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Abstract. In this article, a genetic algorithm based optimum design method is presented for non-linear
steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by
selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE
sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and
mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures
(TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of
frames. The analyses cover both the non-linear behaviour of beam-to-column connection and P-∆ effects of
beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid
connections. Two design examples with various type of connections are presented to demonstrate the
application of the algorithm. The semi-rigid connection modelling results in more economical solutions than
rigid connection modelling, but it increases frame drift.
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1. Introduction

Beam-to-column connections are assumed either perfectly pinned or fully rigid in most design of

steel frames. This simplification leads to an incorrect estimation of frame behaviour. In fact, the

connections are between the two extreme assumptions and possess some rotational stiffness. Full scale

testing requires so as to explain the real behaviour of these connections. Bolted and welded beam-to-

column connections rotates at an angle due to applied bending moment. This connection deformation

has negative effect on frame stability, as it increases drift of the frame and causes a decrease in effective

stiffness of the member which is connected to the joint. An increase in frame drift will multiply the

second-order (P-∆) effects of beam-column members and thus will affect the overall stability of the

frame. Hence, the non-linear features of beam-to-column connections have important function in

structural steel design. As a result of experimental works done by several researchers, various semi-

rigid connection modelling and their moment-rotation relationships are proposed. The main of these are

linear, polynomial, cubic B spline, power and exponential models (Abdalla and Chen 1995). Some

important research works have been reported for the analysis and design of semi-rigid frames (Abdalla

and Chen 1995, Dhillon and O’Malley 1999, Kim and Chen 1998, Goto and Miyashita 1998).
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American Institute of Steel Construction (AISC) Load and Resistance Factor Design (LRFD) specification

(AISC 1995) describes two types of steel construction: fully restrained (FR type) and partially restrained (PR

type). This specification requires that the connections of the PR type constructions be considered

flexible (semi-rigid) and, this flexibility be evaluated by a reasonable analysis or experimental works.

On the other hand, Eurocode 3 (1992) proposes three type connections: rigid; semi-rigid and normally

pinned or flexible. Giving clear demarcation lines with exact values among these types of connections

is the difference of Eurocode 3 from AISC-LRFD. There has not been any information on semi-rigid

connections in Turkish Steel Design specifications (TS 648, 1980 and TS 4561, 1985).

In recent years, some researchers have attended to the design of steel frames with semi-rigid

connections (Xu and Grierson 1993, Almusallam 1995, Simoes 1996, Kameshki and Saka 2001). In all

these works except the last one, mathematical programming techniques are used to obtain the optimum

design solution. Because of discrete character of the optimization problem, the solution techniques of

mathematical programming are complex and not very efficient for large scale structures. In the last

work, the optimum design of steel frames are obtained using a genetic algorithm. The stress and

serviceability constraints of British standard (BS 5950) are imposed on the frames and design examples

are given only for a connection type.

Genetic algorithms, which are applications of biological principles into computational algorithms,

have been used to obtain the optimum structural design solutions in recent years. They are able to deal

with discrete optimum design problems and do not need derivatives of functions, unlike mathematical

programming methods.

The aim of the present study is also to consider semi-rigid connections in the optimum design of steel

frames according to the specifications of TS 648 and thus to account the non-linear behaviour due to

connection characteristics and P-∆ effects of beam-column members. A polynomial model proposed by

Frye and Morris (1975) is adopted as semi-rigid connection model.

In the present study, a genetic algorithm is presented for the optimum design of non-linear steel

frames with semi-rigid connections subjected to displacement, and stress constraints of TS 648 specifications.

A set of available steel sections, European wide flange beams (most sorts of these sections are also available

in Turkish standards), are used as discrete design variables. Optimum designs of two frames with various

type of semi-rigid connections are performed under the applied loads. The effect of the connection

stiffness on the optimum designs is also investigated.

2. Genetic algorithms

Genetic algorithms are search techniques based on the mechanism of natural genetics and natural

selection. They make use of the artificial survival of the fittest concept with genetic operators taken

from nature to constitute a strong search mechanism. There are various genetic operators used in

genetic algorithms. The present work employs a genetic algorithm with reproduction, crossover and

mutation operators. A detailed explanation of these operators can be found in the book by Goldberg

(1989). Genetic algorithms are used as an optimization method so as to minimize or maximize an

objective function. They can be used in the optimum design of steel structures (Hayalioglu 2000, 2001).

