moreover, at the

cross-section free edges one must include both a natural and an intermediate node (e.g., nodes 1 and 2) -

the first concerns the lip free end warping and the second is related to its transversal (plate) bending.

The above discretisations lead to the identification of the following sets of deformation modes, which

are depicted in Figs. 3 and 4: 9 modes (4 global and 5 local-plate), for the plain channel, and 13 modes

(4 global, 2 distortional e 7 local-plate), for the lipped channel. Note that only the lipped channel

Fig. 1 Arbitrary open thin-walled member: geometry, coordinate system and displacement field

Fig. 2 (a) Plain and (b) lipped channel GBT cross-section discretisations
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exhibits distortional modes - modes 5 and 6. Since it is an unbranched cross-section with just three

walls (i.e., four natural nodes), the plain channel does not exhibit distortional deformation modes.

Certain deformed configurations of plain channel members are sometimes designated as “distortional”

due to the fact that they exhibit both (i) fold line motions (due to warping displacements) and (ii) cross-

section in-plane deformation. However, these two features originate in distinct phenomena: (i) the fold

line motions (associated with warping displacements), due solely to global modes (bending and/or

torsion), and (ii) the cross-section in-plane deformation, due exclusively to local-plate modes. Thus,

these so-called “distortional modes” are, in fact, mixed local-plate/global modes. For more detailed

explanations about the distortional mode mechanics, the interested reader is referred to works by

Schardt (1989) and Adány (2004).

Following the application of Hamilton’s Principle, one is led to a system of equilibrium equations

given by (Silvestre 2005)

(1)

where (i) φk(x) is the amplitude function associated with deformation mode k, defined along the

member length (0 ≤ x ≤ L), (ii)  is the pre-buckling normal stress resultant corresponding to

deformation mode p, deemed uniform (i.e., independent of x), (iii) λ is an applied load parameter

and (iv) ω is a frequency parameter, concerning the member harmonic free vibration. The end

support conditions of the member can be written as

 (2)

where

C ikφk ,xxxx−D ikφk ,xx+B ikφk−aBλWp

o
Xpikφk ,xx−avω

2
Rikφk−Qikφk ,xx( )=0

Wp

o

W i

τ

+aBWp

o
Xpikφk ,x−avω

2
Qikφk ,x( )δφ i 0

L
=0 W i

σ

δφ i ,x 0

L
=0

Fig. 3 Plain channel (a) global and (b) local-plate deformation mode shapes

Fig. 4 Lipped channel (a) global, (b) distortional and (c) local-plate deformation mode shapes
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 (3)

are generalised internal forces due to the normal and shear stresses related to deformation mode k

and acting at the member end sections. If one makes (i) aB=1 and aV=0, (ii) aB=0 and aV=1 or (iii)

aB=ψ (0 < ψ ≤ 1) and aV=1, Eqs. (1) and (2) define a linear eigenvalue problem associated,

respectively, with a member (i) buckling analysis, (ii) free vibration analysis of load-free members

and (iii) free vibration analysis of loaded members (i.e., acted by generalised internal forces ).

In the last case, note that the value of  is known a priori and ω2 are the problem eigenvalues -

it is also worth noting that the generalized internal forces  (uniform along the member length)

can be either (i) axial compressive forces ( =N), (ii) major or minor axis bending moments

( =MI or =MII), (iii) bi-moments ( =B) or (iv) any combination of them.

Finally, the tensorial quantities appearing in Eqs. (1)-(3) are given by the expressions

(4)

(5)

(6)

(7)

where the steel properties E, G, ν and ρ are the Young’s modulus, shear modulus, Poisson’s ratio

and mass density, respectively. As for the matrices associated with these tensors, it is worth noting

that:

ii(i) [Cik], [Dik] and [Bik] are stiffness matrices related to generalized warping, torsion and trans-

verse bending (cross-section in-plane deformation), respectively. The first two terms of tensor

Cik stand for the cross-section primary and secondary warping components.

i(ii) [Xik] p is the geometric stiffness matrix, which accounts for the influence of the interaction

between the normal stresses (stemming from the pre-buckling displacements associated with

deformation mode p) and the in-plane cross-section deformations (strains).

