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Pertinent issues on the strength design of steel 
structures to AS4100-1998
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Abstract. This paper describes of an overview to the strength rules in the Australian AS4100 Steel
Structures Code that was first issued in Limit States Format in 1990. It focuses on pertinent and characteristic
issues, such as the means of analysis for second order effects in frames, and highlights how the tiered
approach may lead to efficient design using advanced analysis techniques. It also considers design against
buckling in some detail, and shows how advanced solutions may be readily incorporated into the design rules.
Implicit in the formulations are the necessity for ductility of the steel, and the scope of the code is limited to
steels that display this necessary ductility characteristic.
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1. Introduction

The Australian steel structures standard AS4100 (SA 1998) was introduced in 1990 to replace and

supersede the earlier AS1250 (SAA 1981), which was presented in working stress format. Not only did

the AS4100 have a much wider scope than the AS1250, but it also adopted limit states (or load and

resistance factor) design philosophy. Limit states design is probabilistically based, and is more rational

than working stress design, and leads to more consistent margins of safety. The adoption of limit states

design at that time also kept pace with other Australian structural engineering standards, such as the

concrete code AS3600 (SAA 1989a), as well as with other national steel codes.

The familiar statement of the strength limit state is that the factored (design) load effects should be

less than the factored (design) strength or capacity, that is

Σ (γ × Nominal load effects) ≤ φ × (Nominal capacity) (1)

in which γ is a load factor for a particular type of loading and load combination (e.g. γ = 1.2 for dead

loading when it acts in the same direction as wind loading), and where φ is the capacity (or resistance)

reduction factor. The strength statement of Eq. (1) (Trahair and Bradford 1998) is different from that of

other standards, such as the British Standard BS5950 (BSI 2000, Trahair, Bradford and Nethercot 2001),

in which material properties (such as the yield stress) that are used to determine the nominal capacity by the

use of prescriptive equations that contain partial factors to account for material variability. The AS4100
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approach uses mean values for material strengths in these prescriptive equations and the possibility of

material strength variability in the AS4100 is accounted for in the probabilistic statement of Eq. (1) by

the use of an appropriate capacity reduction factor φ.

The AS4100 is also presented in a tiered format, in which simple deterministic equations are

presented within the code itself. However, in recognition in particular of the growing use of computer

software when it was first released in 1990, the code allows for the option of ‘advanced analysis’, in

which an upper tier option may be used for more economical design (Fig. 1) by making recourse to

advanced computer analysis, or to graphical or tabulated solutions in reference textbooks.

At the time of its launch, AS4100 was accompanied by a number of design aids, primarily for

educational use (Bradford 1997) and to assist design. These have taken the form of textbooks (Trahair

and Bradford 1988, Bradford, Bridge and Trahair 1990, Woolcock, Kitipornchai and Bradford 1990,

Gorenc, Tinyou and Syam 1996, AISC 1994) and software (Papangelis and Trahair 1989). The use of these

aids, design software and in particular second order structural analysis software (Engineering Systems

1996, Integrated Technical Software 1995) is commonplace in contemporary Australian steel design.

This paper aims to provide a background to the strength provisions in the AS4100, by considering its

scope and the necessity of ductile behaviour that is implicit in many of the design rules. It looks in some

detail at the methods of analysis needed to obtain the second order load effects, which are separated

from the strength of members. The limit state of buckling is treated in detail, and it is shown that the

tiered approach may be utilised to obtain more efficient designs. The provisions within the AS4100 are

comprehensive, and in many ways unique in comparison with other contemporary national limit states

codes of practice.

2. Scope and limitations

An underlying assumption in the AS4100 is that of ductility. Because of this, the code does not allow

for the use of steel whose yield stress exceeds 450 N/mm2, as there is often insufficient data for these

higher strength steels in terms of the extent of their plastic regions, and their ability to permit

redistribution of bending moments within steel structures. This is also the case for cold-formed

members (and for which a different standard is used), and for sections with steel elements less than

3 mm thick.

As an example, consider the bolted plate connection shown in Fig. 2. Using non-linear elastic

analysis, the distribution of shear stress in the five bolts is as shown, and by using the stress-strain curve

Fig. 1 Tiered (wedding cake) structure of the AS4100
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that is also shown in this figure, the stresses may also be determined. Hence, when the force T reaches

its limit of yielding of the bolted connectors Ty , all of the bolts are equally loaded with a shear force of

Ty /5. Prior to yield, this is not the case, and so the concept of ductility, viz. that of the plastic plateau in

the stress-strain curve, is implicit in the design.