In the present work, a genetic algorithm given by Rajeev and Krishnamoorthy (1992) is used but

improved by employing a uniform crossover operator instead of two-point crossover and adding a

mutation operator. Fitness scaling as explained by Goldberg (1989) has also been added to the algorithm

in order to prevent significant divergence from the optimum solution and provide fast convergence.
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A design variable has a sequence number in a given discrete set of variables in genetic algorithm.

Binary codes are used for these numbers. Individuals of a population are finite length strings formed

from either 1 or 0 characters. Individuals and characters are called choromosomes and artificial genes,

respectively, in some literature. A string may consist of some substrings so that each of them represents

a design variable.

The reproduction operator applies the principle of survival of the fittest in the population. The

crossover operator satisfies that individuals from the mating pool recombine genetic information to

generate new solutions to the problem. There are several crossover operators existing in the literature.

In this work, uniform crossover is employed, which is given in detail by Syswerda (1989). The third

operator is mutation which preserves diversification in the search. This operator is applied to each

offspring in the population with a predetermined probability. The operator flips the gene of an offspring

from 1 to 0 and vice versa at random position.

3. Optimum design problem and its formulation

The optimum design problem of a steel frame with displacement and stress constraints can be stated

as follows:

Find the set of design variables, so that the weight of the structure,

 (1) 

is minimized subject to displacement and stress constraints. In Eq. (1), mk is the total number of

members in group k, ρi and Li are density and length of member i, Ak is cross-sectional area of the

members belonging to group k, and ng is the total number of member groups in the frame.

The displacement constraints are:

j = 1, ...., p (2)

where δj is the displacement of the j-th degree of freedom, δju is its upper bound, p is the total

number of restricted displacements.

The stress constraints are expressed in terms of the following interaction equations (TS 648, 1980) for

members subject to bending moment and axial force:

For members subjected to both axial compression and bending stress,

(3)

 (4)

When σeb / σbem≤ 0.15, Eq. (5) is permitted in lieu of Eqs. (3) and (4),

(5)

W x( ) Ak ρiLi
i 1=

mk

∑
k 1=

ng

∑=

δj δju– 0≤
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For members subjected to both axial tension and bending stresses,

 (6)

In Eqs. (3)-(6), the subscript x, combined with subscripts b, B and e indicates the axis of bending

about which a particular stress or design property applies, and σbem is axial compressive stress that

would be permitted in the existence of axial force alone, σBx is compressive bending stress that

would be permitted in the existence of bending moment alone, σex' is Euler stress divided by a factor

of safety, σeb is computed axial compressive stress, σbx is computed compressive bending stress at

the point under consideration, Cm is a coefficient whose value is taken as 0.85 for compression

members in unbraced frames, σa is the yield stress of steel. In Eq. (6), σec is the computed axial

tensile stress, σcx is the computed bending tensile stress and σcem is allowable bending stress which

is equal to 0.6 σa. Allowable bending stress is increased by 0.15 in accordance with the

specification when produced by wind or earthquake acting in combination with the design dead and

live loads. Definitions of the permitted and Euler stresses and other details of the specification are

given in Appendix II.

The computed stresses are determined from non-linear analysis of steel frames under dead and live

loads in combination with wind or earthquake loads.

Effective length factor (K-factor) of columns must be estimated to evaluate the stability of columns in

frames with rigid and semi-rigid connections. The factor K is required to determine the permitted

compressive stress σbem and Euler stress σex'  in the design of frame members. The effective length

factor K for the columns in an unbraced frame is determined from the following interaction equation

(Kishi et al. 1997):

 (7)

where GA and GB are relative stiffness factors for A-th and B-th ends of columns and given as:

 (8)

where the summation is taken over all members connected to the joint, and where Ic is moment of

inertia of column section corresponding to plane of buckling, Lc is unbraced length of column, Ig is

moment of inertia of beam/girder corresponding to plane of bending, and Lg is unbraced length of

beam/girder.