(iii) [Qik] and [Rik] are mass matrices incorporating the effects of the mass (inertia) forces concern-

ing, respectively, the out-of and in-plane cross-section displacements. The first and second terms in

the tensor components Qik and Rik always correspond to translational and rotational inertia

forces. It should still be pointed out that the components of Qik and Cik satisfy the relationship

Qik/ρ =Cik/E, which means that they are directly proportional.

Because the equilibrium equations (Eq. (1)) are normally coupled, it is convenient to perform the

simultaneous diagonalisation of matrices [Cik] and [Bik], an operation that involves the solution of a

standard eigenvalue problem and makes it possible to take full advantage of all the GBT capabilities.

Note also that, although matrix [Dik] is not diagonal (first order coupling), its off-diagonal components

are rather small (when compared with the corresponding diagonal components) and can be neglected,

which amounts to including an “approximate” diagonal matrix [Dik] in the analysis. However, due to the

presence of the non-null off-diagonal components of matrices [Xik]p (second order coupling) and [Rik]

(dynamic coupling), system (1) is invariably coupled, which means that the member buckling and
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vibration modes involve, at each cross-section, linear combinations of the GBT deformation modes.

Therefore, after having solved the system (1) and determined the modal amplitude functions φk(x), the

displacement field associated with a given buckling or vibration mode is defined by

(8)

where functions uk(s), vk(s) and wk(s), which are known a priori, provide the displacement shapes

(profiles) corresponding to deformation mode k.

The illustration of the proposed GBT formulation presented here concerns exclusively its application

to analyse the vibration behaviour of columns (i.e., axially compressed members) - in other words,

=N (member axial compression) is the only non-null generalised internal force dealt with in this

work. Note, however, that the authors have recently published similar results dealing with FRP

composite columns (Silvestre and Camotim 2005a, 2006) and beams (members under uniform major

axis bending – Silvestre and Camotim 2005b, 2006).

In the following sections, one presents and briefly discusses recent GBT-based buckling and vibration

results concerning cold-formed steel lipped channel members, namely the (i) buckling behaviour of

columns, (ii) the vibration behaviour of load-free members and, to conclude, (iii) the vibration

behaviour of columns. It is worth noting that these results have been obtained on the basis of the GBT

cross-section discretisation shown in Fig. 2(b) and that only simply supported members (i.e., members

pinned and free-to-warp end sections) are analysed, which means that both the exact buckling and

vibration mode shapes are sinusoidal. Moreover, note also that the member cross-section dimensions,

material properties and mass density employed in the analyses are the following: bw=100 mm (web

width), bf=60 mm (flange width), bl=10 mm (lip width), t=2 mm (wall thickness), E=210 MPa, ν=0.3

and ρ=7.85×10−3 g/mm3.

3. Column buckling behaviour

In order to investigate the vibration behaviour of loaded lipped channel columns, one must begin by

studying their buckling behaviour. The reason for this is that one always performs vibration analyses of

columns subjected to axial loads that correspond to a certain percentage of its critical buckling load

(Pcr). The curves displayed in Fig. 5(a) make it possible to assess the variation, with the column length

L (in logarithmic scale), of (i) the bifurcation loads associated with single, two and three-wave buckling

modes (Pb.1, Pb.2 and Pb.3) and (ii) the “true” critical load (Pcr= min{Pb.1; Pb.2; Pb.3}
1). On the other hand,

the diagrams shown in Figs. 5(b) and 5(c) provide the variation of the participation of the relevant GBT

deformation modes in the column buckling modes corresponding to Pcr and Pb.1 (the lipped channel

deformation mode shapes are depicted in Fig. 4). In the former case, one should point out that, in order

to provide valuable information concerning the number of (half) waves associated with the

participation of a given deformation mode, the number identifying this mode is either not underlined

(single wave), underlined once (2 waves) or underlined twice (3 waves). From the observation of the

u x ,s( )=uk s( )φk ,x x( )

v x ,s( )=vk s( )φk x( )

w x ,s( )=wk s( )φk x( )