3. Calibration

Although the stochastic strength limit state is presented in deterministic form in Eq. (1), the load and

capacity factors for use with the AS4100 are determined using probabilistic models based on

appropriate statistical distributions of loadings and capacities. The probability of failure pF, that is the

probability that the inequality in Eq. (1) is violated, is related to the so-called safety index β according

to the transformation.

(2)

in which Φ  is the cumulative probability distribution of a standard normal (or Gaussian) variate, with

a value of β = 2.5 indicating a failure probability pF ≈ 10-2 and β = 5.5 corresponding to pF ≈ 10-8. The

choice of the load factors, that are in the Australian loading code AS1170 (SAA 1989b) and that are

common to design in steel and in concrete, and of the capacity reduction factor φ for steel design

indicated in Eq. (1), is based on a calibration procedure. In this procedure, typical structures that had

been designed according to the previous working stress code AS1250 were selected, and their safety

indices were computed using idealised statistical models of their loads and structural capacities. The

load and capacity factors for the limit states steel design method were then varied until the target safety

indices were met with reasonable precision (Leicester et al. 1985). For example (Pham et al. 1986), the

Φ β –( ) pF=

Fig. 2 Implicit assumption of ductility for the bolts in a bolted connection under in-plane forces
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safety indices β for the strength limit state design according to the AS4100 were calibrated with those

of the working stress AS1250 for steel beams and for columns. These comparisons were made for a

dead load factor of 1.25, a live load factor of 1.5 and a capacity reduction factor of 0.9, and it was found

that for all but the highest (and most unrealistic) dead load situations, the limit state formulation offers

slightly safer designs with a reasonably consistent safety index in the range of 3.0 to 3.5.

The capacity reduction factors φ depend not only on the methods used to formulate the nominal

capacities, but also on the methods of specifying the nominal loads, and on the values chosen for the

load factors. The capacity reduction factors for the AS4100 are generally equal to 0.9 (for members and

butt welds), except that 0.7 is used for bolts, pins and connection components.

4. Structural analysis

The AS4100 provides comprehensive guidance for determining the load effects that appear on the left

hand side of Eq. (1). These methods of analysis may comprise of an elastic analysis, or a plastic

analysis, and which form the lower tier of Fig. 1. In place of these methods, the standard allows for the

higher tier of an advanced analysis.

The method of elastic analysis can be used quite generally, and it is intended to be applied to steel

structures that transmit significant proportions of the applied loading by bending. The second-order

bending moments that take place in members subjected to bending and compression have to be

included in the design, and these may be the so-called P-∆ bending moments that arise from the joint

displacements ∆, and the P-δ bending moments that arise from the member deflections δ from the

straight line that joins the member’s ends (Hibbeler 2002). Unlike to BS5950, braced frames in the

AS4100 are considered to be fully braced, so that only P-δ effects are relevant, or unbraced, for which

the P-∆ effects are usually larger.

Using the lowest tier in the AS4100, a first-order elastic analysis may be carried out that does not

include the effects of the P-δ or the P-∆ moments. Most conveniently in hand calculation, this is carried

out by elementary methods of structural analysis that are taught at undergraduate level, such as the

method of moment distribution, and slope-deflection techniques (Hibbeler 2002). Whist in the past

there was a suite of stiffness-based computer programs developed for first-order elastic analysis, those

that have been available in Australia for the last decade (Engineering Systems 1996, Integrated

Technical Software 1995) include a second order option and so will not be used by Australian engineers

to undertake a first order elastic analysis in the lowest tier of the AS4100.