In Eq. (7), it is assumed that the beams and girders are rigidly connected to columns at the joints. The

beam/girder stiffness Ig/Lg in Eq. (8) is multiplied by the following factors to consider for different end

connections:

The factor is 0.5 for far ends fixed; 0.67 for pinned, and 1/(1+6EI/L.k) for flexibly connected, where k

is spring stiffness of corresponding end.

Genetic algorithm is convenient for unconstrained optimization problems. The present problem

described by Eqs. (1)-(6) is a constrained one and therefore it is necessary to transform it into an

unconstrained problem. This is achieved by using a transformation based on the violations of normalized

constraints as suggested by Rajeev and Krishnamoorthy (1992). The normalized form of constraints

given in Eqs. (2)-(6) can be expressed as follows:

σec
0.6σa
-------------

σcx
σcem
----------+ 1.0≤

GAGB π K⁄( )2 36–

6 GA GB+( )
--------------------------------------------

π K⁄
tan π K⁄( )
-----------------------=

G
Ic∑ Lc⁄
Ig∑ Lg⁄

-------------------=
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, j = 1,...., p  (9)

, i = 1,...., nc (10)

, i = 1,...., nc (11)

or, in case of σeb / σbem ≤ 0.15,

, i = 1,...., nc (12)

and,

, i = 1,...., nb (13)

where nc is total number of members subjected to both axial compression and bending stress and nb

is total number of members subjected to both axial tension and bending stresses.

The unconstrained objective function ϕ (x) is then written as:

(14)

where C is a constant to be selected depending on the problem. A value of 10 is found suitable for

C in all design examples presented in this article. In Eq. (14) νi is violation coefficient computed as:

  if gi (x) > 0  then νi = gi (x)

if gi (x) ≤ 0 then νi = 0 (15)

where i varies from 1 to m which is the total number of constraints.

The minimum of the unconstrained function ϕ (x) will be searched by genetic algorithm. The

algorithm requires a criteria to carry out selection among the individuals. This is done in such a way

that the fittest individual has maximum fitness. Goldberg suggests that ϕ (x) should be subtracted from a

large constant for the minimization problem. In the present work, an expression for fitness is selected as:

(16)

where Fi is the fitness of i-th individual, ϕ (x)max and ϕ (x)min are the maximum and minimum

values of ϕ (x) among the current population, ϕi(x) is the value of the same function computed for

the i-th individual. The individuals with small fitness die off and the others send copies to the

mating pool proportional to their fitness. After the mating pool is created, individuals are coupled
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randomly and crossover is applied to them.

It is clear that computation of the fitness of an individual requires the values of displacements and

stresses in the frame system. This is achieved by carrying out the non-linear analysis of steel frames

with semi-rigid connections.

4. Connection modelling and analysis of steel frames with semi-rigid connections

A connection rotates through angle θr caused by applied moment M. This is the angle between beam

and column from their original position. Several moment-rotation relationships have been derived from

experimental studies for modelling semi-rigid connections of steel frames. These relationships vary

from linear model to exponential models and are non-linear in nature. Relative moment-rotation curves

of extensively used semi-rigid connections are shown in Fig. 1 (Chen et al. 1996).

The geometry and size parameters of six types of connections used in the present study are shown in

Fig. 2 (Chen et al. 1996). In the present work, a polynomial model offered by Frye and Morris (1975) is

used because of its easy application. This model is expressed by an odd power polynomial which is in

the following form:

(17)

where κ is standardization constant depends upon connection type and geometry; c1, c2, c3 are the

curve fitting constants. The values of these constants may be taken from the work by Chen et al.

(1996) or by Faella et al. (2000).

The non-linear analysis of steel frames takes into account both the geometrical non-linearity of beam-

column members and non-linearity due to end connection flexibility of beam members. The columns of

frames are generally continuous and do not have any internal flexible connections. However, the beams

possess semi-rigid end connections, but have small axial forces with a geometric non-linearity of little

importance. In the present study, two types of members are adopted for easiness in the design of steel

frames with semi-rigid connections:

θr c1 κM( )1= c2 κM( )3 c3 κM( )5+ +

Fig. 1 Moment-rotation curves of semi-rigid connections
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1. Beam-column member: A plane-frame member modified to include geometric non-linearity

effect (P-∆ effect).

2. Beam member with semi-rigid end connections: A plane-frame member modified to incorporate

end connection flexibility.