W1

o

1It can be shown that, for this particular column geometry, no critical buckling mode exhibits more than three
waves.
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results presented in Figs. 5(a)-(c), it possible to draw the following conclusions:

ii(i) For L < 75 cm, the single-wave buckling modes combine only three local deformation modes,

namely modes 5, 7 and 9 (Fig. 5(c)). Inside this length range, the curve Pb.1 vs. L exhibits

two local minima, corresponding to buckling in (i1) a local-plate mode (LPM - mode 7 plus a

bit of modes 5 and 9) and (i2) a distortional mode (DM - mode 5 plus a bit of mode 7). They

are associated with critical bifurcation values Pcr.LP=192.1 kN (L=8 cm) and Pcr.D=154.4 kN

(L=70 cm) - note that, in this particular case, one has Pcr.D < Pcr.LP. For 14 < L < 24 cm,

there is a smooth transition between LPM and DM, which corresponds to the occurrence of

mixed local-plate/distortional modes (LPDM - modes 5 and 7).

i(ii) For  75 < L < 250 cm, the single-wave buckling modes combine two global and one local

GBT deformation modes, namely modes 2 (major axis flexure), 4 (torsion) and 6 (distortion),

Fig. 5 Column buckling behaviour: (a) variation of Pb.1, Pb.2, Pb.3, Pcr with L and GBT modal participation in
the (b) “true” and (c) single-wave critical buckling modes
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which explains the designation flexural-torsional-distortional (FTDM). The participation of

mode 6 gradually decreases and vanishes for L ≈ 250 cm. Then, for 250 < L < 600 cm, the

buckling modes combine only modes 2 and 4 - the classical flexural-torsional modes (FTM).

Finally, the very long columns (L > 600 cm) buckle in purely flexural modes (FM - mode 3,

i.e., minor axis flexure). It is still worth noting that (ii1) the curve Pb.1 vs. L continuously

decreases for L > 75 cm and (ii2) the transitions between the DM-FTDM and FTM-FM

length ranges are abrupt: the participation of one or more GBT deformation modes ceases

suddenly.

(iii) Since the curves Pb.2 vs. L and Pb.3 vs. L are obtained by mere horizontal translations of the

curve Pb.1 vs. L, the “true” column buckling modes combine exactly the same set of GBT

deformation modes participating in the single-wave ones. The only difference resides in the

fact that the number of waves associated with some of these modes changes for certain length

ranges (when the curve Pcr vs. L does not coincide with Pb.1 vs. L - see Fig. 5(a)). Indeed, the

“true” column buckling modes exhibit more than one wave for (iii1) 12 < L < 20 cm (two-

wave LPM), (iii2) 20 < L < 24 cm (three-wave LPM), (iii3) 50 < L < 90 cm (two-wave DM)

and (iii4) 90 < L < 115 cm (three-wave DM).

Fig. 6 Load-free member vibration behaviour: (a) variation of ω f with L and (b) GBT modal participation in
the fundamental vibration mode
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4. Vibration behaviour of load-free members

The curves in Fig. 6(a) provide the variation, with length L (in logarithmic scale), of the member

fundamental frequency ωf, which is always associated with single-wave vibration modes2. As for the

diagram presented in Fig. 6(b), it makes it possible to assess the variation of the GBT modal

participation in the column fundamental vibration mode. A comparison between the results presented in

Figs. 5(a), 5(c), 6(a) and 6(b) leads to the following conclusions:

ii(i) In spite of the different characteristics exhibited by the curves Pb.1 vs. L and ωf vs. L shown

in Figs. 5(a) and 6(a) (e.g., the latter has no local minima), the GBT modal participation

diagrams displayed in Figs. 5(c) and 6(b) are identical3, which means that the shapes of the

(i1) column critical single-wave buckling modes and (i2) load-free member fundamental vibra-

tion modes coincide, regardless of the length value L. Silvestre (2005) recently proved this

coincidence and also showed that the exact ωf and Pb.1 values must satisfy the relation

 (9)

    where A is the member cross-section area. This relation is always universally valid for simply

supported members, i.e., it applies to any buckling/vibration mode shape (local-plate, distor-

tional, global). In the context of global (bending, torsion) vibration/buckling analyses, several

authors (e.g., Wittrick 1985, Roberts 1987) have verified that this relation holds true. However,

as far as local vibration/buckling analyses are concerned, only one work has been found

(Okamura and Fukasawa 1998) - these authors employed the semi-analytical finite strip method

to confirm that the local buckling and vibration modes exhibit equal shapes, regardless of the

member length. Finally, one should also mention that Eq. (9) has a more general form,

 (10)

    where Pb.nw and ωn.nw are bifurcation loads and natural frequencies corresponding to buckling

and vibration modes with an arbitrary number of waves nw.