Notwithstanding this fact, considerable attention is directed in the AS4100 on this lowest tier. In this

method, the first order moments are required to be amplified by an amplification factor δb for a braced

frame, or for an amplification factor δs for a sway frame. The first order analysis is used to determine

the maximum (design) moment Mm* for a given load combination with the appropriate load factors,

and in a braced frame the design moment is taken as

(3)

where the moment amplification factor δb for a braced member is calculated from:

(4)

M
* δb

 
Mm

*=

δb
cm

1
N

*

Nomb

-----------–

-------------------- 1≥=
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In Eq. (4), Nomb is the elastic buckling load for the braced member that buckles about the same axis as

that which the member in the frame is in bending, and cm is a factor that accounts for the distribution of

bending moments, given by

(5)

where βm is the ratio of the smaller to the larger end moments that act on the member, and is taken as

negative when the member is bent into single curvature. If the member in question has a transverse load

applied to it, then Eq. (5) is used with βm taken as −1.0 (the most conservative option), or determined

from a number of bending moment distributions that are drawn in the AS4100, or from the equation:

(6)

provided that −1 ≤ β ≤ 1, in which ∆ct is the mid-span deflection of the member that results from the

transverse loading and any end moments which may also act, and ∆cw is the mid-span deflection that

results from the transverse loading. Only those end moments that produce a mid-span deflection in the

same direction as the applied load are considered. In extreme cases as shown in Fig. 3, ∆ct is equal to

∆cw in Fig. 3(a) so that βm = −1 in Eq. (6), whilst ∆ct < ∆cw in Fig. 3(b) so that βm > −1 in Eq. (6).

If the member in question is in a sway frame and the member is free to sway to that P-∆ effects would

be expected to occur, then the AS4100 uses the amplification of the maximum first order moment Mm
* ,

stated as:

M * = δmMm
* (7)

where δm = max[δb;δs] (8)

in which δs is the amplification factor for the sway member. If the member is in a rectangular frame,

then

(9)

c
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Fig. 3 Definitions for Eq. (6)
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where ∆
s
 is the translational displacement of the top of the member relative to the bottom that is caused

by design horizontal shears V* at the column ends, and N* is the design axial force in a column in the

storey, with the summation being taken over all columns in that storey (Fig. 4).

The sway member amplification factor may also be determined in the AS4100 from:

(10)

or from:

(11)

in which λ
ms

 is the buckling load factor for the storey in question, and λ
c
 is the buckling load factor for

the whole frame. In Eq. (10):

(12)

where N
oms

 is the elastic buckling load for the column in the sway frame. The design force N* in a

column is taken as negative if it is in tension. The frame buckling load factor in Eq. (11) can be taken as

the lowest of all of the λ
ms

 values for all of the storeys in the frame, or can be determined using the

higher tier elastic buckling analysis. If use is made of contemporary computer analysis software to

determine the frame buckling load factor λ
c
 (as this value is an option in this software), Australian

practice would not use Eqs. (7), (8) and (11) since this second order software automatically determines

the bending moment diagrams that account for the P-∆ and P-δ bending moments.

The use of Eqs. (4) and (12) requires the calculation of the elastic buckling load of a braced or sway

remember respectively. This is given by

(13)
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where ke is the effective length factor for the member. The effective length factor can be determined

from charts, that allow for it to be obtained as a function of the ratio of the stiffnesses of the restraining

members at each end of the member (Trahair and Bradford 1998).

Although not mentioned in the AS4100, the effective length factor for a member in a frame depends

on the load in it by the following argument. At elastic buckling of a frame, all the members become

critical at the load factor λc, and so if N* is the load in the member, then the member becomes critical at

the load λcN
*. If this load is equated to Nom, then rearranging this equation produces:

(14)

This result is interesting and illustrates the lack of logic on which calculations in frames based on

different member effective lengths are made, since a frame with no force in it (N*=0) has an effective

length factor of infinity, and so buckles at zero load. However, this is not paradoxical, since even when

N* →0 and so ke→∞ and so Nom→0, the ratio N*/Nom remains constant and finite at N*/Nom=λc.

5. Design of members against instability

5.1. Local buckling

Local buckling of the plate elements of cross-sections of width b is accounted for in the AS4100 by

use of von Karman’s effective width concept, for which the yield strength of the effective section of

width be is the same as the local buckling strength of the effective section at failure, viz.