4.1. Beam-column member

The stiffness matrix of a beam-column member i with six degree of freedom in local coordinates

incorporating P-∆ effect can be expressed as follows:

(18)

where [kE]i is the conventional linear-elastic stiffness matrix and [kp]i is geometrical stiffness matrix

which can be taken from Chajes and Churchill (1987).

k[ ]i kE[ ]i kp[ ]i+=

Fig. 2 Semi-rigid connection types and size parameters (type-numbers are given in brackets)
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4.2. Beam member with semi-rigid end connections

Semi-rigid end connections of a beam can be represented by rotational springs. θ rA and θ rB are the

relative spring rotations of both ends (A-end and B-end) and kA and kB are the corresponding spring

stiffness (connection stiffness) expressed as:

(19)

(20)

where MA and MB are moments of the beam at both ends.

In the present work, a stiffness matrix taken from Chen and Lui (1991), (Chapter 6) is used for a beam

member with semi-rigid end connections.

The clear expression for the adopted fixed-end force vector due to in-span gravity loads on the beam

can be found in Dhillon and O’Malley (1999).

4.3. Analysis procedure

The structure stiffness matrix is constructed by superimposing the member stiffness matrices contain

geometric non-linearity and connection flexibility effects. This matrix is substituted in the structural

equilibrium equations which are non-linear and necessitate an iterative solution procedure. The applied

loads are divided into a number of small-load increments and structural equilibrium equations are

written in the incremental form:

[S]{∆D}={∆F} (21)

where [S] is structure stiffness matrix, {∆F} is incremental load vector, and {∆D} is incremental

displacement vector. The incremental Eq. (21) are iteratively solved by a sequence of linear steps. The

secant stiffness approach (Dhillon and O’Malley 1999) is utilized for calculating the connection

stiffness. The connection secant stiffness, SE, is defined as:

(22)

where ∆M is the change in end moment during a load increment, ∆θr is the change in relative

spring rotation during the load increment. For each load increment, structure stiffness matrix is

formed at the start of each iterative cycle. This requires calculation of the connection secant

stiffness at the beginning of each cycle, and changing of the latest geometry and member end forces

based on information from previous cycle. The convergent connection secant stiffnesses related to

all load increments are shown in Fig. 3. Convergence is obtained when the difference between joint

displacements of two consecutive cycles falls below a specified tolerance. As the vertical and lateral

loads are assumed to be applied to the frame at the same time starting from zero to its final value

with small increments, it is thought that the unloading of connections may not occur and is not

taken into account in this study.

kA
MA

θrA
-------=

kB
MB

θrB
-------=

SE
∆M

∆θr
---------=
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A convergent solution of a load increment forms initial values for the next iteration and the iterative

procedure goes on until all load increments are taken into account. The solutions for all load increments

are added up to acquire a total non-linear response.

5. Optimum design procedure

Genetic algorithm based optimum design algorithm for steel frames with semi-rigid connection

consists of the following steps:

1. Construct the initial population randomly which comprises binary digits.

2. Decode the binary codes for the design variables of each individual and find their sequence

numbers in the available steel section list. Carry out the non-linear analysis of each steel frame, which

represents an individual in the population, under the applied loads and obtain the response of

the frame.

3. Calculate the value of unconstrained function ϕ (x) for each individual using Eqs. (9)-(15). Find

the maximum and minimum values of this function in the population.

4. Calculate the fitness value for each individual from Eq. (16).

5. Apply linear fitness scaling to the population as explained by Goldberg (1989) to obtain fast

convergence on the optimum solution.

6. Apply the reproduction operator. Copy the individuals into the mating pool according to their

fitness, and couple them randomly. Generate offspring using uniform crossover and thus obtain

the new population.

7. Apply mutation to each offspring in the new population with a specified probability.

8. Replace the initial population by the new population and repeat steps 2 to 8 until the distance

between the maximum and average fitness values of current population falls below a specified

tolerance. In this case, the individual with the maximum fitness value in current population

represents the optimum design.