(ii) The content of the above item (i) automatically implies that all the conclusions drawn in the

previous subsection, concerning the column single-wave buckling behaviour, also apply to the

fundamental vibration behaviour of load-free members. Therefore, there is no need to further

characterise the latter.

5. Column vibration behaviour

Finally, one presents and thoroughly discusses the results of a detailed study concerning the vibration

behaviour of cold-formed steel lipped channel simply supported columns, which is the main aim of this

paper. Once again, all the columns analysed display the geometrical and material properties given in the

previous section. Note also that, for validation purposes, some GBT-based fundamental frequencies and

ω f =
π

L
---

Pb .1

ρA
---------

ωn .nw =
nwπ

L
---------

Pb .nw

ρA
------------

2Note the qualitative difference with respect to the column critical buckling behaviour: inside certain length
ranges, the “true” critical buckling modes exhibit two or three waves.
3Note that, while the diagram in Fig. 6(b) starts at L=10 cm, the one in Fig. 5(c) starts at L=6 cm.
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vibration mode shapes are compared with the values yielded by shell finite element analyses,

performed in the code ABAQUS (HKS 2002) and adopting fine meshes of 4-node shell elements (S4

elements) to discretise the columns.

The curves given in Fig. 7 concern the vibration behaviour of simply supported columns and make it

possible to assess how the natural frequency associated with a single-wave sinusoidal vibration mode

(ω1.N) varies with the column length and axial (compressive) force level N 4. Ten axial force levels are

considered, each one corresponding to a different percentage of the column critical single-wave

buckling load Pb.1 (Fig. 5(a)). For clarity and comparison purposes, one uses different vertical scales

(L ≤ 100 cm and L > 100 cm) and the curve related to the vibration behaviour of the load-free member

(N = 0−ωf.0) is also included - recall that this curve was already shown in Fig. 6(a) (ωf ≡ ωf.0). The

observation of this set of curves prompts the following comments:

ii(i) The various curves ω1.N (L) exhibit very similar shapes, which means that it is possible to

relate each of them to ω1.0 (L) by means of a multiplicative factor α ≤ 1, so that one may

write ω1.N (L)=α ω1.0 (L). Note that, if N=Pb.1, one obviously has α=0.

i(ii) As it would be logical to expect, in view of the coincidence between the shapes of the single-

wave (ii1) column critical buckling modes and (ii2) load-free member vibration modes, the

fundamental vibration mode configurations of the load-free members (shown in Fig. 6(b)) and

axially compressed members (not shown in this paper) also coincide.

(iii) For any given L , the variation of ω1.N with N is non-linear: for equal ∆N increments, the

frequency drop ∆ω1.N decreases as N grows. Moreover, it was found that the curve shown in

Fig. 8, which provides the variation of the ratio ω1.N/ω1.0 with the normalised axial force level

Fig. 7 Variation of the natural frequency value ω1.N with the column length L and axial force N

4In the overwhelming majority of the cases, ω1.N is, actually, the column fundamental frequency ω f.N.
However, there are a few exceptions, which will be dealt with further ahead in the paper.
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N/Pb.1, is applicable to any length value L. On the basis of the previous two facts, one may

conclude that the above multiplicative factor α (iii1) depends non-linearly on N and (iii2) is

independent of L. By observing Fig. 8, one notices that, for 0 < N < 0.50Pb.1, ∆ω1.N is fairly

(inversely) proportional to ∆N. For N > 0.50Pb.1, on the other hand, the curve is clearly non-

linear and exhibits a growing negative slope, which becomes very steep for N > 0.80Pb.1.