(15)

in which the elastic buckling stress f0l for a flat plate is (Trahair and Bradford 1998)

(16)

where k is the local buckling coefficient and ν is Poisson’s ratio. Hence in Eq. (15) for the effective

section

(17)

and using Eq. (16) for a flat plate leads to the von Karman formula for the effective width as

(18)

and so

(19)
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where the plate slenderness in the AS4100 is

(20)

and where the yield stress is taken in units of MPa (N/mm2). The constant in Eq. (19) is not only

expressible deterministically from k, E and ν, but it accounts for the effects of plate imperfections,

residual stresses etc. This can be illustrated conveniently by plotting Eq. (18), which is the counterpart

of Eq. (17) as

(21)

and this is done in Fig. 5, where the constant in Eq. (21) is adjusted to best fit the test results. The value

of this constant then forms a delineation from yield to post local buckling at a value of the slenderness

λey (Bradford 1985), so that the plate strength in compression fult is

(22)

Without considering imperfection sensitivity in shell theory, the local buckling stress for a circular hollow

section of outside diameter do and thickness t is (Timoshenko and Gere 1961, Bradford et al. 2001).

(23)
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Fig. 5 Plate local buckling strengths
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and the same process in Eqs. (15) to (21) again leads to the strength being established by Eq. (22), but in

which the slenderness of the circular hollow section is defined as

(24)

Plates in compression members are effective when λe≤ λey and their effective widths equal their full

widths b, whilst when λe > λey they are not effective and their effective widths must be computed from

(25)

The effective area for the cross-section, Ae, is then determined by summing the effective areas of all of

the plate elements, and the form factor calculated from:

(26)

and the nominal strength of the cross-section for the limit state of local buckling is then:

(27)

It is well known from elementary plastic analysis that the moment to cause full yield in a ductile cross-

section, the plastic moment Mp, is greater than the moment to cause first yield My , and the ratio Mp/My

is known as the shape factor. For plates in beams with λe > λey , local buckling will occur before first

yield is attained, and the beam strength is less than My . In order for the full plastic moment to be

reached, strains that are significantly higher than the yield strain, and it is possible that whilst λe≤ λey so

that the yield moment My can be reached, the member may fail in local buckling (in the inelastic range)

before the attainment of the fully plastic moment Mp. Because of this, the AS4100 has a lower plasticity

limit λep, so that sections composed of plates that all satisfy λe≤ λep are known as “compact” and their

fully plastic moment can be reached before local buckling. Sections for which λep≤ λe≤ λey are called

“non-compact”, while those for which λe > λey are called “slender”. This effect is illustrated in Fig. 6 for

columns and for beams.
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For a member in bending, the moment at the limit state of local buckling is:

Ms = fyZe (28)

where the effective section modulus Ze is taken as the plastic section modulus S, while for non-compact

sections, the interpolation that:

(29)

is used, where Z is the elastic section modulus of the section. For slender sections,

(30)

which is equivalent to Eqs. (22) and (25).

For parts of a member subjected to shear, the yield stress in pure shear in accordance with von Mises

theory is

(31)

and noting that 1/√3 ≈ 0.6, the yield strength of the web is

(32)

where Aw is the area of the web, usually taken as dtw, where tw is the web thickness. In Eq. (16), the local

buckling coefficient k for a web in shear is approximately (Trahair and Bradford 1998)

(33)

where L is the length of the web plate. Equating the shear force to cause local buckling to the yield

value in Eq. (32), means that webs for which

(34)

do not buckle locally in shear and so their strength is Vw in Eq. (32). If the web does not contain any

stiffeners, the contribution of post-local buckling is ignored, and using k = 5.25 (Eq. (33)) results in the

nominal shear buckling capacity being.

(35)

while if the web has vertical stiffeners, use may be made of the tension-field action (Trahair and

Bradford 1998), and the enhanced local buckling coefficient in Eq. (36) is given by:

(36)
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(37)

in which s is the transverse spacing of the vertical web stiffeners.

5.2. Flexural buckling of columns

The design approach for columns in the AS4100 is based on the first yield of a column with a pre-

determined bend is given by

(38)

where the imperfection parameter for this initially sinusoidally-bent member of width B, radius of

gyration r and central imperfection δo is

(39)

Real compression members do not have idealised sinusoidal out of straightnesses, nor are the magnitude

of their initial imperfection δo or their residual stresses often known. Because of this, Eq. (38) has to be

calibrated against test results. Rotter (1982) devised a deft technique for presenting the flexural

buckling load of the column in the generic fashion

(40)

where, generically, R is the nominal resistance against overall buckling, Rs is the nominal strength of

the cross-section of zero length that does not buckle in a flexural mode, αR is a reduction factor for

buckling and φ is the capacity reduction factor in Eq. (1). In the AS4100, this equation takes the form

(41)

where Ns is the cross-section strength given in Eq. (27) and αc is the member slenderness reduction

factor given by

(42)
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(46)

where the member modified slenderness ratio is given by

(47)

in which r is the radius of gyration, le is the effective length and kf is the form factor given in Eq. (26).