Fig. 3 Connection secant stiffnesses through load increments
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6. Design examples

A computer program has been developed in the present study, which is implementation of the

optimum design procedure. Two design examples are presented to demonstrate the application of the

optimum design procedure. The designs of flexibly-connected frames are compared to the designs of

rigidly-connected frames under the same design requirements. The design of rigidly-connected frames

are performed for both considering and not considering P-∆ effect of beam-column members. The

material is steel with a modulus of elasticity of 205940 MPa and yield stress of 235.4 MPa. Material

density is 7850 kg/m3. European wide flange beams (i.e., HE sections) in accordance with Euronorm

53-62 (1993) are used in the optimum design of the frames, due to plenty of sections. The numbers of

semi-rigid connection types used in the designs are the same as the ones given in Fig. 2. Relatively

larger displacement restrictions are imposed on the flexibly-connected frames than those of rigidly-

connected frames, to account geometrical non-linearity due to P-∆ effects and connection flexibility.

Therefore the maximum drift is restricted to H/250 (H=total height of the frame) for the frames with

semi-rigid connections while it is limited to H/500 - H/400 for the rigidly-connected frames.

6.1. Three-storey, two-bay frame

The configuration, dimensions, loading and numbering of members of three-storey, two- bay frame

are shown in Fig. 4. The maximum drifts are restricted to 4.38 cm and 2.74 cm for the frames with

semi-rigid and rigid connections respectively. The applied loads shown in Fig. 4 are divided into ten

equal parts to carry out the non-linear analysis.

The connection size parameters which remain fixed during the optimum design process are given in

Table 1 depending on the connection types. The results of the optimum designs for six types of semi-

rigid connections and also rigid connection are presented in Table 2 in the form of frame weight and

Fig. 4 Three-storey, two-bay frame
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drift. The optimum design sections of the frame with the six semi-rigid connections and rigid connections are

given in Table 3.

The member grouping is done by the designer manually. It is not done automatically by the optimization

program. A designer can determine member grouping considering savings in the labor cost. Therefore the

columns are separated into three distinct groups whose cross-sections remain unchanged along the

storeys. The same grouping for the beams of the two storeys is also adopted to reduce the fabrication cost

of connections.

Fig. 5 Ten-storey, single-bay frame
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The results of the optimum designs in Table 2 show that the weights of the flexibly-connected frames

decrease by 5-14%, depending on connection types, over the weights of rigidly-connected frames. As

regards the drifts, the drifts of flexibly-connected frames increase by 2-41% over the drifts of rigidly-

connected frame. The drift values are quite below their upper bounds and this indicates that stress

constraints govern the designs for both flexibly and rigidly-connected frames.

To examine the effect of the connection stiffness on the optimum design of frames, the frame with

connection type 4 is designed with various connection size parameters and the results are presented in

Table 4 in the form of frame weights and drifts. The curve fitting and standardization constants of M-θr
polynomial relationship given by Eq. (17) for connection type 4 are given by Chen et al. (1996) as:

c1 = 1.83×10−3, c2 = 1.04×10−4, c3 = 6.38×10−6

and

Table 1 The fixed connection size parameters for three-storey, two-bay frame

Connection type Connection size parameters (cm)

1 ta=2.4   g = 31.0

2 t = 2.0  tc = 2.0    g = 10.5

3 t = 2.8  db = 2.8

4 tp = 2.8 db = 2.8

5 tp = 2.8

6 t = 2.0  db = 2.0

Table 2 Optimum design results of three-storey, two-bay frame (Frame weights and drifts)

Semi-rigid
connection

type

Weight (kg) Drift (cm)

Semi-rigid
connection

Rigid
connection
P-∆ effect

Rigid
connection
no P-∆ effect

Semi-rigid
connection

Rigid
connection
P-∆ effect

Rigid
connection
no P-∆ effect

1 5011

5615 5174

2.04

1.83 0.88

2 4810 2.20

3 5319 2.11

4 5251 1.90

5 5317 2.58

6 4925 1.86

Table 3 HE sections of three-storey, two-bay frame at the optimum design

Member
No

Semi-rigid connection types Rigid connection 
P-∆ effect

Rigid connection 
no P-∆ effect(1) (2) (3) (4) (5) (6)

1,4,7 200AA 180AA 200AA 180AA 180A 180AA 180AA  320A

2,5,8 450AA 500AA 300A 300A 500AA 280A  280A  260A

3,6,9 200AA 200AA 320AA 340AA 200A 340AA 340AA 320AA

10-13 400AA 340AA 400AA 400AA 320A 400AA 400AA  300A

14,15 320AA 240B 320AA 300AA 320AA 320AA 320AA  260A
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(23)

where the parameters in Eq. (23) are shown in Fig. 2. The values of dg are calculated depending on

the steel section adopted for the beam.