In order to explain and quantify the above statements, let us rewrite Eq. (1), in matrix form and under

the assumption of a single-wave sinusoidal vibration mode (an exact solution):

 (11)

Then, taking into account that N only appears in the second term of Eq. (11), it becomes clear that

the lowest eigenvalues associated with N ≠ 0 (ω1.N) and N=0 (ω1.0) are related by

(12)

or, after incorporating the Eq. (9), where ωf ≡ ω1.0, into Eq. (12), by

 (13)

This equation provides a direct relationship between the frequency ratio ω1.N/ω1.0 and the column

normalised axial force N / Pb.1, which does not depend explicitly on the column length or cross-section

geometry (the influence of these parameters is implicitly included via the ω1.0 and Pb.1 values). Then,

one immediately realises that the value of the multiplicative factor α (i.e., the shape of the curve

depicted in Fig. 8) is given by the exact expression

(14)

C ik
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L
----⎝ ⎠

⎛ ⎞
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+D ik
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L
----⎝ ⎠

⎛ ⎞
2

+Bik − N

ρA
-------

π

L
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⎛ ⎞
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2

⎝ ⎠
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2
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⎛ ⎞
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ω1.N
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⎛ ⎞
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----------= 1
N
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Fig. 8 Variation of ω1.N /ω1.0 with N/Pb.1
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As mentioned before, this last expression was derived under the assumption that both the column

buckling modes and the load-free member vibration modes have single-wave sinusoidal shapes. While

the latter assertion has been shown to be always valid for the fundamental vibration modes, it is also a

well-known fact that the same does not apply to all the column “true” critical buckling modes. Indeed,

some columns with intermediate lengths were found to buckle in two or three-wave modes (see Figs.

5(a)-(b)). Thus, it is quite important to investigate and characterise the fundamental vibration behaviour

of such columns. To attain this goal, let us start by considering the results presented in Figs. 9(a)-(b) and

10(a)-(e). The curves shown in the first two figures provide the variation, with the column length L, of

the fundamental frequencies ωf.N (N ≠ 0 - seven axial force levels) and ωf.0 (N=0) and, in order to enable

a direct comparison, also the column single-wave (Pb.1) and “true” (Pcr) critical bifurcation loads

(already presented in Fig. 5(a)). It is also worth noting that (i) one uses again different vertical scales

(L ≤ 50 cm and L > 50 cm this time) and (ii) the column axial forces are now normalised with respect to

Pcr (instead of Pb.1, as in Fig. 7). As for the GBT modal participation diagrams shown in Fig. 10, they

correspond to columns acted by different axial forces and make it possible to assess how the

fundamental vibration mode shape varies with N. The observation of the results displayed in Figs. 9(a)-

(b) and 10 prompts the following comments:

Fig. 9 Variation of (a) the fundamental frequency ωf.N with L and N and (b) Pb.1 and Pcr with L
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i(i) The shapes of the fundamental frequency curves ωf.N (L) are clearly different from the ones

depicted in Fig. 7 and concerning single-wave vibration (ω1.N (L)). Moreover, the shape of

ωf.N (L) varies considerably with the value of N.

(ii) However, a closer look shows that the portions of the ωf.N(L) curves corresponding to length

ranges inside which one has Pcr=Pb.1 (i.e., a single-wave column “true” critical buckling

mode) are associated with single-wave fundamental vibration modes (i.e., ωf.N ≡ ω1.N) and,

thus, continue to be related by Eq. (14). Such length ranges are well identified in Fig. 9(b)

and are: L < 12 cm (LPM), 24 < L < 50 cm (DM) e L > 115 cm (FTDM, FTM and FM).

(iii) Concerning  the length ranges inside which one has Pcr ≠ Pb.1 (i.e., two or three-wave column

Fig. 10 GBT modal participation in the column fundamental vibration mode
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“true” critical buckling modes - 12 < L < 24 cm and 50 < L < 115 cm), Eq. (14) is no longer

valid and further investigation is necessary. In particular, one notices that, within these length

ranges, the ωf.N(L) curves cease to decrease monotonically and there is a clearly visible shape

variation with N. Moreover, one also observes that, as N increases, the ωf.N(L) curves become

progressively less “smooth” - for very large axial forces, they may even exhibit quite pro-

nounced and sudden slope reversals.

(iv) The diagrams presented in Fig. 10 show that, provided that the axial force N is sufficiently

high, the fundamental vibration modes of columns with certain length values (all located

inside the 12 < L < 24 cm and 50 < L < 115 cm intervals) exhibit two or three waves.

(v) The diagrams in Fig. 10 show that, when Pcr ≠ Pb.1, the column fundamental vibration mode

wave number changes with N. It varies between one and the number of waves in the column

critical buckling mode (two or three, in this particular case). It appears that the value of N

corresponding to a wave number change depends on the percentage difference between Pcr

and Pb.1 (i.e., a ratio Pcr /Pb.1 decrease lowers the N value associated with the change).