The AS4100 has five specific values for the member section constant αb in Eq. (44), ranging from 1.0

for sections with the highest residual stresses to −1.0 for those with no residual stresses. The

formulation of Eq. (42) to (47) in the AS4100 renders αc as being a function of λn and the five values of

αb only, and is tabulated in the standard. The multiple column curves are depicted in Fig. 7.

For a column that is tapered, the AS4100 formulation permits an advanced elastic buckling analysis

to be made to determine the elastic buckling load Nom for the member (e.g. Bradford and Cuk 1988).

The slenderness in Eq. (47) is then replaced by

(48)

5.3. Flexural-torsional buckling of beams

The AS4100 treatment for the lateral buckling of beams permits a generic presentation in the form of

Eq. (40). The nominal buckling resistance in the code is

(49)
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where the factor αm is intended to account for the bending moment distribution, and is given in a

number of forms. The most popular expression with Australian designers, since bending moment

diagrams are usually generated by analysis software, is

(50)

in which Mm
* is the maximum moment in the beam segment and M2

* , M3
* and M4

* are the moments at

the three quarter points within the beam segment.

The factor αm is similar to the slenderness reduction factor for columns given in Eq. (42). It is given

in AS4100 by

(51)

where Ms is the cross-section capacity given by Eq. (28), and the reference elastic buckling moment is

(52)

with le is the effective length of the member. While Eq. (50) is considered to be a reasonably accurate

way to quantify the effect of the distribution of bending moment, the effective length depends on a

number of factors (twist and lateral restraints, and height of application of load). Therefore, the

prescriptive equations to determine it that are given in the AS4100 are approximate. Because of this, the

code allows for the upper tier of design by buckling analysis, where the elastic buckling moment M0b

that takes proper account of the member support, restraint and loading condition may be used. Since the

effect of the moment gradient is already incorporated into the determination of M0b, Eq. (50) , the value

of M0a used in Eq. (51) is M0b/αm. Generally, this method of design by buckling analysis requires

recourse to finite element computer software (Hancock and Trahair 1978, Bradford and Cuk 1988) and

so has not yet found widespread favour with Australian designers.

6. Beam columns and frames

The methods for the analysis of frames were discussed earlier in this paper, and once the maximum

design moments M * and axial forces N* have been determined, with due account for second order

effects, the members are normally sequentially checked for a number of strength limit states. One such

limit state is the section capacity, which for a member bent around its major axis requires that

(53)

AS4100 recognises that this equation is conservative for doubly symmetric I-sections and rectangular

sections that are compact, and use may be made of the higher tier rule that, for kf = 1,

(54)
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or when kf < 1,

(55)

where λw and  λwy are the values of  λe and  λey for the web.

The check for in-plane member capacity is that

(56)

but the conservatism of Eq. (56) may be reduced by the use of a higher-tier equation for compact

doubly symmetric I-sections and rectangular hollow sections whose form factor kf = 1 given by

(57)

The check for out-of-plane member capacity (lateral buckling) is:

(58)

where Ncy is the column capacity about the minor (y) axis and Mb is the lateral buckling capacity

determined from Eq. (49). Again, the conservatism of this equation may be reduced for doubly

symmetric compact I-section members that are fully or partially restrained at their ends, but are not

loaded transversely, and have a form factor of unity by the use of

(59)

in which

(60)

where Noz is the elastic torsional buckling load and Mbo is the value of Moa in Eq. (52) with the use of

αm = 1 in Eq. (49).

7. Conclusions

This paper has presented an overview of the analysis and design rules for the strength limit state

governed primarily by buckling in the Australian standard AS4100 that was introduced in limit states

format in 1990. The code allows for the use of a tiered approach, with the higher tier often requiring

recourse to a computer program for in-plane frame analysis. The prescriptive higher-tier equations

given in AS4100 also find favour with Australian designers, as they can be implemented readily into

spreadsheet calculations, and they lead to greater economy.

AS4100 also presents much guidance for plastic design. This finds far less favour with designers,

usually because high wind loadings tend to result in lateral buckling considerations that preclude the

use of plastic design.
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