The results of Table 4 indicate that, reducing of connection stiffness causes increase in both frame

weight and drift.

A population size of 60 is used in all designs (population size is the number of individuals in a

population in genetic algorithm). The frame with the connection type 2 is also designed using a

population size of 120 and the results are presented in Table 5. Computing times given in Table 5

belong to a personal computer with an Intel Pentium III 450 MHz microprocessor.

The weight decrease by 3.8% but the number of generations and computing time increase by 61 %

and 2.83 times respectively, when doubled the population size.

6.2. Ten-storey, single-bay frame

Fig. 5 shows configuration, dimensions, loading and numbering of members. The maximum drifts are

limited to 12.4 cm, 6.89 cm and 6.2 cm for the frames with semi-rigid connections, rigid connections

with P-∆ effect and rigid connections with no P-∆ effect.

The fixed connection size parameters for six connection types are given in Table 6. The optimum

design results for the frames with semi-rigid connections and rigid connections are presented in Table 7.

The optimum design sections of the frame are also given in Table 8.

κ dg
2.4–
tp
0.4–
db

1.5–
=

Table 4 The effect of connection stiffness on the optimum design of three-storey, two-bay frame

Connection size parameters (cm) Weight (kg) Drift (cm)

tp=2.8 db=2.8 5251 1.90

tp=2.5 db=2.5 5378 2.16

tp=2.1 db=2.1 5398 2.48

tp=1.7 db=1.7 5809 2.73

Table 5 The effect of population size on the optimum design of three-storey, two-bay frame

Population size Weight (kg) Number of generation Computing time (min)

60 4810 125 1.83

120 4626 201 5.17

Table 6 The fixed connection size parameters for ten-storey, single-bay frame

Connection type Connection size parameters (cm)

1 ta=2.0   g=22.0

2 t=1.6 tc=1.6  g=10.5

3 t=2.4 db=2.8

4 tp=2.0   db=2.0

5 tp=2.0

6 t=2.0 db=2.0
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The results in Table 7 indicate that the weights of flexibly-connected frames decrease by 7-19% over the

weights of rigidly-connected frames. On the other hand, the drifts of flexibly-connected frames increase

by 83-100% over the rigidly-connected frames. The drift values are quite close to their upper bounds and

this indicates that displacement constraints control the designs of flexibly and rigidly-connected frames.

The weight of rigidly-connected frame with P-∆ effect is supposed to be larger than that of the one

without P-∆ effect due to magnified column and beam end moments. However, the results in Table 7 is

opposite to this supposition. The reason for this is that the displacement constraints govern the both

designs and stress constraints are mostly passive at the optima. In the previous example, the displacement

constraints are passive and the stress constraints control design, therefore the weight of frame with P-∆

effect becomes larger than that of the one without P-∆ effect.

A population size of 60 is used in all designs of this example. The frame with connection type 2 is

also designed considering a population size of 96 and the results are given in Table 9.

Table 7 Optimum design results of ten-storey, single-bay frame (Frame weights and drifts)

Semi-rigid
connection

type

Weight (kg) Drift (cm)

Semi-rigid
connection

Rigid
connection
P-∆ effect

Rigid
connection
no P-∆ effect

Semi-rigid
connection

Rigid
connection
P-∆ effect

Rigid
connection
no P-∆ effect

1 15862

18818 19520

12.38

6.72 6.18

2 16288 12.39

3 16712 12.39

4 17289 12.32

5 17577 12.31

6 16475 12.35

Table 8 HE sections of ten-storey, single-bay frame at the optimum design

Member
No

Semi-rigid connection types Rigid connection 
P-∆ effect

Rigid connection 
no P-∆ effect(1) (2) (3) (4) (5) (6)

 1-6 450B 650A 600A 650A 500B 450B 450×312ο 400×299

 7-12 550AA 500AA 500AA 360B 500A 550AA 500AA 450AA

13-18 340AA 340AA 340AA 450AA 360A 320AA 340AA 550AA

19,20 450AA 360AA 320AA 320AA 320AA 320AA 400B 320AA

21-23 550AA 500AA 600AA 500AA 600AA 650AA 550AA 550AA

24-26 450AA 650AA 500AA 650AA 450AA 360A 650AA 500AA

27-29 450AA 360AA 600AA 400AA 450AA 340A 400AA 450AA

 30 320AA 400AA 320AA 320AA 320AA 320AA 320AA 320AA

Table 9 The effect of population size on the optimum design of ten-storey, single-bay frame

Population size Weight (kg) Number of generation Computing time (min.)