(vi) In other words, as N increases, the column fundamental vibration wave number “travels”

between one and the number of waves of the column critical buckling mode. On the basis of

finite strip vibration analyses, Ohga et al. (1998) reached a similar conclusion.

Finally, the curves shown in Fig. 11 provides the variation of ωf.N/ωf.0 with N/Pb.1, for columns with

lengths L=16 cm (12 < L < 24 cm) and L=75 cm (50 < L < 115 cm), which buckle in two-wave local-

plate and distortional modes, respectively. Because N is normalised with respect to Pb.1, these two

curves can be directly compared with the one concerning the ratio ω1.N/ω1.0 (dashed curve - already

depicted in Fig. 8). Such a comparison leads to the following remarks:

ii(i) For “sufficiently low” N values, the ωf.N/ωf.0 and ω1.N/ω1.0 curves virtually coincide, which

means that the relation (14) is still applicable (even if one has Pcr ≠ Pb.1).

i(ii) The N value associated with the “separation” between the curves ωf.N/ωf.0 and ω1.N/ω1.0 is

considerably lower for the column buckling in a DM (L=75 cm) than for the one buckling in

a LPM (L=16 cm) - N/Pb.1 ≈ 0.28 vs. N/Pb.1 ≈ 0.72. Most likely, it will be possible to find a

Fig. 11 Variation of ωf.N /ωf.0 with N/Pb.1 for columns with L=16 cm (LPM) and L=75 cm (DM)
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correlation between this axial force “separation level” and the ratio Pcr/Pb.1 - note that one has

Pcr/Pb.1 ≈ 0.53 vs. Pcr/Pb.1 ≈ 1.80, respectively for the L=75 and L=16 cm columns.

(iii) When the N/Pb.1 “separation value” is higher (L=16 cm), the ensuing variation (decrease) of

ωf.N/ωf.0 with N/Pb.1 is more drastic, in the sense that the corresponding curve is “steeper”.

Finally, for validation purposes, Fig. 12 shows numerical results yielded by finite element analyses

performed in the code ABAQUS (HKS 2002) and adopting S4 shell elements to discretise the columns.

They concern highly compressed columns with L=16 cm, L=75 cm and L=100 cm and consist of their

Pcr, ωf.0 and ωf.N values and corresponding critical buckling and fundamental vibration mode shapes.

Concerning the FE meshes, one adopted a cross-section mid-line discretisation comprising 32 finite

elements and a longitudinal discretisation involving 20 (L=16 cm) and 40 (L=75 and L=100 cm) finite

elements - this led to meshes with 640 (L=16 cm) and 1280 finite elements (L=75 and L=100 cm). One

observes that there exists an excellent agreement between the GBT and FEM-based results: indeed, the

errors never exceed 1.7% and the FEM-based buckling and vibration mode shapes fully confirm the

conclusions drawn from the GBT analyses.

6. Conclusions

The derivation of a GBT formulation to analyse the vibration behaviour of loaded cold-formed steel

members was first described. In order to illustrate its application and capabilities, the paper then

presented and discussed the results of a detailed study concerning the local and global free vibration

behaviour of lipped channel simply supported columns. For validation, some GBT-based results were

also compared with values yielded by ABAQUS shell finite element analyses.

The analysis of the GBT-based results obtained led to the following main conclusions:

ii(i) The shapes of column (i1) critical single-wave buckling mode and (i2) fundamental vibration

mode are fully identical.

Fig. 12 FEM-based results concerning columns with (a) L=16 cm, (b) L=75 cm and (c) L=100 cm
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i(ii) When the axial force N increases, the column fundamental frequency ωf.N (almost always)

decreases and the associated vibration mode shape tends to the critical buckling mode one.

(iii) For low axial force levels (N < 0.25Pcr), the ωf.N/ωf.0 decrease is fairly proportional to the N/

Pb.1 increase. On the other hand, high axial force levels (N > 0.50Pcr) lead to a rather large

drop in the column fundamental frequency ωf.N.

(iv) In columns with single-wave critical buckling modes, it is possible to derive exact analytical

expressions relating the ωf.N and ωf.0 values, which involves only N and the critical load Pcr .
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