60 17289 191  6.06

96 17035 276 14.14
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The weight decrease 1.5% but the number of generations and computing time increase by 45% and

2.33 times respectively when the population size is increased by 60%.

7. Conclusions

A genetic algorithm based optimum design procedure is presented for steel frames with semi-rigid

connections considering non-linear behaviour of frames. Design examples are incorporated to demonstrate

the influence of connection flexibility and geometric non-linearity on the design of steel frames.

The following conclusions are drawn from the design examples considered, when using genetic

algorithm in the optimum design of non-linear steel frames with semi-rigid connections:

1. The population size plays important role in the values of the optimum weights and in the number

of generations produced. An increase in population size results in large increase in the number of

generations produced and the computing time, but small decrease in the weight of the frame. A

population size between l and 2l, where l is chromosome length, produces adequate results.

2. Fitness scaling and higher crossover probability increase the speed of convergence. Linear

fitness scaling with a value of 2 for the multiplier is included in the algorithm and a value of

0.95 is used for crossover probability. Small mutation probabilities such as 0.001 or 0.002 are

found suitable in the examples considered, since greater values of this probability cause

significant divergence from the optimum solution.

3. The following terminating criterion is used in the genetic algorithm: (Fmax−Favg)/Fmax≤ε, where

Fmax and Favg are the maximum and average fitness values in the current population, and ε is a

prescribed small number. Selecting smaller values for ε causes delay in convergence, but larger

values for ε yields premature convergence. Values between 0.005 and 0.008 are found

appropriate in the design examples presented.

4. It is observed from the results of optimum design examples that semi-rigid connection

modelling creates lighter frames when compared to rigid connection modelling. These

decreases in the weights are calculated as 5-20% in the examples considered.

5. The semi-rigid connections cause a large increase in the frame drift. These increases in the

drifts are calculated up to 100% in the design examples.

6. It is found from the results that reducing of connection stiffness causes increase in both

optimum frame weight and drift. The reason for this is that more flexible connections increase

the displacements of the frame, but these displacements are adjusted to their restrictions by the

optimization process assigning larger sections to the members.

7. More economical optimum frames can be obtained by adjusting the stiffness of the connections.
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Appendix I. Permitted and Euler stresses in TS 648

Permitted axial compressive stress:

When λ, the largest effective slenderness ratio of a compressive member, is less than λp:

(24)

where

(25)

When λ exceeds λp:

σbem

1
1

2
---

λ

λp 
------ 
  2– σa

n
--------------------------------------=

λp  
2π

2
E

σa
------------=
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(26)

In Eq. (24), n is a factor of safety which is defined as:

 if λ < 20            then  n = 1.67

if 20 ≤ λ < λp then n = 1.5+1.2 (27)

Permitted compressive bending stress:

When the compression flange is solid and approximately rectangular in cross section and its area is

not less than that of the tension flange: 

(28)

In the foregoing,

l = distance between cross sections braced against twist or lateral displacement of the compression

flange (cm).

d = depth of column, beam or girder (cm).

Fb = area of the compression flange (cm2).

σBx = permitted compression bending stress which is not more than 0.6 σa (MPa).

Cb= 1.75+1.05(M1/M2)+0.3(M1/M2)
2, but not more than 2.3, where M1 is smaller and M2 is larger

bending moment at the ends of unbraced length, taken about the strong axis of the member,

and where  M1/M2 is positive when M1 and M2 have the same sign and negative when they are

of opposite signs. When the bending moment at any point within an unbraced length is larger

than that at both ends of this length, the value of Cb shall be taken as unity.

Euler stress divided by a factor of safety:

(29)

where K is the effective length factor in the plane of bending, lb is the actual unbraced length in the

plane of bending and ib is the corresponding radius of gyration.
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